From 58d5d71a93908c6edd783d85557c2556b2e179c7 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Fri, 10 Nov 2023 20:52:10 -0500 Subject: [PATCH 1/4] Working RescaleCFG node. This was broken because of recent changes so I fixed it and moved it from the experiments repo. --- comfy/samplers.py | 2 +- comfy_extras/nodes_model_advanced.py | 39 ++++++++++++++++++++++++++++ 2 files changed, 40 insertions(+), 1 deletion(-) diff --git a/comfy/samplers.py b/comfy/samplers.py index d7ff8985044..a839ee9e2a2 100644 --- a/comfy/samplers.py +++ b/comfy/samplers.py @@ -248,7 +248,7 @@ def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_tot cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, model_options) if "sampler_cfg_function" in model_options: - args = {"cond": x - cond, "uncond": x - uncond, "cond_scale": cond_scale, "timestep": timestep, "input": x} + args = {"cond": x - cond, "uncond": x - uncond, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep} return x - model_options["sampler_cfg_function"](args) else: return uncond + (cond - uncond) * cond_scale diff --git a/comfy_extras/nodes_model_advanced.py b/comfy_extras/nodes_model_advanced.py index 42596fbd52d..09d2d9072b2 100644 --- a/comfy_extras/nodes_model_advanced.py +++ b/comfy_extras/nodes_model_advanced.py @@ -123,6 +123,45 @@ class ModelSamplingAdvanced(sampling_base, sampling_type): m.add_object_patch("model_sampling", model_sampling) return (m, ) +class RescaleCFG: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "advanced/model" + + def patch(self, model, multiplier): + def rescale_cfg(args): + cond = args["cond"] + uncond = args["uncond"] + cond_scale = args["cond_scale"] + sigma = args["sigma"] + x_orig = args["input"] + + #rescale cfg has to be done on v-pred model output + x = x_orig / (sigma * sigma + 1.0) + cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma) + uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma) + + #rescalecfg + x_cfg = uncond + cond_scale * (cond - uncond) + ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True) + ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True) + + x_rescaled = x_cfg * (ro_pos / ro_cfg) + x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg + + return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5) + + m = model.clone() + m.set_model_sampler_cfg_function(rescale_cfg) + return (m, ) + NODE_CLASS_MAPPINGS = { "ModelSamplingDiscrete": ModelSamplingDiscrete, + "RescaleCFG": RescaleCFG, } From ca2812bae09f337378dc1d70714bf7287e27883a Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Fri, 10 Nov 2023 22:05:25 -0500 Subject: [PATCH 2/4] Fix RescaleCFG for batch size > 1. --- comfy_extras/nodes_model_advanced.py | 1 + 1 file changed, 1 insertion(+) diff --git a/comfy_extras/nodes_model_advanced.py b/comfy_extras/nodes_model_advanced.py index 09d2d9072b2..399123eaa2e 100644 --- a/comfy_extras/nodes_model_advanced.py +++ b/comfy_extras/nodes_model_advanced.py @@ -140,6 +140,7 @@ def rescale_cfg(args): uncond = args["uncond"] cond_scale = args["cond_scale"] sigma = args["sigma"] + sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1)) x_orig = args["input"] #rescale cfg has to be done on v-pred model output From 412d3ff57d01d7e8c0889f686e31836170c4bfe3 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Sat, 11 Nov 2023 01:00:43 -0500 Subject: [PATCH 3/4] Refactor. --- comfy/ops.py | 24 +++++++++--------------- 1 file changed, 9 insertions(+), 15 deletions(-) diff --git a/comfy/ops.py b/comfy/ops.py index 610d54584fa..0bfb698aa7f 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -1,29 +1,23 @@ import torch from contextlib import contextmanager -class Linear(torch.nn.Module): - def __init__(self, in_features: int, out_features: int, bias: bool = True, - device=None, dtype=None) -> None: - factory_kwargs = {'device': device, 'dtype': dtype} - super().__init__() - self.in_features = in_features - self.out_features = out_features - self.weight = torch.nn.Parameter(torch.empty((out_features, in_features), **factory_kwargs)) - if bias: - self.bias = torch.nn.Parameter(torch.empty(out_features, **factory_kwargs)) - else: - self.register_parameter('bias', None) - - def forward(self, input): - return torch.nn.functional.linear(input, self.weight, self.bias) +class Linear(torch.nn.Linear): + def reset_parameters(self): + return None class Conv2d(torch.nn.Conv2d): def reset_parameters(self): return None +class Conv3d(torch.nn.Conv3d): + def reset_parameters(self): + return None + def conv_nd(dims, *args, **kwargs): if dims == 2: return Conv2d(*args, **kwargs) + elif dims == 3: + return Conv3d(*args, **kwargs) else: raise ValueError(f"unsupported dimensions: {dims}") From 4a8a839b40fcae9960a6107200b89dce6675895d Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Sat, 11 Nov 2023 01:03:39 -0500 Subject: [PATCH 4/4] Add option to use in place weight updating in ModelPatcher. --- comfy/model_patcher.py | 21 ++++++++++++++++----- comfy/utils.py | 8 ++++++++ 2 files changed, 24 insertions(+), 5 deletions(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index ef18d1b2342..6d7a61c416a 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -6,7 +6,7 @@ import comfy.model_management class ModelPatcher: - def __init__(self, model, load_device, offload_device, size=0, current_device=None): + def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False): self.size = size self.model = model self.patches = {} @@ -22,6 +22,8 @@ def __init__(self, model, load_device, offload_device, size=0, current_device=No else: self.current_device = current_device + self.weight_inplace_update = weight_inplace_update + def model_size(self): if self.size > 0: return self.size @@ -171,15 +173,20 @@ def patch_model(self, device_to=None): weight = model_sd[key] + inplace_update = self.weight_inplace_update + if key not in self.backup: - self.backup[key] = weight.to(self.offload_device) + self.backup[key] = weight.to(device=device_to, copy=inplace_update) if device_to is not None: temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True) else: temp_weight = weight.to(torch.float32, copy=True) out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype) - comfy.utils.set_attr(self.model, key, out_weight) + if inplace_update: + comfy.utils.copy_to_param(self.model, key, out_weight) + else: + comfy.utils.set_attr(self.model, key, out_weight) del temp_weight if device_to is not None: @@ -295,8 +302,12 @@ def calculate_weight(self, patches, weight, key): def unpatch_model(self, device_to=None): keys = list(self.backup.keys()) - for k in keys: - comfy.utils.set_attr(self.model, k, self.backup[k]) + if self.weight_inplace_update: + for k in keys: + comfy.utils.copy_to_param(self.model, k, self.backup[k]) + else: + for k in keys: + comfy.utils.set_attr(self.model, k, self.backup[k]) self.backup = {} diff --git a/comfy/utils.py b/comfy/utils.py index 6a0c54e8098..4b484d07ac9 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -261,6 +261,14 @@ def set_attr(obj, attr, value): setattr(obj, attrs[-1], torch.nn.Parameter(value)) del prev +def copy_to_param(obj, attr, value): + # inplace update tensor instead of replacing it + attrs = attr.split(".") + for name in attrs[:-1]: + obj = getattr(obj, name) + prev = getattr(obj, attrs[-1]) + prev.data.copy_(value) + def get_attr(obj, attr): attrs = attr.split(".") for name in attrs: