diff --git a/.github/workflows/test-ui.yaml b/.github/workflows/test-ui.yaml new file mode 100644 index 00000000000..95069175517 --- /dev/null +++ b/.github/workflows/test-ui.yaml @@ -0,0 +1,26 @@ +name: Tests CI + +on: [push, pull_request] + +jobs: + test: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v4 + - uses: actions/setup-node@v3 + with: + node-version: 18 + - uses: actions/setup-python@v4 + with: + python-version: '3.10' + - name: Install requirements + run: | + python -m pip install --upgrade pip + pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu + pip install -r requirements.txt + - name: Run Tests + run: | + npm ci + npm run test:generate + npm test + working-directory: ./tests-ui diff --git a/.github/workflows/windows_release_dependencies.yml b/.github/workflows/windows_release_dependencies.yml new file mode 100644 index 00000000000..aafe8a21444 --- /dev/null +++ b/.github/workflows/windows_release_dependencies.yml @@ -0,0 +1,67 @@ +name: "Windows Release dependencies" + +on: + workflow_dispatch: + inputs: + xformers: + description: 'xformers version' + required: false + type: string + default: "" + cu: + description: 'cuda version' + required: true + type: string + default: "121" + + python_minor: + description: 'python minor version' + required: true + type: string + default: "11" + + python_patch: + description: 'python patch version' + required: true + type: string + default: "6" +# push: +# branches: +# - master + +jobs: + build_dependencies: + runs-on: windows-latest + steps: + - uses: actions/checkout@v3 + - uses: actions/setup-python@v4 + with: + python-version: 3.${{ inputs.python_minor }}.${{ inputs.python_patch }} + + - shell: bash + run: | + echo "@echo off + ..\python_embeded\python.exe .\update.py ..\ComfyUI\\ + echo - + echo This will try to update pytorch and all python dependencies, if you get an error wait for pytorch/xformers to fix their stuff + echo You should not be running this anyways unless you really have to + echo - + echo If you just want to update normally, close this and run update_comfyui.bat instead. + echo - + pause + ..\python_embeded\python.exe -s -m pip install --upgrade torch torchvision torchaudio ${{ inputs.xformers }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2 + pause" > update_comfyui_and_python_dependencies.bat + + python -m pip wheel --no-cache-dir torch torchvision torchaudio ${{ inputs.xformers }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r requirements.txt pygit2 -w ./temp_wheel_dir + python -m pip install --no-cache-dir ./temp_wheel_dir/* + echo installed basic + ls -lah temp_wheel_dir + mv temp_wheel_dir cu${{ inputs.cu }}_python_deps + tar cf cu${{ inputs.cu }}_python_deps.tar cu${{ inputs.cu }}_python_deps + + - uses: actions/cache/save@v3 + with: + path: | + cu${{ inputs.cu }}_python_deps.tar + update_comfyui_and_python_dependencies.bat + key: ${{ runner.os }}-build-cu${{ inputs.cu }}-${{ inputs.python_minor }} diff --git a/.github/workflows/windows_release_nightly_pytorch.yml b/.github/workflows/windows_release_nightly_pytorch.yml index 319942e7c58..b793f7fe2b2 100644 --- a/.github/workflows/windows_release_nightly_pytorch.yml +++ b/.github/workflows/windows_release_nightly_pytorch.yml @@ -20,12 +20,12 @@ jobs: persist-credentials: false - uses: actions/setup-python@v4 with: - python-version: '3.11.3' + python-version: '3.11.6' - shell: bash run: | cd .. cp -r ComfyUI ComfyUI_copy - curl https://www.python.org/ftp/python/3.11.3/python-3.11.3-embed-amd64.zip -o python_embeded.zip + curl https://www.python.org/ftp/python/3.11.6/python-3.11.6-embed-amd64.zip -o python_embeded.zip unzip python_embeded.zip -d python_embeded cd python_embeded echo 'import site' >> ./python311._pth diff --git a/.github/workflows/windows_release_package.yml b/.github/workflows/windows_release_package.yml new file mode 100644 index 00000000000..87d37c24d89 --- /dev/null +++ b/.github/workflows/windows_release_package.yml @@ -0,0 +1,100 @@ +name: "Windows Release packaging" + +on: + workflow_dispatch: + inputs: + cu: + description: 'cuda version' + required: true + type: string + default: "121" + + python_minor: + description: 'python minor version' + required: true + type: string + default: "11" + + python_patch: + description: 'python patch version' + required: true + type: string + default: "6" +# push: +# branches: +# - master + +jobs: + package_comfyui: + permissions: + contents: "write" + packages: "write" + pull-requests: "read" + runs-on: windows-latest + steps: + - uses: actions/cache/restore@v3 + id: cache + with: + path: | + cu${{ inputs.cu }}_python_deps.tar + update_comfyui_and_python_dependencies.bat + key: ${{ runner.os }}-build-cu${{ inputs.cu }}-${{ inputs.python_minor }} + - shell: bash + run: | + mv cu${{ inputs.cu }}_python_deps.tar ../ + mv update_comfyui_and_python_dependencies.bat ../ + cd .. + tar xf cu${{ inputs.cu }}_python_deps.tar + pwd + ls + + - uses: actions/checkout@v3 + with: + fetch-depth: 0 + persist-credentials: false + - shell: bash + run: | + cd .. + cp -r ComfyUI ComfyUI_copy + curl https://www.python.org/ftp/python/3.${{ inputs.python_minor }}.${{ inputs.python_patch }}/python-3.${{ inputs.python_minor }}.${{ inputs.python_patch }}-embed-amd64.zip -o python_embeded.zip + unzip python_embeded.zip -d python_embeded + cd python_embeded + echo 'import site' >> ./python3${{ inputs.python_minor }}._pth + curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py + ./python.exe get-pip.py + ./python.exe -s -m pip install ../cu${{ inputs.cu }}_python_deps/* + sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth + cd .. + + git clone https://github.com/comfyanonymous/taesd + cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/ + + mkdir ComfyUI_windows_portable + mv python_embeded ComfyUI_windows_portable + mv ComfyUI_copy ComfyUI_windows_portable/ComfyUI + + cd ComfyUI_windows_portable + + mkdir update + cp -r ComfyUI/.ci/update_windows/* ./update/ + cp -r ComfyUI/.ci/windows_base_files/* ./ + cp ../update_comfyui_and_python_dependencies.bat ./update/ + + cd .. + + "C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable + mv ComfyUI_windows_portable.7z ComfyUI/new_ComfyUI_windows_portable_nvidia_cu${{ inputs.cu }}_or_cpu.7z + + cd ComfyUI_windows_portable + python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu + + ls + + - name: Upload binaries to release + uses: svenstaro/upload-release-action@v2 + with: + repo_token: ${{ secrets.GITHUB_TOKEN }} + file: new_ComfyUI_windows_portable_nvidia_cu${{ inputs.cu }}_or_cpu.7z + tag: "latest" + overwrite: true + diff --git a/.gitignore b/.gitignore index 98d91318d3d..43c038e4161 100644 --- a/.gitignore +++ b/.gitignore @@ -14,3 +14,4 @@ venv/ /web/extensions/* !/web/extensions/logging.js.example !/web/extensions/core/ +/tests-ui/data/object_info.json \ No newline at end of file diff --git a/.vscode/settings.json b/.vscode/settings.json new file mode 100644 index 00000000000..202121e10fc --- /dev/null +++ b/.vscode/settings.json @@ -0,0 +1,9 @@ +{ + "path-intellisense.mappings": { + "../": "${workspaceFolder}/web/extensions/core" + }, + "[python]": { + "editor.defaultFormatter": "ms-python.autopep8" + }, + "python.formatting.provider": "none" +} diff --git a/README.md b/README.md index d83b4bdac7f..af1f2281158 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ ComfyUI ======= -A powerful and modular stable diffusion GUI and backend. +The most powerful and modular stable diffusion GUI and backend. ----------- ![ComfyUI Screenshot](comfyui_screenshot.png) @@ -11,7 +11,7 @@ This ui will let you design and execute advanced stable diffusion pipelines usin ## Features - Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything. -- Fully supports SD1.x, SD2.x and SDXL +- Fully supports SD1.x, SD2.x, [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/) and [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/) - Asynchronous Queue system - Many optimizations: Only re-executes the parts of the workflow that changes between executions. - Command line option: ```--lowvram``` to make it work on GPUs with less than 3GB vram (enabled automatically on GPUs with low vram) @@ -30,6 +30,8 @@ This ui will let you design and execute advanced stable diffusion pipelines usin - [unCLIP Models](https://comfyanonymous.github.io/ComfyUI_examples/unclip/) - [GLIGEN](https://comfyanonymous.github.io/ComfyUI_examples/gligen/) - [Model Merging](https://comfyanonymous.github.io/ComfyUI_examples/model_merging/) +- [LCM models and Loras](https://comfyanonymous.github.io/ComfyUI_examples/lcm/) +- [SDXL Turbo](https://comfyanonymous.github.io/ComfyUI_examples/sdturbo/) - Latent previews with [TAESD](#how-to-show-high-quality-previews) - Starts up very fast. - Works fully offline: will never download anything. @@ -46,6 +48,7 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git | Ctrl + S | Save workflow | | Ctrl + O | Load workflow | | Ctrl + A | Select all nodes | +| Alt + C | Collapse/uncollapse selected nodes | | Ctrl + M | Mute/unmute selected nodes | | Ctrl + B | Bypass selected nodes (acts like the node was removed from the graph and the wires reconnected through) | | Delete/Backspace | Delete selected nodes | @@ -69,7 +72,7 @@ Ctrl can also be replaced with Cmd instead for macOS users There is a portable standalone build for Windows that should work for running on Nvidia GPUs or for running on your CPU only on the [releases page](https://github.com/comfyanonymous/ComfyUI/releases). -### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/download/latest/ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z) +### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/download/latest/ComfyUI_windows_portable_nvidia_cu121_or_cpu.7z) Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you put your Stable Diffusion checkpoints/models (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints @@ -89,19 +92,21 @@ Put your SD checkpoints (the huge ckpt/safetensors files) in: models/checkpoints Put your VAE in: models/vae +Note: pytorch does not support python 3.12 yet so make sure your python version is 3.11 or earlier. + ### AMD GPUs (Linux only) AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version: -```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/rocm5.4.2``` +```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.6``` -This is the command to install the nightly with ROCm 5.6 that supports the 7000 series and might have some performance improvements: -```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm5.6``` +This is the command to install the nightly with ROCm 5.7 that might have some performance improvements: +```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm5.7``` ### NVIDIA -Nvidia users should install torch and xformers using this command: +Nvidia users should install pytorch using this command: -```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 xformers``` +```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121``` #### Troubleshooting diff --git a/comfy/cldm/cldm.py b/comfy/cldm/cldm.py index 25148313117..76a525b378a 100644 --- a/comfy/cldm/cldm.py +++ b/comfy/cldm/cldm.py @@ -27,15 +27,13 @@ def __init__( model_channels, hint_channels, num_res_blocks, - attention_resolutions, dropout=0, channel_mult=(1, 2, 4, 8), conv_resample=True, dims=2, num_classes=None, use_checkpoint=False, - use_fp16=False, - use_bf16=False, + dtype=torch.float32, num_heads=-1, num_head_channels=-1, num_heads_upsample=-1, @@ -53,8 +51,10 @@ def __init__( use_linear_in_transformer=False, adm_in_channels=None, transformer_depth_middle=None, + transformer_depth_output=None, device=None, operations=comfy.ops, + **kwargs, ): super().__init__() assert use_spatial_transformer == True, "use_spatial_transformer has to be true" @@ -80,10 +80,7 @@ def __init__( self.image_size = image_size self.in_channels = in_channels self.model_channels = model_channels - if isinstance(transformer_depth, int): - transformer_depth = len(channel_mult) * [transformer_depth] - if transformer_depth_middle is None: - transformer_depth_middle = transformer_depth[-1] + if isinstance(num_res_blocks, int): self.num_res_blocks = len(channel_mult) * [num_res_blocks] else: @@ -91,25 +88,22 @@ def __init__( raise ValueError("provide num_res_blocks either as an int (globally constant) or " "as a list/tuple (per-level) with the same length as channel_mult") self.num_res_blocks = num_res_blocks + if disable_self_attentions is not None: # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not assert len(disable_self_attentions) == len(channel_mult) if num_attention_blocks is not None: assert len(num_attention_blocks) == len(self.num_res_blocks) assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) - print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " - f"This option has LESS priority than attention_resolutions {attention_resolutions}, " - f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " - f"attention will still not be set.") - self.attention_resolutions = attention_resolutions + transformer_depth = transformer_depth[:] + self.dropout = dropout self.channel_mult = channel_mult self.conv_resample = conv_resample self.num_classes = num_classes self.use_checkpoint = use_checkpoint - self.dtype = th.float16 if use_fp16 else th.float32 - self.dtype = th.bfloat16 if use_bf16 else self.dtype + self.dtype = dtype self.num_heads = num_heads self.num_head_channels = num_head_channels self.num_heads_upsample = num_heads_upsample @@ -182,11 +176,14 @@ def __init__( dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, - operations=operations + dtype=self.dtype, + device=device, + operations=operations, ) ] ch = mult * model_channels - if ds in attention_resolutions: + num_transformers = transformer_depth.pop(0) + if num_transformers > 0: if num_head_channels == -1: dim_head = ch // num_heads else: @@ -203,9 +200,9 @@ def __init__( if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: layers.append( SpatialTransformer( - ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim, + ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, - use_checkpoint=use_checkpoint, operations=operations + use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations ) ) self.input_blocks.append(TimestepEmbedSequential(*layers)) @@ -225,11 +222,13 @@ def __init__( use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, down=True, + dtype=self.dtype, + device=device, operations=operations ) if resblock_updown else Downsample( - ch, conv_resample, dims=dims, out_channels=out_ch, operations=operations + ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations ) ) ) @@ -247,7 +246,7 @@ def __init__( if legacy: #num_heads = 1 dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - self.middle_block = TimestepEmbedSequential( + mid_block = [ ResBlock( ch, time_embed_dim, @@ -255,12 +254,15 @@ def __init__( dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, + dtype=self.dtype, + device=device, operations=operations - ), - SpatialTransformer( # always uses a self-attn + )] + if transformer_depth_middle >= 0: + mid_block += [SpatialTransformer( # always uses a self-attn ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, - use_checkpoint=use_checkpoint, operations=operations + use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations ), ResBlock( ch, @@ -269,9 +271,11 @@ def __init__( dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, + dtype=self.dtype, + device=device, operations=operations - ), - ) + )] + self.middle_block = TimestepEmbedSequential(*mid_block) self.middle_block_out = self.make_zero_conv(ch, operations=operations) self._feature_size += ch diff --git a/comfy/cli_args.py b/comfy/cli_args.py index ffae81c49d1..72fce10872f 100644 --- a/comfy/cli_args.py +++ b/comfy/cli_args.py @@ -36,9 +36,12 @@ def __call__(self, parser, namespace, values, option_string=None): parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)") parser.add_argument("--port", type=int, default=8188, help="Set the listen port.") parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.") +parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.") + parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.") parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.") parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory).") +parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory.") parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.") parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.") parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.") @@ -52,11 +55,20 @@ def __call__(self, parser, namespace, values, option_string=None): fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).") fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.") +parser.add_argument("--bf16-unet", action="store_true", help="Run the UNET in bf16. This should only be used for testing stuff.") + fpvae_group = parser.add_mutually_exclusive_group() fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.") fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.") fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.") +fpte_group = parser.add_mutually_exclusive_group() +fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).") +fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).") +fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.") +fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.") + + parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.") parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize when loading models with Intel GPUs.") diff --git a/comfy/clip_vision.py b/comfy/clip_vision.py index 1206c680d61..9e2e03d7238 100644 --- a/comfy/clip_vision.py +++ b/comfy/clip_vision.py @@ -1,5 +1,5 @@ -from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor, modeling_utils -from .utils import load_torch_file, transformers_convert +from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, modeling_utils +from .utils import load_torch_file, transformers_convert, common_upscale import os import torch import contextlib @@ -7,6 +7,18 @@ import comfy.ops import comfy.model_patcher import comfy.model_management +import comfy.utils + +def clip_preprocess(image, size=224): + mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype) + std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype) + scale = (size / min(image.shape[1], image.shape[2])) + image = torch.nn.functional.interpolate(image.movedim(-1, 1), size=(round(scale * image.shape[1]), round(scale * image.shape[2])), mode="bicubic", antialias=True) + h = (image.shape[2] - size)//2 + w = (image.shape[3] - size)//2 + image = image[:,:,h:h+size,w:w+size] + image = torch.clip((255. * image), 0, 255).round() / 255.0 + return (image - mean.view([3,1,1])) / std.view([3,1,1]) class ClipVisionModel(): def __init__(self, json_config): @@ -23,25 +35,12 @@ def __init__(self, json_config): self.model.to(self.dtype) self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) - self.processor = CLIPImageProcessor(crop_size=224, - do_center_crop=True, - do_convert_rgb=True, - do_normalize=True, - do_resize=True, - image_mean=[ 0.48145466,0.4578275,0.40821073], - image_std=[0.26862954,0.26130258,0.27577711], - resample=3, #bicubic - size=224) - def load_sd(self, sd): return self.model.load_state_dict(sd, strict=False) def encode_image(self, image): - img = torch.clip((255. * image), 0, 255).round().int() - img = list(map(lambda a: a, img)) - inputs = self.processor(images=img, return_tensors="pt") comfy.model_management.load_model_gpu(self.patcher) - pixel_values = inputs['pixel_values'].to(self.load_device) + pixel_values = clip_preprocess(image.to(self.load_device)) if self.dtype != torch.float32: precision_scope = torch.autocast @@ -92,8 +91,11 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False): json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json") elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd: json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json") - else: + elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd: json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json") + else: + return None + clip = ClipVisionModel(json_config) m, u = clip.load_sd(sd) if len(m) > 0: diff --git a/comfy/conds.py b/comfy/conds.py new file mode 100644 index 00000000000..6cff2518400 --- /dev/null +++ b/comfy/conds.py @@ -0,0 +1,79 @@ +import enum +import torch +import math +import comfy.utils + + +def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9) + return abs(a*b) // math.gcd(a, b) + +class CONDRegular: + def __init__(self, cond): + self.cond = cond + + def _copy_with(self, cond): + return self.__class__(cond) + + def process_cond(self, batch_size, device, **kwargs): + return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device)) + + def can_concat(self, other): + if self.cond.shape != other.cond.shape: + return False + return True + + def concat(self, others): + conds = [self.cond] + for x in others: + conds.append(x.cond) + return torch.cat(conds) + +class CONDNoiseShape(CONDRegular): + def process_cond(self, batch_size, device, area, **kwargs): + data = self.cond[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] + return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device)) + + +class CONDCrossAttn(CONDRegular): + def can_concat(self, other): + s1 = self.cond.shape + s2 = other.cond.shape + if s1 != s2: + if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen + return False + + mult_min = lcm(s1[1], s2[1]) + diff = mult_min // min(s1[1], s2[1]) + if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much + return False + return True + + def concat(self, others): + conds = [self.cond] + crossattn_max_len = self.cond.shape[1] + for x in others: + c = x.cond + crossattn_max_len = lcm(crossattn_max_len, c.shape[1]) + conds.append(c) + + out = [] + for c in conds: + if c.shape[1] < crossattn_max_len: + c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result + out.append(c) + return torch.cat(out) + +class CONDConstant(CONDRegular): + def __init__(self, cond): + self.cond = cond + + def process_cond(self, batch_size, device, **kwargs): + return self._copy_with(self.cond) + + def can_concat(self, other): + if self.cond != other.cond: + return False + return True + + def concat(self, others): + return self.cond diff --git a/comfy/controlnet.py b/comfy/controlnet.py index ea219c7e560..433381df6ec 100644 --- a/comfy/controlnet.py +++ b/comfy/controlnet.py @@ -33,7 +33,7 @@ def __init__(self, device=None): self.cond_hint_original = None self.cond_hint = None self.strength = 1.0 - self.timestep_percent_range = (1.0, 0.0) + self.timestep_percent_range = (0.0, 1.0) self.timestep_range = None if device is None: @@ -42,7 +42,7 @@ def __init__(self, device=None): self.previous_controlnet = None self.global_average_pooling = False - def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(1.0, 0.0)): + def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0)): self.cond_hint_original = cond_hint self.strength = strength self.timestep_percent_range = timestep_percent_range @@ -132,6 +132,7 @@ def __init__(self, control_model, global_average_pooling=False, device=None): self.control_model = control_model self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device()) self.global_average_pooling = global_average_pooling + self.model_sampling_current = None def get_control(self, x_noisy, t, cond, batched_number): control_prev = None @@ -156,10 +157,13 @@ def get_control(self, x_noisy, t, cond, batched_number): context = cond['c_crossattn'] - y = cond.get('c_adm', None) + y = cond.get('y', None) if y is not None: y = y.to(self.control_model.dtype) - control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=t, context=context.to(self.control_model.dtype), y=y) + timestep = self.model_sampling_current.timestep(t) + x_noisy = self.model_sampling_current.calculate_input(t, x_noisy) + + control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(self.control_model.dtype), y=y) return self.control_merge(None, control, control_prev, output_dtype) def copy(self): @@ -172,6 +176,14 @@ def get_models(self): out.append(self.control_model_wrapped) return out + def pre_run(self, model, percent_to_timestep_function): + super().pre_run(model, percent_to_timestep_function) + self.model_sampling_current = model.model_sampling + + def cleanup(self): + self.model_sampling_current = None + super().cleanup() + class ControlLoraOps: class Linear(torch.nn.Module): def __init__(self, in_features: int, out_features: int, bias: bool = True, @@ -292,8 +304,8 @@ def load_controlnet(ckpt_path, model=None): controlnet_config = None if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format - use_fp16 = comfy.model_management.should_use_fp16() - controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, use_fp16) + unet_dtype = comfy.model_management.unet_dtype() + controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, unet_dtype) diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config) diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight" diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias" @@ -353,8 +365,8 @@ def load_controlnet(ckpt_path, model=None): return net if controlnet_config is None: - use_fp16 = comfy.model_management.should_use_fp16() - controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16, True).unet_config + unet_dtype = comfy.model_management.unet_dtype() + controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config controlnet_config.pop("out_channels") controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1] control_model = comfy.cldm.cldm.ControlNet(**controlnet_config) @@ -383,8 +395,7 @@ class WeightsLoader(torch.nn.Module): missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False) print(missing, unexpected) - if use_fp16: - control_model = control_model.half() + control_model = control_model.to(unet_dtype) global_average_pooling = False filename = os.path.splitext(ckpt_path)[0] @@ -417,7 +428,7 @@ def get_control(self, x_noisy, t, cond, batched_number): if control_prev is not None: return control_prev else: - return {} + return None if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]: if self.cond_hint is not None: diff --git a/comfy/diffusers_load.py b/comfy/diffusers_load.py index a52e0102b73..c0b420e7966 100644 --- a/comfy/diffusers_load.py +++ b/comfy/diffusers_load.py @@ -31,6 +31,7 @@ def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_dire vae = None if output_vae: - vae = comfy.sd.VAE(ckpt_path=vae_path) + sd = comfy.utils.load_torch_file(vae_path) + vae = comfy.sd.VAE(sd=sd) return (unet, clip, vae) diff --git a/comfy/extra_samplers/uni_pc.py b/comfy/extra_samplers/uni_pc.py index 7eaf6ff62b6..08bf0fc9e67 100644 --- a/comfy/extra_samplers/uni_pc.py +++ b/comfy/extra_samplers/uni_pc.py @@ -688,7 +688,7 @@ def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) else: x_t_ = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dimss) * x + expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x - expand_dims(sigma_t * h_phi_1, dims) * model_prev_0 ) if x_t is None: @@ -713,8 +713,8 @@ def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='tim method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver', atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False ): - t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end - t_T = self.noise_schedule.T if t_start is None else t_start + # t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end + # t_T = self.noise_schedule.T if t_start is None else t_start device = x.device steps = len(timesteps) - 1 if method == 'multistep': @@ -769,8 +769,8 @@ def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='tim callback(step_index, model_prev_list[-1], x, steps) else: raise NotImplementedError() - if denoise_to_zero: - x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0) + # if denoise_to_zero: + # x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0) return x @@ -833,21 +833,39 @@ def expand_dims(v, dims): return v[(...,) + (None,)*(dims - 1)] +class SigmaConvert: + schedule = "" + def marginal_log_mean_coeff(self, sigma): + return 0.5 * torch.log(1 / ((sigma * sigma) + 1)) -def sample_unipc(model, noise, image, sigmas, sampling_function, max_denoise, extra_args=None, callback=None, disable=False, noise_mask=None, variant='bh1'): - to_zero = False - if sigmas[-1] == 0: - timesteps = torch.nn.functional.interpolate(sigmas[None,None,:-1], size=(len(sigmas),), mode='linear')[0][0] - to_zero = True - else: - timesteps = sigmas.clone() + def marginal_alpha(self, t): + return torch.exp(self.marginal_log_mean_coeff(t)) + + def marginal_std(self, t): + return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) + + def marginal_lambda(self, t): + """ + Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. + """ + log_mean_coeff = self.marginal_log_mean_coeff(t) + log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) + return log_mean_coeff - log_std - alphas_cumprod = model.inner_model.alphas_cumprod +def predict_eps_sigma(model, input, sigma_in, **kwargs): + sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1)) + input = input * ((sigma ** 2 + 1.0) ** 0.5) + return (input - model(input, sigma_in, **kwargs)) / sigma - for s in range(timesteps.shape[0]): - timesteps[s] = (model.sigma_to_discrete_timestep(timesteps[s]) / 1000) + (1 / len(alphas_cumprod)) - ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) +def sample_unipc(model, noise, image, sigmas, max_denoise, extra_args=None, callback=None, disable=False, noise_mask=None, variant='bh1'): + timesteps = sigmas.clone() + if sigmas[-1] == 0: + timesteps = sigmas[:] + timesteps[-1] = 0.001 + else: + timesteps = sigmas.clone() + ns = SigmaConvert() if image is not None: img = image * ns.marginal_alpha(timesteps[0]) @@ -859,25 +877,18 @@ def sample_unipc(model, noise, image, sigmas, sampling_function, max_denoise, ex else: img = noise - if to_zero: - timesteps[-1] = (1 / len(alphas_cumprod)) - - device = noise.device - - model_type = "noise" model_fn = model_wrapper( - model.predict_eps_discrete_timestep, + lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs), ns, model_type=model_type, guidance_type="uncond", model_kwargs=extra_args, ) - order = min(3, len(timesteps) - 1) + order = min(3, len(timesteps) - 2) uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, noise_mask=noise_mask, masked_image=image, noise=noise, variant=variant) x = uni_pc.sample(img, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable) - if not to_zero: - x /= ns.marginal_alpha(timesteps[-1]) + x /= ns.marginal_alpha(timesteps[-1]) return x diff --git a/comfy/k_diffusion/external.py b/comfy/k_diffusion/external.py deleted file mode 100644 index c1a137d9c0c..00000000000 --- a/comfy/k_diffusion/external.py +++ /dev/null @@ -1,190 +0,0 @@ -import math - -import torch -from torch import nn - -from . import sampling, utils - - -class VDenoiser(nn.Module): - """A v-diffusion-pytorch model wrapper for k-diffusion.""" - - def __init__(self, inner_model): - super().__init__() - self.inner_model = inner_model - self.sigma_data = 1. - - def get_scalings(self, sigma): - c_skip = self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - c_out = -sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 - c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 - return c_skip, c_out, c_in - - def sigma_to_t(self, sigma): - return sigma.atan() / math.pi * 2 - - def t_to_sigma(self, t): - return (t * math.pi / 2).tan() - - def loss(self, input, noise, sigma, **kwargs): - c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)] - noised_input = input + noise * utils.append_dims(sigma, input.ndim) - model_output = self.inner_model(noised_input * c_in, self.sigma_to_t(sigma), **kwargs) - target = (input - c_skip * noised_input) / c_out - return (model_output - target).pow(2).flatten(1).mean(1) - - def forward(self, input, sigma, **kwargs): - c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)] - return self.inner_model(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out + input * c_skip - - -class DiscreteSchedule(nn.Module): - """A mapping between continuous noise levels (sigmas) and a list of discrete noise - levels.""" - - def __init__(self, sigmas, quantize): - super().__init__() - self.register_buffer('sigmas', sigmas) - self.register_buffer('log_sigmas', sigmas.log()) - self.quantize = quantize - - @property - def sigma_min(self): - return self.sigmas[0] - - @property - def sigma_max(self): - return self.sigmas[-1] - - def get_sigmas(self, n=None): - if n is None: - return sampling.append_zero(self.sigmas.flip(0)) - t_max = len(self.sigmas) - 1 - t = torch.linspace(t_max, 0, n, device=self.sigmas.device) - return sampling.append_zero(self.t_to_sigma(t)) - - def sigma_to_discrete_timestep(self, sigma): - log_sigma = sigma.log() - dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] - return dists.abs().argmin(dim=0).view(sigma.shape) - - def sigma_to_t(self, sigma, quantize=None): - quantize = self.quantize if quantize is None else quantize - if quantize: - return self.sigma_to_discrete_timestep(sigma) - log_sigma = sigma.log() - dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] - low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) - high_idx = low_idx + 1 - low, high = self.log_sigmas[low_idx], self.log_sigmas[high_idx] - w = (low - log_sigma) / (low - high) - w = w.clamp(0, 1) - t = (1 - w) * low_idx + w * high_idx - return t.view(sigma.shape) - - def t_to_sigma(self, t): - t = t.float() - low_idx = t.floor().long() - high_idx = t.ceil().long() - w = t-low_idx if t.device.type == 'mps' else t.frac() - log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx] - return log_sigma.exp() - - def predict_eps_discrete_timestep(self, input, t, **kwargs): - if t.dtype != torch.int64 and t.dtype != torch.int32: - t = t.round() - sigma = self.t_to_sigma(t) - input = input * ((utils.append_dims(sigma, input.ndim) ** 2 + 1.0) ** 0.5) - return (input - self(input, sigma, **kwargs)) / utils.append_dims(sigma, input.ndim) - -class DiscreteEpsDDPMDenoiser(DiscreteSchedule): - """A wrapper for discrete schedule DDPM models that output eps (the predicted - noise).""" - - def __init__(self, model, alphas_cumprod, quantize): - super().__init__(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, quantize) - self.inner_model = model - self.sigma_data = 1. - - def get_scalings(self, sigma): - c_out = -sigma - c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 - return c_out, c_in - - def get_eps(self, *args, **kwargs): - return self.inner_model(*args, **kwargs) - - def loss(self, input, noise, sigma, **kwargs): - c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)] - noised_input = input + noise * utils.append_dims(sigma, input.ndim) - eps = self.get_eps(noised_input * c_in, self.sigma_to_t(sigma), **kwargs) - return (eps - noise).pow(2).flatten(1).mean(1) - - def forward(self, input, sigma, **kwargs): - c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)] - eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs) - return input + eps * c_out - - -class OpenAIDenoiser(DiscreteEpsDDPMDenoiser): - """A wrapper for OpenAI diffusion models.""" - - def __init__(self, model, diffusion, quantize=False, has_learned_sigmas=True, device='cpu'): - alphas_cumprod = torch.tensor(diffusion.alphas_cumprod, device=device, dtype=torch.float32) - super().__init__(model, alphas_cumprod, quantize=quantize) - self.has_learned_sigmas = has_learned_sigmas - - def get_eps(self, *args, **kwargs): - model_output = self.inner_model(*args, **kwargs) - if self.has_learned_sigmas: - return model_output.chunk(2, dim=1)[0] - return model_output - - -class CompVisDenoiser(DiscreteEpsDDPMDenoiser): - """A wrapper for CompVis diffusion models.""" - - def __init__(self, model, quantize=False, device='cpu'): - super().__init__(model, model.alphas_cumprod, quantize=quantize) - - def get_eps(self, *args, **kwargs): - return self.inner_model.apply_model(*args, **kwargs) - - -class DiscreteVDDPMDenoiser(DiscreteSchedule): - """A wrapper for discrete schedule DDPM models that output v.""" - - def __init__(self, model, alphas_cumprod, quantize): - super().__init__(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, quantize) - self.inner_model = model - self.sigma_data = 1. - - def get_scalings(self, sigma): - c_skip = self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - c_out = -sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 - c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 - return c_skip, c_out, c_in - - def get_v(self, *args, **kwargs): - return self.inner_model(*args, **kwargs) - - def loss(self, input, noise, sigma, **kwargs): - c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)] - noised_input = input + noise * utils.append_dims(sigma, input.ndim) - model_output = self.get_v(noised_input * c_in, self.sigma_to_t(sigma), **kwargs) - target = (input - c_skip * noised_input) / c_out - return (model_output - target).pow(2).flatten(1).mean(1) - - def forward(self, input, sigma, **kwargs): - c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)] - return self.get_v(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out + input * c_skip - - -class CompVisVDenoiser(DiscreteVDDPMDenoiser): - """A wrapper for CompVis diffusion models that output v.""" - - def __init__(self, model, quantize=False, device='cpu'): - super().__init__(model, model.alphas_cumprod, quantize=quantize) - - def get_v(self, x, t, cond, **kwargs): - return self.inner_model.apply_model(x, t, cond) diff --git a/comfy/k_diffusion/sampling.py b/comfy/k_diffusion/sampling.py index 937c5a3881d..761c2e0ef7c 100644 --- a/comfy/k_diffusion/sampling.py +++ b/comfy/k_diffusion/sampling.py @@ -717,7 +717,6 @@ def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler): mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev) return mu - def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None): extra_args = {} if extra_args is None else extra_args noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler @@ -737,3 +736,75 @@ def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disab def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None): return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step) +@torch.no_grad() +def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None): + extra_args = {} if extra_args is None else extra_args + noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler + s_in = x.new_ones([x.shape[0]]) + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + + x = denoised + if sigmas[i + 1] > 0: + x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1]) + return x + + + +@torch.no_grad() +def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): + # From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/ + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + s_end = sigmas[-1] + for i in trange(len(sigmas) - 1, disable=disable): + gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. + eps = torch.randn_like(x) * s_noise + sigma_hat = sigmas[i] * (gamma + 1) + if gamma > 0: + x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 + denoised = model(x, sigma_hat * s_in, **extra_args) + d = to_d(x, sigma_hat, denoised) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) + dt = sigmas[i + 1] - sigma_hat + if sigmas[i + 1] == s_end: + # Euler method + x = x + d * dt + elif sigmas[i + 2] == s_end: + + # Heun's method + x_2 = x + d * dt + denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) + d_2 = to_d(x_2, sigmas[i + 1], denoised_2) + + w = 2 * sigmas[0] + w2 = sigmas[i+1]/w + w1 = 1 - w2 + + d_prime = d * w1 + d_2 * w2 + + + x = x + d_prime * dt + + else: + # Heun++ + x_2 = x + d * dt + denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) + d_2 = to_d(x_2, sigmas[i + 1], denoised_2) + dt_2 = sigmas[i + 2] - sigmas[i + 1] + + x_3 = x_2 + d_2 * dt_2 + denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args) + d_3 = to_d(x_3, sigmas[i + 2], denoised_3) + + w = 3 * sigmas[0] + w2 = sigmas[i + 1] / w + w3 = sigmas[i + 2] / w + w1 = 1 - w2 - w3 + + d_prime = w1 * d + w2 * d_2 + w3 * d_3 + x = x + d_prime * dt + return x diff --git a/comfy/latent_formats.py b/comfy/latent_formats.py index fadc0eec752..c209087e0cc 100644 --- a/comfy/latent_formats.py +++ b/comfy/latent_formats.py @@ -20,7 +20,7 @@ def __init__(self, scale_factor=0.18215): [-0.2829, 0.1762, 0.2721], [-0.2120, -0.2616, -0.7177] ] - self.taesd_decoder_name = "taesd_decoder.pth" + self.taesd_decoder_name = "taesd_decoder" class SDXL(LatentFormat): def __init__(self): @@ -32,4 +32,4 @@ def __init__(self): [ 0.0568, 0.1687, -0.0755], [-0.3112, -0.2359, -0.2076] ] - self.taesd_decoder_name = "taesdxl_decoder.pth" + self.taesd_decoder_name = "taesdxl_decoder" diff --git a/comfy/ldm/models/autoencoder.py b/comfy/ldm/models/autoencoder.py index 1fb7ed879fc..d2f1d74a938 100644 --- a/comfy/ldm/models/autoencoder.py +++ b/comfy/ldm/models/autoencoder.py @@ -2,67 +2,66 @@ # import pytorch_lightning as pl import torch.nn.functional as F from contextlib import contextmanager +from typing import Any, Dict, List, Optional, Tuple, Union -from comfy.ldm.modules.diffusionmodules.model import Encoder, Decoder from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution from comfy.ldm.util import instantiate_from_config from comfy.ldm.modules.ema import LitEma -# class AutoencoderKL(pl.LightningModule): -class AutoencoderKL(torch.nn.Module): - def __init__(self, - ddconfig, - lossconfig, - embed_dim, - ckpt_path=None, - ignore_keys=[], - image_key="image", - colorize_nlabels=None, - monitor=None, - ema_decay=None, - learn_logvar=False - ): +class DiagonalGaussianRegularizer(torch.nn.Module): + def __init__(self, sample: bool = True): super().__init__() - self.learn_logvar = learn_logvar - self.image_key = image_key - self.encoder = Encoder(**ddconfig) - self.decoder = Decoder(**ddconfig) - self.loss = instantiate_from_config(lossconfig) - assert ddconfig["double_z"] - self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) - self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) - self.embed_dim = embed_dim - if colorize_nlabels is not None: - assert type(colorize_nlabels)==int - self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) + self.sample = sample + + def get_trainable_parameters(self) -> Any: + yield from () + + def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: + log = dict() + posterior = DiagonalGaussianDistribution(z) + if self.sample: + z = posterior.sample() + else: + z = posterior.mode() + kl_loss = posterior.kl() + kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] + log["kl_loss"] = kl_loss + return z, log + + +class AbstractAutoencoder(torch.nn.Module): + """ + This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators, + unCLIP models, etc. Hence, it is fairly general, and specific features + (e.g. discriminator training, encoding, decoding) must be implemented in subclasses. + """ + + def __init__( + self, + ema_decay: Union[None, float] = None, + monitor: Union[None, str] = None, + input_key: str = "jpg", + **kwargs, + ): + super().__init__() + + self.input_key = input_key + self.use_ema = ema_decay is not None if monitor is not None: self.monitor = monitor - self.use_ema = ema_decay is not None if self.use_ema: - self.ema_decay = ema_decay - assert 0. < ema_decay < 1. self.model_ema = LitEma(self, decay=ema_decay) - print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") + logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) + def get_input(self, batch) -> Any: + raise NotImplementedError() - def init_from_ckpt(self, path, ignore_keys=list()): - if path.lower().endswith(".safetensors"): - import safetensors.torch - sd = safetensors.torch.load_file(path, device="cpu") - else: - sd = torch.load(path, map_location="cpu")["state_dict"] - keys = list(sd.keys()) - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) - del sd[k] - self.load_state_dict(sd, strict=False) - print(f"Restored from {path}") + def on_train_batch_end(self, *args, **kwargs): + # for EMA computation + if self.use_ema: + self.model_ema(self) @contextmanager def ema_scope(self, context=None): @@ -70,154 +69,159 @@ def ema_scope(self, context=None): self.model_ema.store(self.parameters()) self.model_ema.copy_to(self) if context is not None: - print(f"{context}: Switched to EMA weights") + logpy.info(f"{context}: Switched to EMA weights") try: yield None finally: if self.use_ema: self.model_ema.restore(self.parameters()) if context is not None: - print(f"{context}: Restored training weights") - - def on_train_batch_end(self, *args, **kwargs): - if self.use_ema: - self.model_ema(self) - - def encode(self, x): - h = self.encoder(x) - moments = self.quant_conv(h) - posterior = DiagonalGaussianDistribution(moments) - return posterior - - def decode(self, z): - z = self.post_quant_conv(z) - dec = self.decoder(z) - return dec - - def forward(self, input, sample_posterior=True): - posterior = self.encode(input) - if sample_posterior: - z = posterior.sample() - else: - z = posterior.mode() - dec = self.decode(z) - return dec, posterior - - def get_input(self, batch, k): - x = batch[k] - if len(x.shape) == 3: - x = x[..., None] - x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() - return x - - def training_step(self, batch, batch_idx, optimizer_idx): - inputs = self.get_input(batch, self.image_key) - reconstructions, posterior = self(inputs) - - if optimizer_idx == 0: - # train encoder+decoder+logvar - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, - last_layer=self.get_last_layer(), split="train") - self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) - return aeloss - - if optimizer_idx == 1: - # train the discriminator - discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, - last_layer=self.get_last_layer(), split="train") - - self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) - self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) - return discloss - - def validation_step(self, batch, batch_idx): - log_dict = self._validation_step(batch, batch_idx) - with self.ema_scope(): - log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema") - return log_dict - - def _validation_step(self, batch, batch_idx, postfix=""): - inputs = self.get_input(batch, self.image_key) - reconstructions, posterior = self(inputs) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step, - last_layer=self.get_last_layer(), split="val"+postfix) - - discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, - last_layer=self.get_last_layer(), split="val"+postfix) - - self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"]) - self.log_dict(log_dict_ae) - self.log_dict(log_dict_disc) - return self.log_dict - - def configure_optimizers(self): - lr = self.learning_rate - ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list( - self.quant_conv.parameters()) + list(self.post_quant_conv.parameters()) - if self.learn_logvar: - print(f"{self.__class__.__name__}: Learning logvar") - ae_params_list.append(self.loss.logvar) - opt_ae = torch.optim.Adam(ae_params_list, - lr=lr, betas=(0.5, 0.9)) - opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), - lr=lr, betas=(0.5, 0.9)) - return [opt_ae, opt_disc], [] + logpy.info(f"{context}: Restored training weights") + + def encode(self, *args, **kwargs) -> torch.Tensor: + raise NotImplementedError("encode()-method of abstract base class called") + + def decode(self, *args, **kwargs) -> torch.Tensor: + raise NotImplementedError("decode()-method of abstract base class called") + + def instantiate_optimizer_from_config(self, params, lr, cfg): + logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config") + return get_obj_from_str(cfg["target"])( + params, lr=lr, **cfg.get("params", dict()) + ) + + def configure_optimizers(self) -> Any: + raise NotImplementedError() + + +class AutoencodingEngine(AbstractAutoencoder): + """ + Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL + (we also restore them explicitly as special cases for legacy reasons). + Regularizations such as KL or VQ are moved to the regularizer class. + """ + + def __init__( + self, + *args, + encoder_config: Dict, + decoder_config: Dict, + regularizer_config: Dict, + **kwargs, + ): + super().__init__(*args, **kwargs) + + self.encoder: torch.nn.Module = instantiate_from_config(encoder_config) + self.decoder: torch.nn.Module = instantiate_from_config(decoder_config) + self.regularization: AbstractRegularizer = instantiate_from_config( + regularizer_config + ) def get_last_layer(self): - return self.decoder.conv_out.weight - - @torch.no_grad() - def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs): - log = dict() - x = self.get_input(batch, self.image_key) - x = x.to(self.device) - if not only_inputs: - xrec, posterior = self(x) - if x.shape[1] > 3: - # colorize with random projection - assert xrec.shape[1] > 3 - x = self.to_rgb(x) - xrec = self.to_rgb(xrec) - log["samples"] = self.decode(torch.randn_like(posterior.sample())) - log["reconstructions"] = xrec - if log_ema or self.use_ema: - with self.ema_scope(): - xrec_ema, posterior_ema = self(x) - if x.shape[1] > 3: - # colorize with random projection - assert xrec_ema.shape[1] > 3 - xrec_ema = self.to_rgb(xrec_ema) - log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample())) - log["reconstructions_ema"] = xrec_ema - log["inputs"] = x - return log - - def to_rgb(self, x): - assert self.image_key == "segmentation" - if not hasattr(self, "colorize"): - self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) - x = F.conv2d(x, weight=self.colorize) - x = 2.*(x-x.min())/(x.max()-x.min()) - 1. + return self.decoder.get_last_layer() + + def encode( + self, + x: torch.Tensor, + return_reg_log: bool = False, + unregularized: bool = False, + ) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: + z = self.encoder(x) + if unregularized: + return z, dict() + z, reg_log = self.regularization(z) + if return_reg_log: + return z, reg_log + return z + + def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor: + x = self.decoder(z, **kwargs) return x + def forward( + self, x: torch.Tensor, **additional_decode_kwargs + ) -> Tuple[torch.Tensor, torch.Tensor, dict]: + z, reg_log = self.encode(x, return_reg_log=True) + dec = self.decode(z, **additional_decode_kwargs) + return z, dec, reg_log + + +class AutoencodingEngineLegacy(AutoencodingEngine): + def __init__(self, embed_dim: int, **kwargs): + self.max_batch_size = kwargs.pop("max_batch_size", None) + ddconfig = kwargs.pop("ddconfig") + super().__init__( + encoder_config={ + "target": "comfy.ldm.modules.diffusionmodules.model.Encoder", + "params": ddconfig, + }, + decoder_config={ + "target": "comfy.ldm.modules.diffusionmodules.model.Decoder", + "params": ddconfig, + }, + **kwargs, + ) + self.quant_conv = torch.nn.Conv2d( + (1 + ddconfig["double_z"]) * ddconfig["z_channels"], + (1 + ddconfig["double_z"]) * embed_dim, + 1, + ) + self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) + self.embed_dim = embed_dim -class IdentityFirstStage(torch.nn.Module): - def __init__(self, *args, vq_interface=False, **kwargs): - self.vq_interface = vq_interface - super().__init__() - - def encode(self, x, *args, **kwargs): - return x + def get_autoencoder_params(self) -> list: + params = super().get_autoencoder_params() + return params - def decode(self, x, *args, **kwargs): - return x + def encode( + self, x: torch.Tensor, return_reg_log: bool = False + ) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: + if self.max_batch_size is None: + z = self.encoder(x) + z = self.quant_conv(z) + else: + N = x.shape[0] + bs = self.max_batch_size + n_batches = int(math.ceil(N / bs)) + z = list() + for i_batch in range(n_batches): + z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs]) + z_batch = self.quant_conv(z_batch) + z.append(z_batch) + z = torch.cat(z, 0) + + z, reg_log = self.regularization(z) + if return_reg_log: + return z, reg_log + return z + + def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor: + if self.max_batch_size is None: + dec = self.post_quant_conv(z) + dec = self.decoder(dec, **decoder_kwargs) + else: + N = z.shape[0] + bs = self.max_batch_size + n_batches = int(math.ceil(N / bs)) + dec = list() + for i_batch in range(n_batches): + dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs]) + dec_batch = self.decoder(dec_batch, **decoder_kwargs) + dec.append(dec_batch) + dec = torch.cat(dec, 0) - def quantize(self, x, *args, **kwargs): - if self.vq_interface: - return x, None, [None, None, None] - return x + return dec - def forward(self, x, *args, **kwargs): - return x +class AutoencoderKL(AutoencodingEngineLegacy): + def __init__(self, **kwargs): + if "lossconfig" in kwargs: + kwargs["loss_config"] = kwargs.pop("lossconfig") + super().__init__( + regularizer_config={ + "target": ( + "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer" + ) + }, + **kwargs, + ) diff --git a/comfy/ldm/models/diffusion/__init__.py b/comfy/ldm/models/diffusion/__init__.py deleted file mode 100644 index e69de29bb2d..00000000000 diff --git a/comfy/ldm/models/diffusion/ddim.py b/comfy/ldm/models/diffusion/ddim.py deleted file mode 100644 index befab0075ca..00000000000 --- a/comfy/ldm/models/diffusion/ddim.py +++ /dev/null @@ -1,418 +0,0 @@ -"""SAMPLING ONLY.""" - -import torch -import numpy as np -from tqdm import tqdm - -from comfy.ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor - - -class DDIMSampler(object): - def __init__(self, model, schedule="linear", device=torch.device("cuda"), **kwargs): - super().__init__() - self.model = model - self.ddpm_num_timesteps = model.num_timesteps - self.schedule = schedule - self.device = device - self.parameterization = kwargs.get("parameterization", "eps") - - def register_buffer(self, name, attr): - if type(attr) == torch.Tensor: - if attr.device != self.device: - attr = attr.float().to(self.device) - setattr(self, name, attr) - - def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): - ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, - num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) - self.make_schedule_timesteps(ddim_timesteps, ddim_eta=ddim_eta, verbose=verbose) - - def make_schedule_timesteps(self, ddim_timesteps, ddim_eta=0., verbose=True): - self.ddim_timesteps = torch.tensor(ddim_timesteps) - alphas_cumprod = self.model.alphas_cumprod - assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' - to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device) - - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) - self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) - - # ddim sampling parameters - ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), - ddim_timesteps=self.ddim_timesteps, - eta=ddim_eta,verbose=verbose) - self.register_buffer('ddim_sigmas', ddim_sigmas) - self.register_buffer('ddim_alphas', ddim_alphas) - self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) - self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) - sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( - (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( - 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) - self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) - - @torch.no_grad() - def sample_custom(self, - ddim_timesteps, - conditioning, - callback=None, - img_callback=None, - quantize_x0=False, - eta=0., - mask=None, - x0=None, - temperature=1., - noise_dropout=0., - score_corrector=None, - corrector_kwargs=None, - verbose=True, - x_T=None, - log_every_t=100, - unconditional_guidance_scale=1., - unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... - dynamic_threshold=None, - ucg_schedule=None, - denoise_function=None, - extra_args=None, - to_zero=True, - end_step=None, - disable_pbar=False, - **kwargs - ): - self.make_schedule_timesteps(ddim_timesteps=ddim_timesteps, ddim_eta=eta, verbose=verbose) - samples, intermediates = self.ddim_sampling(conditioning, x_T.shape, - callback=callback, - img_callback=img_callback, - quantize_denoised=quantize_x0, - mask=mask, x0=x0, - ddim_use_original_steps=False, - noise_dropout=noise_dropout, - temperature=temperature, - score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - x_T=x_T, - log_every_t=log_every_t, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - dynamic_threshold=dynamic_threshold, - ucg_schedule=ucg_schedule, - denoise_function=denoise_function, - extra_args=extra_args, - to_zero=to_zero, - end_step=end_step, - disable_pbar=disable_pbar - ) - return samples, intermediates - - - @torch.no_grad() - def sample(self, - S, - batch_size, - shape, - conditioning=None, - callback=None, - normals_sequence=None, - img_callback=None, - quantize_x0=False, - eta=0., - mask=None, - x0=None, - temperature=1., - noise_dropout=0., - score_corrector=None, - corrector_kwargs=None, - verbose=True, - x_T=None, - log_every_t=100, - unconditional_guidance_scale=1., - unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... - dynamic_threshold=None, - ucg_schedule=None, - **kwargs - ): - if conditioning is not None: - if isinstance(conditioning, dict): - ctmp = conditioning[list(conditioning.keys())[0]] - while isinstance(ctmp, list): ctmp = ctmp[0] - cbs = ctmp.shape[0] - if cbs != batch_size: - print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") - - elif isinstance(conditioning, list): - for ctmp in conditioning: - if ctmp.shape[0] != batch_size: - print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") - - else: - if conditioning.shape[0] != batch_size: - print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") - - self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) - # sampling - C, H, W = shape - size = (batch_size, C, H, W) - print(f'Data shape for DDIM sampling is {size}, eta {eta}') - - samples, intermediates = self.ddim_sampling(conditioning, size, - callback=callback, - img_callback=img_callback, - quantize_denoised=quantize_x0, - mask=mask, x0=x0, - ddim_use_original_steps=False, - noise_dropout=noise_dropout, - temperature=temperature, - score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - x_T=x_T, - log_every_t=log_every_t, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - dynamic_threshold=dynamic_threshold, - ucg_schedule=ucg_schedule, - denoise_function=None, - extra_args=None - ) - return samples, intermediates - - def q_sample(self, x_start, t, noise=None): - if noise is None: - noise = torch.randn_like(x_start) - return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) - - @torch.no_grad() - def ddim_sampling(self, cond, shape, - x_T=None, ddim_use_original_steps=False, - callback=None, timesteps=None, quantize_denoised=False, - mask=None, x0=None, img_callback=None, log_every_t=100, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None, - ucg_schedule=None, denoise_function=None, extra_args=None, to_zero=True, end_step=None, disable_pbar=False): - device = self.model.alphas_cumprod.device - b = shape[0] - if x_T is None: - img = torch.randn(shape, device=device) - else: - img = x_T - - if timesteps is None: - timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps - elif timesteps is not None and not ddim_use_original_steps: - subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 - timesteps = self.ddim_timesteps[:subset_end] - - intermediates = {'x_inter': [img], 'pred_x0': [img]} - time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else timesteps.flip(0) - total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] - # print(f"Running DDIM Sampling with {total_steps} timesteps") - - iterator = tqdm(time_range[:end_step], desc='DDIM Sampler', total=end_step, disable=disable_pbar) - - for i, step in enumerate(iterator): - index = total_steps - i - 1 - ts = torch.full((b,), step, device=device, dtype=torch.long) - - if mask is not None: - assert x0 is not None - img_orig = self.q_sample(x0, ts) # TODO: deterministic forward pass? - img = img_orig * mask + (1. - mask) * img - - if ucg_schedule is not None: - assert len(ucg_schedule) == len(time_range) - unconditional_guidance_scale = ucg_schedule[i] - - outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, - quantize_denoised=quantize_denoised, temperature=temperature, - noise_dropout=noise_dropout, score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - dynamic_threshold=dynamic_threshold, denoise_function=denoise_function, extra_args=extra_args) - img, pred_x0 = outs - if callback: callback(i) - if img_callback: img_callback(pred_x0, i) - - if index % log_every_t == 0 or index == total_steps - 1: - intermediates['x_inter'].append(img) - intermediates['pred_x0'].append(pred_x0) - - if to_zero: - img = pred_x0 - else: - if ddim_use_original_steps: - sqrt_alphas_cumprod = self.sqrt_alphas_cumprod - else: - sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) - img /= sqrt_alphas_cumprod[index - 1] - - return img, intermediates - - @torch.no_grad() - def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None, - dynamic_threshold=None, denoise_function=None, extra_args=None): - b, *_, device = *x.shape, x.device - - if denoise_function is not None: - model_output = denoise_function(x, t, **extra_args) - elif unconditional_conditioning is None or unconditional_guidance_scale == 1.: - model_output = self.model.apply_model(x, t, c) - else: - x_in = torch.cat([x] * 2) - t_in = torch.cat([t] * 2) - if isinstance(c, dict): - assert isinstance(unconditional_conditioning, dict) - c_in = dict() - for k in c: - if isinstance(c[k], list): - c_in[k] = [torch.cat([ - unconditional_conditioning[k][i], - c[k][i]]) for i in range(len(c[k]))] - else: - c_in[k] = torch.cat([ - unconditional_conditioning[k], - c[k]]) - elif isinstance(c, list): - c_in = list() - assert isinstance(unconditional_conditioning, list) - for i in range(len(c)): - c_in.append(torch.cat([unconditional_conditioning[i], c[i]])) - else: - c_in = torch.cat([unconditional_conditioning, c]) - model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) - model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond) - - if self.parameterization == "v": - e_t = extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * model_output + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x - else: - e_t = model_output - - if score_corrector is not None: - assert self.parameterization == "eps", 'not implemented' - e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) - - alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas - alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev - sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas - sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas - # select parameters corresponding to the currently considered timestep - a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) - a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) - sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) - sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) - - # current prediction for x_0 - if self.parameterization != "v": - pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() - else: - pred_x0 = extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * x - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * model_output - - if quantize_denoised: - pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) - - if dynamic_threshold is not None: - raise NotImplementedError() - - # direction pointing to x_t - dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t - noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature - if noise_dropout > 0.: - noise = torch.nn.functional.dropout(noise, p=noise_dropout) - x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise - return x_prev, pred_x0 - - @torch.no_grad() - def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None, - unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None): - num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0] - - assert t_enc <= num_reference_steps - num_steps = t_enc - - if use_original_steps: - alphas_next = self.alphas_cumprod[:num_steps] - alphas = self.alphas_cumprod_prev[:num_steps] - else: - alphas_next = self.ddim_alphas[:num_steps] - alphas = torch.tensor(self.ddim_alphas_prev[:num_steps]) - - x_next = x0 - intermediates = [] - inter_steps = [] - for i in tqdm(range(num_steps), desc='Encoding Image'): - t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long) - if unconditional_guidance_scale == 1.: - noise_pred = self.model.apply_model(x_next, t, c) - else: - assert unconditional_conditioning is not None - e_t_uncond, noise_pred = torch.chunk( - self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)), - torch.cat((unconditional_conditioning, c))), 2) - noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond) - - xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next - weighted_noise_pred = alphas_next[i].sqrt() * ( - (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred - x_next = xt_weighted + weighted_noise_pred - if return_intermediates and i % ( - num_steps // return_intermediates) == 0 and i < num_steps - 1: - intermediates.append(x_next) - inter_steps.append(i) - elif return_intermediates and i >= num_steps - 2: - intermediates.append(x_next) - inter_steps.append(i) - if callback: callback(i) - - out = {'x_encoded': x_next, 'intermediate_steps': inter_steps} - if return_intermediates: - out.update({'intermediates': intermediates}) - return x_next, out - - @torch.no_grad() - def stochastic_encode(self, x0, t, use_original_steps=False, noise=None, max_denoise=False): - # fast, but does not allow for exact reconstruction - # t serves as an index to gather the correct alphas - if use_original_steps: - sqrt_alphas_cumprod = self.sqrt_alphas_cumprod - sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod - else: - sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) - sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas - - if noise is None: - noise = torch.randn_like(x0) - if max_denoise: - noise_multiplier = 1.0 - else: - noise_multiplier = extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) - - return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + noise_multiplier * noise) - - @torch.no_grad() - def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None, - use_original_steps=False, callback=None): - - timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps - timesteps = timesteps[:t_start] - - time_range = np.flip(timesteps) - total_steps = timesteps.shape[0] - print(f"Running DDIM Sampling with {total_steps} timesteps") - - iterator = tqdm(time_range, desc='Decoding image', total=total_steps) - x_dec = x_latent - for i, step in enumerate(iterator): - index = total_steps - i - 1 - ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long) - x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning) - if callback: callback(i) - return x_dec \ No newline at end of file diff --git a/comfy/ldm/models/diffusion/dpm_solver/__init__.py b/comfy/ldm/models/diffusion/dpm_solver/__init__.py deleted file mode 100644 index 7427f38c075..00000000000 --- a/comfy/ldm/models/diffusion/dpm_solver/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .sampler import DPMSolverSampler \ No newline at end of file diff --git a/comfy/ldm/models/diffusion/dpm_solver/dpm_solver.py b/comfy/ldm/models/diffusion/dpm_solver/dpm_solver.py deleted file mode 100644 index da8d41f9c5e..00000000000 --- a/comfy/ldm/models/diffusion/dpm_solver/dpm_solver.py +++ /dev/null @@ -1,1163 +0,0 @@ -import torch -import torch.nn.functional as F -import math -from tqdm import tqdm - - -class NoiseScheduleVP: - def __init__( - self, - schedule='discrete', - betas=None, - alphas_cumprod=None, - continuous_beta_0=0.1, - continuous_beta_1=20., - ): - """Create a wrapper class for the forward SDE (VP type). - *** - Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t. - We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images. - *** - The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). - We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). - Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: - log_alpha_t = self.marginal_log_mean_coeff(t) - sigma_t = self.marginal_std(t) - lambda_t = self.marginal_lambda(t) - Moreover, as lambda(t) is an invertible function, we also support its inverse function: - t = self.inverse_lambda(lambda_t) - =============================================================== - We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]). - 1. For discrete-time DPMs: - For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by: - t_i = (i + 1) / N - e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1. - We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3. - Args: - betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details) - alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details) - Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`. - **Important**: Please pay special attention for the args for `alphas_cumprod`: - The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that - q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ). - Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have - alpha_{t_n} = \sqrt{\hat{alpha_n}}, - and - log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}). - 2. For continuous-time DPMs: - We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise - schedule are the default settings in DDPM and improved-DDPM: - Args: - beta_min: A `float` number. The smallest beta for the linear schedule. - beta_max: A `float` number. The largest beta for the linear schedule. - cosine_s: A `float` number. The hyperparameter in the cosine schedule. - cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule. - T: A `float` number. The ending time of the forward process. - =============================================================== - Args: - schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs, - 'linear' or 'cosine' for continuous-time DPMs. - Returns: - A wrapper object of the forward SDE (VP type). - - =============================================================== - Example: - # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1): - >>> ns = NoiseScheduleVP('discrete', betas=betas) - # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1): - >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) - # For continuous-time DPMs (VPSDE), linear schedule: - >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.) - """ - - if schedule not in ['discrete', 'linear', 'cosine']: - raise ValueError( - "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format( - schedule)) - - self.schedule = schedule - if schedule == 'discrete': - if betas is not None: - log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) - else: - assert alphas_cumprod is not None - log_alphas = 0.5 * torch.log(alphas_cumprod) - self.total_N = len(log_alphas) - self.T = 1. - self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)) - self.log_alpha_array = log_alphas.reshape((1, -1,)) - else: - self.total_N = 1000 - self.beta_0 = continuous_beta_0 - self.beta_1 = continuous_beta_1 - self.cosine_s = 0.008 - self.cosine_beta_max = 999. - self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * ( - 1. + self.cosine_s) / math.pi - self.cosine_s - self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.)) - self.schedule = schedule - if schedule == 'cosine': - # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T. - # Note that T = 0.9946 may be not the optimal setting. However, we find it works well. - self.T = 0.9946 - else: - self.T = 1. - - def marginal_log_mean_coeff(self, t): - """ - Compute log(alpha_t) of a given continuous-time label t in [0, T]. - """ - if self.schedule == 'discrete': - return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), - self.log_alpha_array.to(t.device)).reshape((-1)) - elif self.schedule == 'linear': - return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 - elif self.schedule == 'cosine': - log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.)) - log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 - return log_alpha_t - - def marginal_alpha(self, t): - """ - Compute alpha_t of a given continuous-time label t in [0, T]. - """ - return torch.exp(self.marginal_log_mean_coeff(t)) - - def marginal_std(self, t): - """ - Compute sigma_t of a given continuous-time label t in [0, T]. - """ - return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) - - def marginal_lambda(self, t): - """ - Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. - """ - log_mean_coeff = self.marginal_log_mean_coeff(t) - log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) - return log_mean_coeff - log_std - - def inverse_lambda(self, lamb): - """ - Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. - """ - if self.schedule == 'linear': - tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) - Delta = self.beta_0 ** 2 + tmp - return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) - elif self.schedule == 'discrete': - log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb) - t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), - torch.flip(self.t_array.to(lamb.device), [1])) - return t.reshape((-1,)) - else: - log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) - t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * ( - 1. + self.cosine_s) / math.pi - self.cosine_s - t = t_fn(log_alpha) - return t - - -def model_wrapper( - model, - noise_schedule, - model_type="noise", - model_kwargs={}, - guidance_type="uncond", - condition=None, - unconditional_condition=None, - guidance_scale=1., - classifier_fn=None, - classifier_kwargs={}, -): - """Create a wrapper function for the noise prediction model. - DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to - firstly wrap the model function to a noise prediction model that accepts the continuous time as the input. - We support four types of the diffusion model by setting `model_type`: - 1. "noise": noise prediction model. (Trained by predicting noise). - 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0). - 3. "v": velocity prediction model. (Trained by predicting the velocity). - The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2]. - [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." - arXiv preprint arXiv:2202.00512 (2022). - [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models." - arXiv preprint arXiv:2210.02303 (2022). - - 4. "score": marginal score function. (Trained by denoising score matching). - Note that the score function and the noise prediction model follows a simple relationship: - ``` - noise(x_t, t) = -sigma_t * score(x_t, t) - ``` - We support three types of guided sampling by DPMs by setting `guidance_type`: - 1. "uncond": unconditional sampling by DPMs. - The input `model` has the following format: - `` - model(x, t_input, **model_kwargs) -> noise | x_start | v | score - `` - 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier. - The input `model` has the following format: - `` - model(x, t_input, **model_kwargs) -> noise | x_start | v | score - `` - The input `classifier_fn` has the following format: - `` - classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond) - `` - [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," - in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. - 3. "classifier-free": classifier-free guidance sampling by conditional DPMs. - The input `model` has the following format: - `` - model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score - `` - And if cond == `unconditional_condition`, the model output is the unconditional DPM output. - [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." - arXiv preprint arXiv:2207.12598 (2022). - - The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999) - or continuous-time labels (i.e. epsilon to T). - We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise: - `` - def model_fn(x, t_continuous) -> noise: - t_input = get_model_input_time(t_continuous) - return noise_pred(model, x, t_input, **model_kwargs) - `` - where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver. - =============================================================== - Args: - model: A diffusion model with the corresponding format described above. - noise_schedule: A noise schedule object, such as NoiseScheduleVP. - model_type: A `str`. The parameterization type of the diffusion model. - "noise" or "x_start" or "v" or "score". - model_kwargs: A `dict`. A dict for the other inputs of the model function. - guidance_type: A `str`. The type of the guidance for sampling. - "uncond" or "classifier" or "classifier-free". - condition: A pytorch tensor. The condition for the guided sampling. - Only used for "classifier" or "classifier-free" guidance type. - unconditional_condition: A pytorch tensor. The condition for the unconditional sampling. - Only used for "classifier-free" guidance type. - guidance_scale: A `float`. The scale for the guided sampling. - classifier_fn: A classifier function. Only used for the classifier guidance. - classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function. - Returns: - A noise prediction model that accepts the noised data and the continuous time as the inputs. - """ - - def get_model_input_time(t_continuous): - """ - Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. - For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. - For continuous-time DPMs, we just use `t_continuous`. - """ - if noise_schedule.schedule == 'discrete': - return (t_continuous - 1. / noise_schedule.total_N) * 1000. - else: - return t_continuous - - def noise_pred_fn(x, t_continuous, cond=None): - if t_continuous.reshape((-1,)).shape[0] == 1: - t_continuous = t_continuous.expand((x.shape[0])) - t_input = get_model_input_time(t_continuous) - if cond is None: - output = model(x, t_input, **model_kwargs) - else: - output = model(x, t_input, cond, **model_kwargs) - if model_type == "noise": - return output - elif model_type == "x_start": - alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) - dims = x.dim() - return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims) - elif model_type == "v": - alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) - dims = x.dim() - return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x - elif model_type == "score": - sigma_t = noise_schedule.marginal_std(t_continuous) - dims = x.dim() - return -expand_dims(sigma_t, dims) * output - - def cond_grad_fn(x, t_input): - """ - Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). - """ - with torch.enable_grad(): - x_in = x.detach().requires_grad_(True) - log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) - return torch.autograd.grad(log_prob.sum(), x_in)[0] - - def model_fn(x, t_continuous): - """ - The noise predicition model function that is used for DPM-Solver. - """ - if t_continuous.reshape((-1,)).shape[0] == 1: - t_continuous = t_continuous.expand((x.shape[0])) - if guidance_type == "uncond": - return noise_pred_fn(x, t_continuous) - elif guidance_type == "classifier": - assert classifier_fn is not None - t_input = get_model_input_time(t_continuous) - cond_grad = cond_grad_fn(x, t_input) - sigma_t = noise_schedule.marginal_std(t_continuous) - noise = noise_pred_fn(x, t_continuous) - return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad - elif guidance_type == "classifier-free": - if guidance_scale == 1. or unconditional_condition is None: - return noise_pred_fn(x, t_continuous, cond=condition) - else: - x_in = torch.cat([x] * 2) - t_in = torch.cat([t_continuous] * 2) - if isinstance(condition, dict): - assert isinstance(unconditional_condition, dict) - c_in = dict() - for k in condition: - if isinstance(condition[k], list): - c_in[k] = [torch.cat([unconditional_condition[k][i], condition[k][i]]) for i in range(len(condition[k]))] - else: - c_in[k] = torch.cat([unconditional_condition[k], condition[k]]) - else: - c_in = torch.cat([unconditional_condition, condition]) - noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) - return noise_uncond + guidance_scale * (noise - noise_uncond) - - assert model_type in ["noise", "x_start", "v"] - assert guidance_type in ["uncond", "classifier", "classifier-free"] - return model_fn - - -class DPM_Solver: - def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.): - """Construct a DPM-Solver. - We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0"). - If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver). - If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++). - In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True. - The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales. - Args: - model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]): - `` - def model_fn(x, t_continuous): - return noise - `` - noise_schedule: A noise schedule object, such as NoiseScheduleVP. - predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model. - thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1]. - max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding. - - [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b. - """ - self.model = model_fn - self.noise_schedule = noise_schedule - self.predict_x0 = predict_x0 - self.thresholding = thresholding - self.max_val = max_val - - def noise_prediction_fn(self, x, t): - """ - Return the noise prediction model. - """ - return self.model(x, t) - - def data_prediction_fn(self, x, t): - """ - Return the data prediction model (with thresholding). - """ - noise = self.noise_prediction_fn(x, t) - dims = x.dim() - alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) - x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims) - if self.thresholding: - p = 0.995 # A hyperparameter in the paper of "Imagen" [1]. - s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) - s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims) - x0 = torch.clamp(x0, -s, s) / s - return x0 - - def model_fn(self, x, t): - """ - Convert the model to the noise prediction model or the data prediction model. - """ - if self.predict_x0: - return self.data_prediction_fn(x, t) - else: - return self.noise_prediction_fn(x, t) - - def get_time_steps(self, skip_type, t_T, t_0, N, device): - """Compute the intermediate time steps for sampling. - Args: - skip_type: A `str`. The type for the spacing of the time steps. We support three types: - - 'logSNR': uniform logSNR for the time steps. - - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.) - - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) - t_T: A `float`. The starting time of the sampling (default is T). - t_0: A `float`. The ending time of the sampling (default is epsilon). - N: A `int`. The total number of the spacing of the time steps. - device: A torch device. - Returns: - A pytorch tensor of the time steps, with the shape (N + 1,). - """ - if skip_type == 'logSNR': - lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) - lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) - logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) - return self.noise_schedule.inverse_lambda(logSNR_steps) - elif skip_type == 'time_uniform': - return torch.linspace(t_T, t_0, N + 1).to(device) - elif skip_type == 'time_quadratic': - t_order = 2 - t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device) - return t - else: - raise ValueError( - "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type)) - - def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device): - """ - Get the order of each step for sampling by the singlestep DPM-Solver. - We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast". - Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is: - - If order == 1: - We take `steps` of DPM-Solver-1 (i.e. DDIM). - - If order == 2: - - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling. - - If steps % 2 == 0, we use K steps of DPM-Solver-2. - - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1. - - If order == 3: - - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling. - - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1. - - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1. - - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2. - ============================================ - Args: - order: A `int`. The max order for the solver (2 or 3). - steps: A `int`. The total number of function evaluations (NFE). - skip_type: A `str`. The type for the spacing of the time steps. We support three types: - - 'logSNR': uniform logSNR for the time steps. - - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.) - - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) - t_T: A `float`. The starting time of the sampling (default is T). - t_0: A `float`. The ending time of the sampling (default is epsilon). - device: A torch device. - Returns: - orders: A list of the solver order of each step. - """ - if order == 3: - K = steps // 3 + 1 - if steps % 3 == 0: - orders = [3, ] * (K - 2) + [2, 1] - elif steps % 3 == 1: - orders = [3, ] * (K - 1) + [1] - else: - orders = [3, ] * (K - 1) + [2] - elif order == 2: - if steps % 2 == 0: - K = steps // 2 - orders = [2, ] * K - else: - K = steps // 2 + 1 - orders = [2, ] * (K - 1) + [1] - elif order == 1: - K = 1 - orders = [1, ] * steps - else: - raise ValueError("'order' must be '1' or '2' or '3'.") - if skip_type == 'logSNR': - # To reproduce the results in DPM-Solver paper - timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device) - else: - timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[ - torch.cumsum(torch.tensor([0, ] + orders)).to(device)] - return timesteps_outer, orders - - def denoise_to_zero_fn(self, x, s): - """ - Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. - """ - return self.data_prediction_fn(x, s) - - def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False): - """ - DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`. - Args: - x: A pytorch tensor. The initial value at time `s`. - s: A pytorch tensor. The starting time, with the shape (x.shape[0],). - t: A pytorch tensor. The ending time, with the shape (x.shape[0],). - model_s: A pytorch tensor. The model function evaluated at time `s`. - If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. - return_intermediate: A `bool`. If true, also return the model value at time `s`. - Returns: - x_t: A pytorch tensor. The approximated solution at time `t`. - """ - ns = self.noise_schedule - dims = x.dim() - lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) - h = lambda_t - lambda_s - log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t) - sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t) - alpha_t = torch.exp(log_alpha_t) - - if self.predict_x0: - phi_1 = torch.expm1(-h) - if model_s is None: - model_s = self.model_fn(x, s) - x_t = ( - expand_dims(sigma_t / sigma_s, dims) * x - - expand_dims(alpha_t * phi_1, dims) * model_s - ) - if return_intermediate: - return x_t, {'model_s': model_s} - else: - return x_t - else: - phi_1 = torch.expm1(h) - if model_s is None: - model_s = self.model_fn(x, s) - x_t = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x - - expand_dims(sigma_t * phi_1, dims) * model_s - ) - if return_intermediate: - return x_t, {'model_s': model_s} - else: - return x_t - - def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, - solver_type='dpm_solver'): - """ - Singlestep solver DPM-Solver-2 from time `s` to time `t`. - Args: - x: A pytorch tensor. The initial value at time `s`. - s: A pytorch tensor. The starting time, with the shape (x.shape[0],). - t: A pytorch tensor. The ending time, with the shape (x.shape[0],). - r1: A `float`. The hyperparameter of the second-order solver. - model_s: A pytorch tensor. The model function evaluated at time `s`. - If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. - return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time). - solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. - The type slightly impacts the performance. We recommend to use 'dpm_solver' type. - Returns: - x_t: A pytorch tensor. The approximated solution at time `t`. - """ - if solver_type not in ['dpm_solver', 'taylor']: - raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type)) - if r1 is None: - r1 = 0.5 - ns = self.noise_schedule - dims = x.dim() - lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) - h = lambda_t - lambda_s - lambda_s1 = lambda_s + r1 * h - s1 = ns.inverse_lambda(lambda_s1) - log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff( - s1), ns.marginal_log_mean_coeff(t) - sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t) - alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t) - - if self.predict_x0: - phi_11 = torch.expm1(-r1 * h) - phi_1 = torch.expm1(-h) - - if model_s is None: - model_s = self.model_fn(x, s) - x_s1 = ( - expand_dims(sigma_s1 / sigma_s, dims) * x - - expand_dims(alpha_s1 * phi_11, dims) * model_s - ) - model_s1 = self.model_fn(x_s1, s1) - if solver_type == 'dpm_solver': - x_t = ( - expand_dims(sigma_t / sigma_s, dims) * x - - expand_dims(alpha_t * phi_1, dims) * model_s - - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s) - ) - elif solver_type == 'taylor': - x_t = ( - expand_dims(sigma_t / sigma_s, dims) * x - - expand_dims(alpha_t * phi_1, dims) * model_s - + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * ( - model_s1 - model_s) - ) - else: - phi_11 = torch.expm1(r1 * h) - phi_1 = torch.expm1(h) - - if model_s is None: - model_s = self.model_fn(x, s) - x_s1 = ( - expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x - - expand_dims(sigma_s1 * phi_11, dims) * model_s - ) - model_s1 = self.model_fn(x_s1, s1) - if solver_type == 'dpm_solver': - x_t = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x - - expand_dims(sigma_t * phi_1, dims) * model_s - - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s) - ) - elif solver_type == 'taylor': - x_t = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x - - expand_dims(sigma_t * phi_1, dims) * model_s - - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s) - ) - if return_intermediate: - return x_t, {'model_s': model_s, 'model_s1': model_s1} - else: - return x_t - - def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None, - return_intermediate=False, solver_type='dpm_solver'): - """ - Singlestep solver DPM-Solver-3 from time `s` to time `t`. - Args: - x: A pytorch tensor. The initial value at time `s`. - s: A pytorch tensor. The starting time, with the shape (x.shape[0],). - t: A pytorch tensor. The ending time, with the shape (x.shape[0],). - r1: A `float`. The hyperparameter of the third-order solver. - r2: A `float`. The hyperparameter of the third-order solver. - model_s: A pytorch tensor. The model function evaluated at time `s`. - If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. - model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`). - If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it. - return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times). - solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. - The type slightly impacts the performance. We recommend to use 'dpm_solver' type. - Returns: - x_t: A pytorch tensor. The approximated solution at time `t`. - """ - if solver_type not in ['dpm_solver', 'taylor']: - raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type)) - if r1 is None: - r1 = 1. / 3. - if r2 is None: - r2 = 2. / 3. - ns = self.noise_schedule - dims = x.dim() - lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) - h = lambda_t - lambda_s - lambda_s1 = lambda_s + r1 * h - lambda_s2 = lambda_s + r2 * h - s1 = ns.inverse_lambda(lambda_s1) - s2 = ns.inverse_lambda(lambda_s2) - log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff( - s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t) - sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std( - s2), ns.marginal_std(t) - alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t) - - if self.predict_x0: - phi_11 = torch.expm1(-r1 * h) - phi_12 = torch.expm1(-r2 * h) - phi_1 = torch.expm1(-h) - phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1. - phi_2 = phi_1 / h + 1. - phi_3 = phi_2 / h - 0.5 - - if model_s is None: - model_s = self.model_fn(x, s) - if model_s1 is None: - x_s1 = ( - expand_dims(sigma_s1 / sigma_s, dims) * x - - expand_dims(alpha_s1 * phi_11, dims) * model_s - ) - model_s1 = self.model_fn(x_s1, s1) - x_s2 = ( - expand_dims(sigma_s2 / sigma_s, dims) * x - - expand_dims(alpha_s2 * phi_12, dims) * model_s - + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s) - ) - model_s2 = self.model_fn(x_s2, s2) - if solver_type == 'dpm_solver': - x_t = ( - expand_dims(sigma_t / sigma_s, dims) * x - - expand_dims(alpha_t * phi_1, dims) * model_s - + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s) - ) - elif solver_type == 'taylor': - D1_0 = (1. / r1) * (model_s1 - model_s) - D1_1 = (1. / r2) * (model_s2 - model_s) - D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1) - D2 = 2. * (D1_1 - D1_0) / (r2 - r1) - x_t = ( - expand_dims(sigma_t / sigma_s, dims) * x - - expand_dims(alpha_t * phi_1, dims) * model_s - + expand_dims(alpha_t * phi_2, dims) * D1 - - expand_dims(alpha_t * phi_3, dims) * D2 - ) - else: - phi_11 = torch.expm1(r1 * h) - phi_12 = torch.expm1(r2 * h) - phi_1 = torch.expm1(h) - phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1. - phi_2 = phi_1 / h - 1. - phi_3 = phi_2 / h - 0.5 - - if model_s is None: - model_s = self.model_fn(x, s) - if model_s1 is None: - x_s1 = ( - expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x - - expand_dims(sigma_s1 * phi_11, dims) * model_s - ) - model_s1 = self.model_fn(x_s1, s1) - x_s2 = ( - expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x - - expand_dims(sigma_s2 * phi_12, dims) * model_s - - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s) - ) - model_s2 = self.model_fn(x_s2, s2) - if solver_type == 'dpm_solver': - x_t = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x - - expand_dims(sigma_t * phi_1, dims) * model_s - - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s) - ) - elif solver_type == 'taylor': - D1_0 = (1. / r1) * (model_s1 - model_s) - D1_1 = (1. / r2) * (model_s2 - model_s) - D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1) - D2 = 2. * (D1_1 - D1_0) / (r2 - r1) - x_t = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x - - expand_dims(sigma_t * phi_1, dims) * model_s - - expand_dims(sigma_t * phi_2, dims) * D1 - - expand_dims(sigma_t * phi_3, dims) * D2 - ) - - if return_intermediate: - return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2} - else: - return x_t - - def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"): - """ - Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`. - Args: - x: A pytorch tensor. The initial value at time `s`. - model_prev_list: A list of pytorch tensor. The previous computed model values. - t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],) - t: A pytorch tensor. The ending time, with the shape (x.shape[0],). - solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. - The type slightly impacts the performance. We recommend to use 'dpm_solver' type. - Returns: - x_t: A pytorch tensor. The approximated solution at time `t`. - """ - if solver_type not in ['dpm_solver', 'taylor']: - raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type)) - ns = self.noise_schedule - dims = x.dim() - model_prev_1, model_prev_0 = model_prev_list - t_prev_1, t_prev_0 = t_prev_list - lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda( - t_prev_0), ns.marginal_lambda(t) - log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) - sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) - alpha_t = torch.exp(log_alpha_t) - - h_0 = lambda_prev_0 - lambda_prev_1 - h = lambda_t - lambda_prev_0 - r0 = h_0 / h - D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1) - if self.predict_x0: - if solver_type == 'dpm_solver': - x_t = ( - expand_dims(sigma_t / sigma_prev_0, dims) * x - - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0 - - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0 - ) - elif solver_type == 'taylor': - x_t = ( - expand_dims(sigma_t / sigma_prev_0, dims) * x - - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0 - + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0 - ) - else: - if solver_type == 'dpm_solver': - x_t = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x - - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0 - - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0 - ) - elif solver_type == 'taylor': - x_t = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x - - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0 - - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0 - ) - return x_t - - def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'): - """ - Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`. - Args: - x: A pytorch tensor. The initial value at time `s`. - model_prev_list: A list of pytorch tensor. The previous computed model values. - t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],) - t: A pytorch tensor. The ending time, with the shape (x.shape[0],). - solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. - The type slightly impacts the performance. We recommend to use 'dpm_solver' type. - Returns: - x_t: A pytorch tensor. The approximated solution at time `t`. - """ - ns = self.noise_schedule - dims = x.dim() - model_prev_2, model_prev_1, model_prev_0 = model_prev_list - t_prev_2, t_prev_1, t_prev_0 = t_prev_list - lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda( - t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t) - log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) - sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) - alpha_t = torch.exp(log_alpha_t) - - h_1 = lambda_prev_1 - lambda_prev_2 - h_0 = lambda_prev_0 - lambda_prev_1 - h = lambda_t - lambda_prev_0 - r0, r1 = h_0 / h, h_1 / h - D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1) - D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2) - D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1) - D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1) - if self.predict_x0: - x_t = ( - expand_dims(sigma_t / sigma_prev_0, dims) * x - - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0 - + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1 - - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2 - ) - else: - x_t = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x - - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0 - - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1 - - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2 - ) - return x_t - - def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None, - r2=None): - """ - Singlestep DPM-Solver with the order `order` from time `s` to time `t`. - Args: - x: A pytorch tensor. The initial value at time `s`. - s: A pytorch tensor. The starting time, with the shape (x.shape[0],). - t: A pytorch tensor. The ending time, with the shape (x.shape[0],). - order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3. - return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times). - solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. - The type slightly impacts the performance. We recommend to use 'dpm_solver' type. - r1: A `float`. The hyperparameter of the second-order or third-order solver. - r2: A `float`. The hyperparameter of the third-order solver. - Returns: - x_t: A pytorch tensor. The approximated solution at time `t`. - """ - if order == 1: - return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate) - elif order == 2: - return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, - solver_type=solver_type, r1=r1) - elif order == 3: - return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, - solver_type=solver_type, r1=r1, r2=r2) - else: - raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order)) - - def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'): - """ - Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`. - Args: - x: A pytorch tensor. The initial value at time `s`. - model_prev_list: A list of pytorch tensor. The previous computed model values. - t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],) - t: A pytorch tensor. The ending time, with the shape (x.shape[0],). - order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3. - solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. - The type slightly impacts the performance. We recommend to use 'dpm_solver' type. - Returns: - x_t: A pytorch tensor. The approximated solution at time `t`. - """ - if order == 1: - return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1]) - elif order == 2: - return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type) - elif order == 3: - return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type) - else: - raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order)) - - def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, - solver_type='dpm_solver'): - """ - The adaptive step size solver based on singlestep DPM-Solver. - Args: - x: A pytorch tensor. The initial value at time `t_T`. - order: A `int`. The (higher) order of the solver. We only support order == 2 or 3. - t_T: A `float`. The starting time of the sampling (default is T). - t_0: A `float`. The ending time of the sampling (default is epsilon). - h_init: A `float`. The initial step size (for logSNR). - atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1]. - rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05. - theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1]. - t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the - current time and `t_0` is less than `t_err`. The default setting is 1e-5. - solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. - The type slightly impacts the performance. We recommend to use 'dpm_solver' type. - Returns: - x_0: A pytorch tensor. The approximated solution at time `t_0`. - [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021. - """ - ns = self.noise_schedule - s = t_T * torch.ones((x.shape[0],)).to(x) - lambda_s = ns.marginal_lambda(s) - lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x)) - h = h_init * torch.ones_like(s).to(x) - x_prev = x - nfe = 0 - if order == 2: - r1 = 0.5 - lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True) - higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, - solver_type=solver_type, - **kwargs) - elif order == 3: - r1, r2 = 1. / 3., 2. / 3. - lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, - return_intermediate=True, - solver_type=solver_type) - higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, - solver_type=solver_type, - **kwargs) - else: - raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order)) - while torch.abs((s - t_0)).mean() > t_err: - t = ns.inverse_lambda(lambda_s + h) - x_lower, lower_noise_kwargs = lower_update(x, s, t) - x_higher = higher_update(x, s, t, **lower_noise_kwargs) - delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev))) - norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True)) - E = norm_fn((x_higher - x_lower) / delta).max() - if torch.all(E <= 1.): - x = x_higher - s = t - x_prev = x_lower - lambda_s = ns.marginal_lambda(s) - h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s) - nfe += order - print('adaptive solver nfe', nfe) - return x - - def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform', - method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver', - atol=0.0078, rtol=0.05, - ): - """ - Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`. - ===================================================== - We support the following algorithms for both noise prediction model and data prediction model: - - 'singlestep': - Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver. - We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps). - The total number of function evaluations (NFE) == `steps`. - Given a fixed NFE == `steps`, the sampling procedure is: - - If `order` == 1: - - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM). - - If `order` == 2: - - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling. - - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2. - - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1. - - If `order` == 3: - - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling. - - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1. - - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1. - - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2. - - 'multistep': - Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`. - We initialize the first `order` values by lower order multistep solvers. - Given a fixed NFE == `steps`, the sampling procedure is: - Denote K = steps. - - If `order` == 1: - - We use K steps of DPM-Solver-1 (i.e. DDIM). - - If `order` == 2: - - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2. - - If `order` == 3: - - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3. - - 'singlestep_fixed': - Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3). - We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE. - - 'adaptive': - Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper). - We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`. - You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs - (NFE) and the sample quality. - - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2. - - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3. - ===================================================== - Some advices for choosing the algorithm: - - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs: - Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`. - e.g. - >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False) - >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3, - skip_type='time_uniform', method='singlestep') - - For **guided sampling with large guidance scale** by DPMs: - Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`. - e.g. - >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True) - >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2, - skip_type='time_uniform', method='multistep') - We support three types of `skip_type`: - - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images** - - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**. - - 'time_quadratic': quadratic time for the time steps. - ===================================================== - Args: - x: A pytorch tensor. The initial value at time `t_start` - e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution. - steps: A `int`. The total number of function evaluations (NFE). - t_start: A `float`. The starting time of the sampling. - If `T` is None, we use self.noise_schedule.T (default is 1.0). - t_end: A `float`. The ending time of the sampling. - If `t_end` is None, we use 1. / self.noise_schedule.total_N. - e.g. if total_N == 1000, we have `t_end` == 1e-3. - For discrete-time DPMs: - - We recommend `t_end` == 1. / self.noise_schedule.total_N. - For continuous-time DPMs: - - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15. - order: A `int`. The order of DPM-Solver. - skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'. - method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'. - denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step. - Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1). - This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and - score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID - for diffusion models sampling by diffusion SDEs for low-resolutional images - (such as CIFAR-10). However, we observed that such trick does not matter for - high-resolutional images. As it needs an additional NFE, we do not recommend - it for high-resolutional images. - lower_order_final: A `bool`. Whether to use lower order solvers at the final steps. - Only valid for `method=multistep` and `steps < 15`. We empirically find that - this trick is a key to stabilizing the sampling by DPM-Solver with very few steps - (especially for steps <= 10). So we recommend to set it to be `True`. - solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`. - atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'. - rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'. - Returns: - x_end: A pytorch tensor. The approximated solution at time `t_end`. - """ - t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end - t_T = self.noise_schedule.T if t_start is None else t_start - device = x.device - if method == 'adaptive': - with torch.no_grad(): - x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, - solver_type=solver_type) - elif method == 'multistep': - assert steps >= order - timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) - assert timesteps.shape[0] - 1 == steps - with torch.no_grad(): - vec_t = timesteps[0].expand((x.shape[0])) - model_prev_list = [self.model_fn(x, vec_t)] - t_prev_list = [vec_t] - # Init the first `order` values by lower order multistep DPM-Solver. - for init_order in tqdm(range(1, order), desc="DPM init order"): - vec_t = timesteps[init_order].expand(x.shape[0]) - x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order, - solver_type=solver_type) - model_prev_list.append(self.model_fn(x, vec_t)) - t_prev_list.append(vec_t) - # Compute the remaining values by `order`-th order multistep DPM-Solver. - for step in tqdm(range(order, steps + 1), desc="DPM multistep"): - vec_t = timesteps[step].expand(x.shape[0]) - if lower_order_final and steps < 15: - step_order = min(order, steps + 1 - step) - else: - step_order = order - x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order, - solver_type=solver_type) - for i in range(order - 1): - t_prev_list[i] = t_prev_list[i + 1] - model_prev_list[i] = model_prev_list[i + 1] - t_prev_list[-1] = vec_t - # We do not need to evaluate the final model value. - if step < steps: - model_prev_list[-1] = self.model_fn(x, vec_t) - elif method in ['singlestep', 'singlestep_fixed']: - if method == 'singlestep': - timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order, - skip_type=skip_type, - t_T=t_T, t_0=t_0, - device=device) - elif method == 'singlestep_fixed': - K = steps // order - orders = [order, ] * K - timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device) - for i, order in enumerate(orders): - t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1] - timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(), - N=order, device=device) - lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner) - vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0]) - h = lambda_inner[-1] - lambda_inner[0] - r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h - r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h - x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2) - if denoise_to_zero: - x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0) - return x - - -############################################################# -# other utility functions -############################################################# - -def interpolate_fn(x, xp, yp): - """ - A piecewise linear function y = f(x), using xp and yp as keypoints. - We implement f(x) in a differentiable way (i.e. applicable for autograd). - The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) - Args: - x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). - xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. - yp: PyTorch tensor with shape [C, K]. - Returns: - The function values f(x), with shape [N, C]. - """ - N, K = x.shape[0], xp.shape[1] - all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) - sorted_all_x, x_indices = torch.sort(all_x, dim=2) - x_idx = torch.argmin(x_indices, dim=2) - cand_start_idx = x_idx - 1 - start_idx = torch.where( - torch.eq(x_idx, 0), - torch.tensor(1, device=x.device), - torch.where( - torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, - ), - ) - end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) - start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) - end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) - start_idx2 = torch.where( - torch.eq(x_idx, 0), - torch.tensor(0, device=x.device), - torch.where( - torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, - ), - ) - y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) - start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) - end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) - cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) - return cand - - -def expand_dims(v, dims): - """ - Expand the tensor `v` to the dim `dims`. - Args: - `v`: a PyTorch tensor with shape [N]. - `dim`: a `int`. - Returns: - a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. - """ - return v[(...,) + (None,) * (dims - 1)] \ No newline at end of file diff --git a/comfy/ldm/models/diffusion/dpm_solver/sampler.py b/comfy/ldm/models/diffusion/dpm_solver/sampler.py deleted file mode 100644 index e4d0d0a3875..00000000000 --- a/comfy/ldm/models/diffusion/dpm_solver/sampler.py +++ /dev/null @@ -1,96 +0,0 @@ -"""SAMPLING ONLY.""" -import torch - -from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver - -MODEL_TYPES = { - "eps": "noise", - "v": "v" -} - - -class DPMSolverSampler(object): - def __init__(self, model, device=torch.device("cuda"), **kwargs): - super().__init__() - self.model = model - self.device = device - to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device) - self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod)) - - def register_buffer(self, name, attr): - if type(attr) == torch.Tensor: - if attr.device != self.device: - attr = attr.to(self.device) - setattr(self, name, attr) - - @torch.no_grad() - def sample(self, - S, - batch_size, - shape, - conditioning=None, - callback=None, - normals_sequence=None, - img_callback=None, - quantize_x0=False, - eta=0., - mask=None, - x0=None, - temperature=1., - noise_dropout=0., - score_corrector=None, - corrector_kwargs=None, - verbose=True, - x_T=None, - log_every_t=100, - unconditional_guidance_scale=1., - unconditional_conditioning=None, - # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... - **kwargs - ): - if conditioning is not None: - if isinstance(conditioning, dict): - ctmp = conditioning[list(conditioning.keys())[0]] - while isinstance(ctmp, list): ctmp = ctmp[0] - if isinstance(ctmp, torch.Tensor): - cbs = ctmp.shape[0] - if cbs != batch_size: - print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") - elif isinstance(conditioning, list): - for ctmp in conditioning: - if ctmp.shape[0] != batch_size: - print(f"Warning: Got {ctmp.shape[0]} conditionings but batch-size is {batch_size}") - else: - if isinstance(conditioning, torch.Tensor): - if conditioning.shape[0] != batch_size: - print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") - - # sampling - C, H, W = shape - size = (batch_size, C, H, W) - - print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}') - - device = self.model.betas.device - if x_T is None: - img = torch.randn(size, device=device) - else: - img = x_T - - ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod) - - model_fn = model_wrapper( - lambda x, t, c: self.model.apply_model(x, t, c), - ns, - model_type=MODEL_TYPES[self.model.parameterization], - guidance_type="classifier-free", - condition=conditioning, - unconditional_condition=unconditional_conditioning, - guidance_scale=unconditional_guidance_scale, - ) - - dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False) - x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, - lower_order_final=True) - - return x.to(device), None diff --git a/comfy/ldm/models/diffusion/plms.py b/comfy/ldm/models/diffusion/plms.py deleted file mode 100644 index 9d31b3994ed..00000000000 --- a/comfy/ldm/models/diffusion/plms.py +++ /dev/null @@ -1,245 +0,0 @@ -"""SAMPLING ONLY.""" - -import torch -import numpy as np -from tqdm import tqdm -from functools import partial - -from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like -from ldm.models.diffusion.sampling_util import norm_thresholding - - -class PLMSSampler(object): - def __init__(self, model, schedule="linear", device=torch.device("cuda"), **kwargs): - super().__init__() - self.model = model - self.ddpm_num_timesteps = model.num_timesteps - self.schedule = schedule - self.device = device - - def register_buffer(self, name, attr): - if type(attr) == torch.Tensor: - if attr.device != self.device: - attr = attr.to(self.device) - setattr(self, name, attr) - - def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): - if ddim_eta != 0: - raise ValueError('ddim_eta must be 0 for PLMS') - self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, - num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) - alphas_cumprod = self.model.alphas_cumprod - assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' - to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) - - self.register_buffer('betas', to_torch(self.model.betas)) - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) - self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) - - # ddim sampling parameters - ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), - ddim_timesteps=self.ddim_timesteps, - eta=ddim_eta,verbose=verbose) - self.register_buffer('ddim_sigmas', ddim_sigmas) - self.register_buffer('ddim_alphas', ddim_alphas) - self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) - self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) - sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( - (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( - 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) - self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) - - @torch.no_grad() - def sample(self, - S, - batch_size, - shape, - conditioning=None, - callback=None, - normals_sequence=None, - img_callback=None, - quantize_x0=False, - eta=0., - mask=None, - x0=None, - temperature=1., - noise_dropout=0., - score_corrector=None, - corrector_kwargs=None, - verbose=True, - x_T=None, - log_every_t=100, - unconditional_guidance_scale=1., - unconditional_conditioning=None, - # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... - dynamic_threshold=None, - **kwargs - ): - if conditioning is not None: - if isinstance(conditioning, dict): - cbs = conditioning[list(conditioning.keys())[0]].shape[0] - if cbs != batch_size: - print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") - else: - if conditioning.shape[0] != batch_size: - print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") - - self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) - # sampling - C, H, W = shape - size = (batch_size, C, H, W) - print(f'Data shape for PLMS sampling is {size}') - - samples, intermediates = self.plms_sampling(conditioning, size, - callback=callback, - img_callback=img_callback, - quantize_denoised=quantize_x0, - mask=mask, x0=x0, - ddim_use_original_steps=False, - noise_dropout=noise_dropout, - temperature=temperature, - score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - x_T=x_T, - log_every_t=log_every_t, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - dynamic_threshold=dynamic_threshold, - ) - return samples, intermediates - - @torch.no_grad() - def plms_sampling(self, cond, shape, - x_T=None, ddim_use_original_steps=False, - callback=None, timesteps=None, quantize_denoised=False, - mask=None, x0=None, img_callback=None, log_every_t=100, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None, - dynamic_threshold=None): - device = self.model.betas.device - b = shape[0] - if x_T is None: - img = torch.randn(shape, device=device) - else: - img = x_T - - if timesteps is None: - timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps - elif timesteps is not None and not ddim_use_original_steps: - subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 - timesteps = self.ddim_timesteps[:subset_end] - - intermediates = {'x_inter': [img], 'pred_x0': [img]} - time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps) - total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] - print(f"Running PLMS Sampling with {total_steps} timesteps") - - iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps) - old_eps = [] - - for i, step in enumerate(iterator): - index = total_steps - i - 1 - ts = torch.full((b,), step, device=device, dtype=torch.long) - ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long) - - if mask is not None: - assert x0 is not None - img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? - img = img_orig * mask + (1. - mask) * img - - outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, - quantize_denoised=quantize_denoised, temperature=temperature, - noise_dropout=noise_dropout, score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - old_eps=old_eps, t_next=ts_next, - dynamic_threshold=dynamic_threshold) - img, pred_x0, e_t = outs - old_eps.append(e_t) - if len(old_eps) >= 4: - old_eps.pop(0) - if callback: callback(i) - if img_callback: img_callback(pred_x0, i) - - if index % log_every_t == 0 or index == total_steps - 1: - intermediates['x_inter'].append(img) - intermediates['pred_x0'].append(pred_x0) - - return img, intermediates - - @torch.no_grad() - def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None, - dynamic_threshold=None): - b, *_, device = *x.shape, x.device - - def get_model_output(x, t): - if unconditional_conditioning is None or unconditional_guidance_scale == 1.: - e_t = self.model.apply_model(x, t, c) - else: - x_in = torch.cat([x] * 2) - t_in = torch.cat([t] * 2) - c_in = torch.cat([unconditional_conditioning, c]) - e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) - e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) - - if score_corrector is not None: - assert self.model.parameterization == "eps" - e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) - - return e_t - - alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas - alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev - sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas - sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas - - def get_x_prev_and_pred_x0(e_t, index): - # select parameters corresponding to the currently considered timestep - a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) - a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) - sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) - sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) - - # current prediction for x_0 - pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() - if quantize_denoised: - pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) - if dynamic_threshold is not None: - pred_x0 = norm_thresholding(pred_x0, dynamic_threshold) - # direction pointing to x_t - dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t - noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature - if noise_dropout > 0.: - noise = torch.nn.functional.dropout(noise, p=noise_dropout) - x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise - return x_prev, pred_x0 - - e_t = get_model_output(x, t) - if len(old_eps) == 0: - # Pseudo Improved Euler (2nd order) - x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) - e_t_next = get_model_output(x_prev, t_next) - e_t_prime = (e_t + e_t_next) / 2 - elif len(old_eps) == 1: - # 2nd order Pseudo Linear Multistep (Adams-Bashforth) - e_t_prime = (3 * e_t - old_eps[-1]) / 2 - elif len(old_eps) == 2: - # 3nd order Pseudo Linear Multistep (Adams-Bashforth) - e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12 - elif len(old_eps) >= 3: - # 4nd order Pseudo Linear Multistep (Adams-Bashforth) - e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24 - - x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index) - - return x_prev, pred_x0, e_t diff --git a/comfy/ldm/models/diffusion/sampling_util.py b/comfy/ldm/models/diffusion/sampling_util.py deleted file mode 100644 index 7eff02be6d7..00000000000 --- a/comfy/ldm/models/diffusion/sampling_util.py +++ /dev/null @@ -1,22 +0,0 @@ -import torch -import numpy as np - - -def append_dims(x, target_dims): - """Appends dimensions to the end of a tensor until it has target_dims dimensions. - From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py""" - dims_to_append = target_dims - x.ndim - if dims_to_append < 0: - raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') - return x[(...,) + (None,) * dims_to_append] - - -def norm_thresholding(x0, value): - s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim) - return x0 * (value / s) - - -def spatial_norm_thresholding(x0, value): - # b c h w - s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value) - return x0 * (value / s) \ No newline at end of file diff --git a/comfy/ldm/modules/attention.py b/comfy/ldm/modules/attention.py index 34484b288b4..f684523823d 100644 --- a/comfy/ldm/modules/attention.py +++ b/comfy/ldm/modules/attention.py @@ -5,8 +5,10 @@ from torch import nn, einsum from einops import rearrange, repeat from typing import Optional, Any +from functools import partial -from .diffusionmodules.util import checkpoint + +from .diffusionmodules.util import checkpoint, AlphaBlender, timestep_embedding from .sub_quadratic_attention import efficient_dot_product_attention from comfy import model_management @@ -94,253 +96,259 @@ def zero_module(module): def Normalize(in_channels, dtype=None, device=None): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device) +def attention_basic(q, k, v, heads, mask=None): + b, _, dim_head = q.shape + dim_head //= heads + scale = dim_head ** -0.5 + + h = heads + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(b, -1, heads, dim_head) + .permute(0, 2, 1, 3) + .reshape(b * heads, -1, dim_head) + .contiguous(), + (q, k, v), + ) + + # force cast to fp32 to avoid overflowing + if _ATTN_PRECISION =="fp32": + with torch.autocast(enabled=False, device_type = 'cuda'): + q, k = q.float(), k.float() + sim = einsum('b i d, b j d -> b i j', q, k) * scale + else: + sim = einsum('b i d, b j d -> b i j', q, k) * scale -class SpatialSelfAttention(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.in_channels = in_channels - - self.norm = Normalize(in_channels) - self.q = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.k = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - def forward(self, x): - h_ = x - h_ = self.norm(h_) - q = self.q(h_) - k = self.k(h_) - v = self.v(h_) - - # compute attention - b,c,h,w = q.shape - q = rearrange(q, 'b c h w -> b (h w) c') - k = rearrange(k, 'b c h w -> b c (h w)') - w_ = torch.einsum('bij,bjk->bik', q, k) - - w_ = w_ * (int(c)**(-0.5)) - w_ = torch.nn.functional.softmax(w_, dim=2) - - # attend to values - v = rearrange(v, 'b c h w -> b c (h w)') - w_ = rearrange(w_, 'b i j -> b j i') - h_ = torch.einsum('bij,bjk->bik', v, w_) - h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) - h_ = self.proj_out(h_) - - return x+h_ + del q, k + if exists(mask): + mask = rearrange(mask, 'b ... -> b (...)') + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, 'b j -> (b h) () j', h=h) + sim.masked_fill_(~mask, max_neg_value) -class CrossAttentionBirchSan(nn.Module): - def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops): - super().__init__() - inner_dim = dim_head * heads - context_dim = default(context_dim, query_dim) + # attention, what we cannot get enough of + sim = sim.softmax(dim=-1) - self.scale = dim_head ** -0.5 - self.heads = heads + out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v) + out = ( + out.unsqueeze(0) + .reshape(b, heads, -1, dim_head) + .permute(0, 2, 1, 3) + .reshape(b, -1, heads * dim_head) + ) + return out - self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device) - self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) - self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) - self.to_out = nn.Sequential( - operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), - nn.Dropout(dropout) - ) +def attention_sub_quad(query, key, value, heads, mask=None): + b, _, dim_head = query.shape + dim_head //= heads - def forward(self, x, context=None, value=None, mask=None): - h = self.heads + scale = dim_head ** -0.5 + query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head) + value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head) - query = self.to_q(x) - context = default(context, x) - key = self.to_k(context) - if value is not None: - value = self.to_v(value) - else: - value = self.to_v(context) + key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1) - del context, x - - query = query.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1) - key_t = key.transpose(1,2).unflatten(1, (self.heads, -1)).flatten(end_dim=1) - del key - value = value.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1) - - dtype = query.dtype - upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32 - if upcast_attention: - bytes_per_token = torch.finfo(torch.float32).bits//8 - else: - bytes_per_token = torch.finfo(query.dtype).bits//8 - batch_x_heads, q_tokens, _ = query.shape - _, _, k_tokens = key_t.shape - qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens - - mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True) + dtype = query.dtype + upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32 + if upcast_attention: + bytes_per_token = torch.finfo(torch.float32).bits//8 + else: + bytes_per_token = torch.finfo(query.dtype).bits//8 + batch_x_heads, q_tokens, _ = query.shape + _, _, k_tokens = key.shape + qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens - chunk_threshold_bytes = mem_free_torch * 0.5 #Using only this seems to work better on AMD + mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True) - kv_chunk_size_min = None + kv_chunk_size_min = None + kv_chunk_size = None + query_chunk_size = None - #not sure at all about the math here - #TODO: tweak this - if mem_free_total > 8192 * 1024 * 1024 * 1.3: - query_chunk_size_x = 1024 * 4 - elif mem_free_total > 4096 * 1024 * 1024 * 1.3: - query_chunk_size_x = 1024 * 2 - else: - query_chunk_size_x = 1024 - kv_chunk_size_min_x = None - kv_chunk_size_x = (int((chunk_threshold_bytes // (batch_x_heads * bytes_per_token * query_chunk_size_x)) * 2.0) // 1024) * 1024 - if kv_chunk_size_x < 1024: - kv_chunk_size_x = None - - if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes: - # the big matmul fits into our memory limit; do everything in 1 chunk, - # i.e. send it down the unchunked fast-path - query_chunk_size = q_tokens + for x in [4096, 2048, 1024, 512, 256]: + count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0) + if count >= k_tokens: kv_chunk_size = k_tokens - else: - query_chunk_size = query_chunk_size_x - kv_chunk_size = kv_chunk_size_x - kv_chunk_size_min = kv_chunk_size_min_x - - hidden_states = efficient_dot_product_attention( - query, - key_t, - value, - query_chunk_size=query_chunk_size, - kv_chunk_size=kv_chunk_size, - kv_chunk_size_min=kv_chunk_size_min, - use_checkpoint=self.training, - upcast_attention=upcast_attention, - ) - - hidden_states = hidden_states.to(dtype) - - hidden_states = hidden_states.unflatten(0, (-1, self.heads)).transpose(1,2).flatten(start_dim=2) - - out_proj, dropout = self.to_out - hidden_states = out_proj(hidden_states) - hidden_states = dropout(hidden_states) - - return hidden_states - - -class CrossAttentionDoggettx(nn.Module): - def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops): - super().__init__() - inner_dim = dim_head * heads - context_dim = default(context_dim, query_dim) - - self.scale = dim_head ** -0.5 - self.heads = heads - - self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device) - self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) - self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) - - self.to_out = nn.Sequential( - operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), - nn.Dropout(dropout) - ) - - def forward(self, x, context=None, value=None, mask=None): - h = self.heads - - q_in = self.to_q(x) - context = default(context, x) - k_in = self.to_k(context) - if value is not None: - v_in = self.to_v(value) - del value - else: - v_in = self.to_v(context) - del context, x - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) - del q_in, k_in, v_in - - r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) - - mem_free_total = model_management.get_free_memory(q.device) - - gb = 1024 ** 3 - tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() - modifier = 3 if q.element_size() == 2 else 2.5 - mem_required = tensor_size * modifier - steps = 1 - - - if mem_required > mem_free_total: - steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) - # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " - # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") - - if steps > 64: - max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 - raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' - f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free') - - # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size) - first_op_done = False - cleared_cache = False - while True: - try: - slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] - for i in range(0, q.shape[1], slice_size): - end = i + slice_size - if _ATTN_PRECISION =="fp32": - with torch.autocast(enabled=False, device_type = 'cuda'): - s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * self.scale - else: - s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * self.scale - first_op_done = True - - s2 = s1.softmax(dim=-1).to(v.dtype) - del s1 - - r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) - del s2 - break - except model_management.OOM_EXCEPTION as e: - if first_op_done == False: - model_management.soft_empty_cache(True) - if cleared_cache == False: - cleared_cache = True - print("out of memory error, emptying cache and trying again") - continue - steps *= 2 - if steps > 64: - raise e - print("out of memory error, increasing steps and trying again", steps) + query_chunk_size = x + break + + if query_chunk_size is None: + query_chunk_size = 512 + + hidden_states = efficient_dot_product_attention( + query, + key, + value, + query_chunk_size=query_chunk_size, + kv_chunk_size=kv_chunk_size, + kv_chunk_size_min=kv_chunk_size_min, + use_checkpoint=False, + upcast_attention=upcast_attention, + ) + + hidden_states = hidden_states.to(dtype) + + hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2) + return hidden_states + +def attention_split(q, k, v, heads, mask=None): + b, _, dim_head = q.shape + dim_head //= heads + scale = dim_head ** -0.5 + + h = heads + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(b, -1, heads, dim_head) + .permute(0, 2, 1, 3) + .reshape(b * heads, -1, dim_head) + .contiguous(), + (q, k, v), + ) + + r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) + + mem_free_total = model_management.get_free_memory(q.device) + + if _ATTN_PRECISION =="fp32": + element_size = 4 + else: + element_size = q.element_size() + + gb = 1024 ** 3 + tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size + modifier = 3 + mem_required = tensor_size * modifier + steps = 1 + + + if mem_required > mem_free_total: + steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) + # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " + # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") + + if steps > 64: + max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 + raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' + f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free') + + # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size) + first_op_done = False + cleared_cache = False + while True: + try: + slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] + for i in range(0, q.shape[1], slice_size): + end = i + slice_size + if _ATTN_PRECISION =="fp32": + with torch.autocast(enabled=False, device_type = 'cuda'): + s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale else: + s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale + + s2 = s1.softmax(dim=-1).to(v.dtype) + del s1 + first_op_done = True + + r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) + del s2 + break + except model_management.OOM_EXCEPTION as e: + if first_op_done == False: + model_management.soft_empty_cache(True) + if cleared_cache == False: + cleared_cache = True + print("out of memory error, emptying cache and trying again") + continue + steps *= 2 + if steps > 64: raise e + print("out of memory error, increasing steps and trying again", steps) + else: + raise e + + del q, k, v + + r1 = ( + r1.unsqueeze(0) + .reshape(b, heads, -1, dim_head) + .permute(0, 2, 1, 3) + .reshape(b, -1, heads * dim_head) + ) + return r1 + +BROKEN_XFORMERS = False +try: + x_vers = xformers.__version__ + #I think 0.0.23 is also broken (q with bs bigger than 65535 gives CUDA error) + BROKEN_XFORMERS = x_vers.startswith("0.0.21") or x_vers.startswith("0.0.22") or x_vers.startswith("0.0.23") +except: + pass + +def attention_xformers(q, k, v, heads, mask=None): + b, _, dim_head = q.shape + dim_head //= heads + if BROKEN_XFORMERS: + if b * heads > 65535: + return attention_pytorch(q, k, v, heads, mask) + + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(b, -1, heads, dim_head) + .permute(0, 2, 1, 3) + .reshape(b * heads, -1, dim_head) + .contiguous(), + (q, k, v), + ) + + # actually compute the attention, what we cannot get enough of + out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) + + if exists(mask): + raise NotImplementedError + out = ( + out.unsqueeze(0) + .reshape(b, heads, -1, dim_head) + .permute(0, 2, 1, 3) + .reshape(b, -1, heads * dim_head) + ) + return out + +def attention_pytorch(q, k, v, heads, mask=None): + b, _, dim_head = q.shape + dim_head //= heads + q, k, v = map( + lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2), + (q, k, v), + ) + + out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False) + out = ( + out.transpose(1, 2).reshape(b, -1, heads * dim_head) + ) + return out + + +optimized_attention = attention_basic +optimized_attention_masked = attention_basic - del q, k, v - - r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) - del r1 +if model_management.xformers_enabled(): + print("Using xformers cross attention") + optimized_attention = attention_xformers +elif model_management.pytorch_attention_enabled(): + print("Using pytorch cross attention") + optimized_attention = attention_pytorch +else: + if args.use_split_cross_attention: + print("Using split optimization for cross attention") + optimized_attention = attention_split + else: + print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention") + optimized_attention = attention_sub_quad - return self.to_out(r2) +if model_management.pytorch_attention_enabled(): + optimized_attention_masked = attention_pytorch class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops): @@ -348,62 +356,6 @@ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0. inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) - self.scale = dim_head ** -0.5 - self.heads = heads - - self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device) - self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) - self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) - - self.to_out = nn.Sequential( - operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), - nn.Dropout(dropout) - ) - - def forward(self, x, context=None, value=None, mask=None): - h = self.heads - - q = self.to_q(x) - context = default(context, x) - k = self.to_k(context) - if value is not None: - v = self.to_v(value) - del value - else: - v = self.to_v(context) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) - - # force cast to fp32 to avoid overflowing - if _ATTN_PRECISION =="fp32": - with torch.autocast(enabled=False, device_type = 'cuda'): - q, k = q.float(), k.float() - sim = einsum('b i d, b j d -> b i j', q, k) * self.scale - else: - sim = einsum('b i d, b j d -> b i j', q, k) * self.scale - - del q, k - - if exists(mask): - mask = rearrange(mask, 'b ... -> b (...)') - max_neg_value = -torch.finfo(sim.dtype).max - mask = repeat(mask, 'b j -> (b h) () j', h=h) - sim.masked_fill_(~mask, max_neg_value) - - # attention, what we cannot get enough of - sim = sim.softmax(dim=-1) - - out = einsum('b i j, b j d -> b i d', sim, v) - out = rearrange(out, '(b h) n d -> b n (h d)', h=h) - return self.to_out(out) - -class MemoryEfficientCrossAttention(nn.Module): - # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 - def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, dtype=None, device=None, operations=comfy.ops): - super().__init__() - inner_dim = dim_head * heads - context_dim = default(context_dim, query_dim) - self.heads = heads self.dim_head = dim_head @@ -412,7 +364,6 @@ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0. self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout)) - self.attention_op: Optional[Any] = None def forward(self, x, context=None, value=None, mask=None): q = self.to_q(x) @@ -424,132 +375,80 @@ def forward(self, x, context=None, value=None, mask=None): else: v = self.to_v(context) - b, _, _ = q.shape - q, k, v = map( - lambda t: t.unsqueeze(3) - .reshape(b, t.shape[1], self.heads, self.dim_head) - .permute(0, 2, 1, 3) - .reshape(b * self.heads, t.shape[1], self.dim_head) - .contiguous(), - (q, k, v), - ) - - # actually compute the attention, what we cannot get enough of - out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) - - if exists(mask): - raise NotImplementedError - out = ( - out.unsqueeze(0) - .reshape(b, self.heads, out.shape[1], self.dim_head) - .permute(0, 2, 1, 3) - .reshape(b, out.shape[1], self.heads * self.dim_head) - ) + if mask is None: + out = optimized_attention(q, k, v, self.heads) + else: + out = optimized_attention_masked(q, k, v, self.heads, mask) return self.to_out(out) -class CrossAttentionPytorch(nn.Module): - def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops): - super().__init__() - inner_dim = dim_head * heads - context_dim = default(context_dim, query_dim) - - self.heads = heads - self.dim_head = dim_head - - self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device) - self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) - self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) - - self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout)) - self.attention_op: Optional[Any] = None - def forward(self, x, context=None, value=None, mask=None): - q = self.to_q(x) - context = default(context, x) - k = self.to_k(context) - if value is not None: - v = self.to_v(value) - del value - else: - v = self.to_v(context) +class BasicTransformerBlock(nn.Module): + def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None, + disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, dtype=None, device=None, operations=comfy.ops): + super().__init__() - b, _, _ = q.shape - q, k, v = map( - lambda t: t.view(b, -1, self.heads, self.dim_head).transpose(1, 2), - (q, k, v), - ) + self.ff_in = ff_in or inner_dim is not None + if inner_dim is None: + inner_dim = dim - out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False) + self.is_res = inner_dim == dim - if exists(mask): - raise NotImplementedError - out = ( - out.transpose(1, 2).reshape(b, -1, self.heads * self.dim_head) - ) + if self.ff_in: + self.norm_in = nn.LayerNorm(dim, dtype=dtype, device=device) + self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations) - return self.to_out(out) + self.disable_self_attn = disable_self_attn + self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout, + context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn + self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations) -if model_management.xformers_enabled(): - print("Using xformers cross attention") - CrossAttention = MemoryEfficientCrossAttention -elif model_management.pytorch_attention_enabled(): - print("Using pytorch cross attention") - CrossAttention = CrossAttentionPytorch -else: - if args.use_split_cross_attention: - print("Using split optimization for cross attention") - CrossAttention = CrossAttentionDoggettx - else: - print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention") - CrossAttention = CrossAttentionBirchSan + if disable_temporal_crossattention: + if switch_temporal_ca_to_sa: + raise ValueError + else: + self.attn2 = None + else: + context_dim_attn2 = None + if not switch_temporal_ca_to_sa: + context_dim_attn2 = context_dim + self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2, + heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations) # is self-attn if context is none + self.norm2 = nn.LayerNorm(inner_dim, dtype=dtype, device=device) -class BasicTransformerBlock(nn.Module): - def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, - disable_self_attn=False, dtype=None, device=None, operations=comfy.ops): - super().__init__() - self.disable_self_attn = disable_self_attn - self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, - context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn - self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations) - self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, - heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations) # is self-attn if context is none - self.norm1 = nn.LayerNorm(dim, dtype=dtype, device=device) - self.norm2 = nn.LayerNorm(dim, dtype=dtype, device=device) - self.norm3 = nn.LayerNorm(dim, dtype=dtype, device=device) + self.norm1 = nn.LayerNorm(inner_dim, dtype=dtype, device=device) + self.norm3 = nn.LayerNorm(inner_dim, dtype=dtype, device=device) self.checkpoint = checkpoint self.n_heads = n_heads self.d_head = d_head + self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa def forward(self, x, context=None, transformer_options={}): return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint) def _forward(self, x, context=None, transformer_options={}): extra_options = {} - block = None - block_index = 0 - if "current_index" in transformer_options: - extra_options["transformer_index"] = transformer_options["current_index"] - if "block_index" in transformer_options: - block_index = transformer_options["block_index"] - extra_options["block_index"] = block_index - if "original_shape" in transformer_options: - extra_options["original_shape"] = transformer_options["original_shape"] - if "block" in transformer_options: - block = transformer_options["block"] - extra_options["block"] = block - if "patches" in transformer_options: - transformer_patches = transformer_options["patches"] - else: - transformer_patches = {} + block = transformer_options.get("block", None) + block_index = transformer_options.get("block_index", 0) + transformer_patches = {} + transformer_patches_replace = {} + + for k in transformer_options: + if k == "patches": + transformer_patches = transformer_options[k] + elif k == "patches_replace": + transformer_patches_replace = transformer_options[k] + else: + extra_options[k] = transformer_options[k] extra_options["n_heads"] = self.n_heads extra_options["dim_head"] = self.d_head - if "patches_replace" in transformer_options: - transformer_patches_replace = transformer_options["patches_replace"] - else: - transformer_patches_replace = {} + if self.ff_in: + x_skip = x + x = self.ff_in(self.norm_in(x)) + if self.is_res: + x += x_skip n = self.norm1(x) if self.disable_self_attn: @@ -598,31 +497,34 @@ def _forward(self, x, context=None, transformer_options={}): for p in patch: x = p(x, extra_options) - n = self.norm2(x) - - context_attn2 = context - value_attn2 = None - if "attn2_patch" in transformer_patches: - patch = transformer_patches["attn2_patch"] - value_attn2 = context_attn2 - for p in patch: - n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options) - - attn2_replace_patch = transformer_patches_replace.get("attn2", {}) - block_attn2 = transformer_block - if block_attn2 not in attn2_replace_patch: - block_attn2 = block - - if block_attn2 in attn2_replace_patch: - if value_attn2 is None: + if self.attn2 is not None: + n = self.norm2(x) + if self.switch_temporal_ca_to_sa: + context_attn2 = n + else: + context_attn2 = context + value_attn2 = None + if "attn2_patch" in transformer_patches: + patch = transformer_patches["attn2_patch"] value_attn2 = context_attn2 - n = self.attn2.to_q(n) - context_attn2 = self.attn2.to_k(context_attn2) - value_attn2 = self.attn2.to_v(value_attn2) - n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options) - n = self.attn2.to_out(n) - else: - n = self.attn2(n, context=context_attn2, value=value_attn2) + for p in patch: + n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options) + + attn2_replace_patch = transformer_patches_replace.get("attn2", {}) + block_attn2 = transformer_block + if block_attn2 not in attn2_replace_patch: + block_attn2 = block + + if block_attn2 in attn2_replace_patch: + if value_attn2 is None: + value_attn2 = context_attn2 + n = self.attn2.to_q(n) + context_attn2 = self.attn2.to_k(context_attn2) + value_attn2 = self.attn2.to_v(value_attn2) + n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options) + n = self.attn2.to_out(n) + else: + n = self.attn2(n, context=context_attn2, value=value_attn2) if "attn2_output_patch" in transformer_patches: patch = transformer_patches["attn2_output_patch"] @@ -630,7 +532,12 @@ def _forward(self, x, context=None, transformer_options={}): n = p(n, extra_options) x += n - x = self.ff(self.norm3(x)) + x + if self.is_res: + x_skip = x + x = self.ff(self.norm3(x)) + if self.is_res: + x += x_skip + return x @@ -698,3 +605,164 @@ def forward(self, x, context=None, transformer_options={}): x = self.proj_out(x) return x + x_in + +class SpatialVideoTransformer(SpatialTransformer): + def __init__( + self, + in_channels, + n_heads, + d_head, + depth=1, + dropout=0.0, + use_linear=False, + context_dim=None, + use_spatial_context=False, + timesteps=None, + merge_strategy: str = "fixed", + merge_factor: float = 0.5, + time_context_dim=None, + ff_in=False, + checkpoint=False, + time_depth=1, + disable_self_attn=False, + disable_temporal_crossattention=False, + max_time_embed_period: int = 10000, + dtype=None, device=None, operations=comfy.ops + ): + super().__init__( + in_channels, + n_heads, + d_head, + depth=depth, + dropout=dropout, + use_checkpoint=checkpoint, + context_dim=context_dim, + use_linear=use_linear, + disable_self_attn=disable_self_attn, + dtype=dtype, device=device, operations=operations + ) + self.time_depth = time_depth + self.depth = depth + self.max_time_embed_period = max_time_embed_period + + time_mix_d_head = d_head + n_time_mix_heads = n_heads + + time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads) + + inner_dim = n_heads * d_head + if use_spatial_context: + time_context_dim = context_dim + + self.time_stack = nn.ModuleList( + [ + BasicTransformerBlock( + inner_dim, + n_time_mix_heads, + time_mix_d_head, + dropout=dropout, + context_dim=time_context_dim, + # timesteps=timesteps, + checkpoint=checkpoint, + ff_in=ff_in, + inner_dim=time_mix_inner_dim, + disable_self_attn=disable_self_attn, + disable_temporal_crossattention=disable_temporal_crossattention, + dtype=dtype, device=device, operations=operations + ) + for _ in range(self.depth) + ] + ) + + assert len(self.time_stack) == len(self.transformer_blocks) + + self.use_spatial_context = use_spatial_context + self.in_channels = in_channels + + time_embed_dim = self.in_channels * 4 + self.time_pos_embed = nn.Sequential( + operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device), + nn.SiLU(), + operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device), + ) + + self.time_mixer = AlphaBlender( + alpha=merge_factor, merge_strategy=merge_strategy + ) + + def forward( + self, + x: torch.Tensor, + context: Optional[torch.Tensor] = None, + time_context: Optional[torch.Tensor] = None, + timesteps: Optional[int] = None, + image_only_indicator: Optional[torch.Tensor] = None, + transformer_options={} + ) -> torch.Tensor: + _, _, h, w = x.shape + x_in = x + spatial_context = None + if exists(context): + spatial_context = context + + if self.use_spatial_context: + assert ( + context.ndim == 3 + ), f"n dims of spatial context should be 3 but are {context.ndim}" + + if time_context is None: + time_context = context + time_context_first_timestep = time_context[::timesteps] + time_context = repeat( + time_context_first_timestep, "b ... -> (b n) ...", n=h * w + ) + elif time_context is not None and not self.use_spatial_context: + time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w) + if time_context.ndim == 2: + time_context = rearrange(time_context, "b c -> b 1 c") + + x = self.norm(x) + if not self.use_linear: + x = self.proj_in(x) + x = rearrange(x, "b c h w -> b (h w) c") + if self.use_linear: + x = self.proj_in(x) + + num_frames = torch.arange(timesteps, device=x.device) + num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) + num_frames = rearrange(num_frames, "b t -> (b t)") + t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype) + emb = self.time_pos_embed(t_emb) + emb = emb[:, None, :] + + for it_, (block, mix_block) in enumerate( + zip(self.transformer_blocks, self.time_stack) + ): + transformer_options["block_index"] = it_ + x = block( + x, + context=spatial_context, + transformer_options=transformer_options, + ) + + x_mix = x + x_mix = x_mix + emb + + B, S, C = x_mix.shape + x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps) + x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options + x_mix = rearrange( + x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps + ) + + x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator) + + if self.use_linear: + x = self.proj_out(x) + x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) + if not self.use_linear: + x = self.proj_out(x) + out = x + x_in + return out + + diff --git a/comfy/ldm/modules/diffusionmodules/model.py b/comfy/ldm/modules/diffusionmodules/model.py index 5f38640c3d8..f23417fd216 100644 --- a/comfy/ldm/modules/diffusionmodules/model.py +++ b/comfy/ldm/modules/diffusionmodules/model.py @@ -6,7 +6,6 @@ from einops import rearrange from typing import Optional, Any -from ..attention import MemoryEfficientCrossAttention from comfy import model_management import comfy.ops @@ -194,62 +193,53 @@ def slice_attention(q, k, v): return r1 -class AttnBlock(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.in_channels = in_channels +def normal_attention(q, k, v): + # compute attention + b,c,h,w = q.shape + + q = q.reshape(b,c,h*w) + q = q.permute(0,2,1) # b,hw,c + k = k.reshape(b,c,h*w) # b,c,hw + v = v.reshape(b,c,h*w) + + r1 = slice_attention(q, k, v) + h_ = r1.reshape(b,c,h,w) + del r1 + return h_ + +def xformers_attention(q, k, v): + # compute attention + B, C, H, W = q.shape + q, k, v = map( + lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(), + (q, k, v), + ) + + try: + out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) + out = out.transpose(1, 2).reshape(B, C, H, W) + except NotImplementedError as e: + out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W) + return out + +def pytorch_attention(q, k, v): + # compute attention + B, C, H, W = q.shape + q, k, v = map( + lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(), + (q, k, v), + ) + + try: + out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False) + out = out.transpose(2, 3).reshape(B, C, H, W) + except model_management.OOM_EXCEPTION as e: + print("scaled_dot_product_attention OOMed: switched to slice attention") + out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W) + return out - self.norm = Normalize(in_channels) - self.q = comfy.ops.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.k = comfy.ops.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v = comfy.ops.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out = comfy.ops.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - def forward(self, x): - h_ = x - h_ = self.norm(h_) - q = self.q(h_) - k = self.k(h_) - v = self.v(h_) - - # compute attention - b,c,h,w = q.shape - - q = q.reshape(b,c,h*w) - q = q.permute(0,2,1) # b,hw,c - k = k.reshape(b,c,h*w) # b,c,hw - v = v.reshape(b,c,h*w) - - r1 = slice_attention(q, k, v) - h_ = r1.reshape(b,c,h,w) - del r1 - h_ = self.proj_out(h_) - return x+h_ - -class MemoryEfficientAttnBlock(nn.Module): - """ - Uses xformers efficient implementation, - see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 - Note: this is a single-head self-attention operation - """ - # +class AttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels @@ -275,58 +265,16 @@ def __init__(self, in_channels): kernel_size=1, stride=1, padding=0) - self.attention_op: Optional[Any] = None - - def forward(self, x): - h_ = x - h_ = self.norm(h_) - q = self.q(h_) - k = self.k(h_) - v = self.v(h_) - - # compute attention - B, C, H, W = q.shape - q, k, v = map( - lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(), - (q, k, v), - ) - - try: - out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) - out = out.transpose(1, 2).reshape(B, C, H, W) - except NotImplementedError as e: - out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W) - - out = self.proj_out(out) - return x+out - -class MemoryEfficientAttnBlockPytorch(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.in_channels = in_channels - self.norm = Normalize(in_channels) - self.q = comfy.ops.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.k = comfy.ops.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v = comfy.ops.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out = comfy.ops.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.attention_op: Optional[Any] = None + if model_management.xformers_enabled_vae(): + print("Using xformers attention in VAE") + self.optimized_attention = xformers_attention + elif model_management.pytorch_attention_enabled(): + print("Using pytorch attention in VAE") + self.optimized_attention = pytorch_attention + else: + print("Using split attention in VAE") + self.optimized_attention = normal_attention def forward(self, x): h_ = x @@ -335,54 +283,15 @@ def forward(self, x): k = self.k(h_) v = self.v(h_) - # compute attention - B, C, H, W = q.shape - q, k, v = map( - lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(), - (q, k, v), - ) - - try: - out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False) - out = out.transpose(2, 3).reshape(B, C, H, W) - except model_management.OOM_EXCEPTION as e: - print("scaled_dot_product_attention OOMed: switched to slice attention") - out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W) + h_ = self.optimized_attention(q, k, v) - out = self.proj_out(out) - return x+out + h_ = self.proj_out(h_) -class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention): - def forward(self, x, context=None, mask=None): - b, c, h, w = x.shape - x = rearrange(x, 'b c h w -> b (h w) c') - out = super().forward(x, context=context, mask=mask) - out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c) - return x + out + return x+h_ def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): - assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown' - if model_management.xformers_enabled_vae() and attn_type == "vanilla": - attn_type = "vanilla-xformers" - if model_management.pytorch_attention_enabled() and attn_type == "vanilla": - attn_type = "vanilla-pytorch" - print(f"making attention of type '{attn_type}' with {in_channels} in_channels") - if attn_type == "vanilla": - assert attn_kwargs is None - return AttnBlock(in_channels) - elif attn_type == "vanilla-xformers": - print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...") - return MemoryEfficientAttnBlock(in_channels) - elif attn_type == "vanilla-pytorch": - return MemoryEfficientAttnBlockPytorch(in_channels) - elif type == "memory-efficient-cross-attn": - attn_kwargs["query_dim"] = in_channels - return MemoryEfficientCrossAttentionWrapper(**attn_kwargs) - elif attn_type == "none": - return nn.Identity(in_channels) - else: - raise NotImplementedError() + return AttnBlock(in_channels) class Model(nn.Module): @@ -632,7 +541,10 @@ class Decoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, - attn_type="vanilla", **ignorekwargs): + conv_out_op=comfy.ops.Conv2d, + resnet_op=ResnetBlock, + attn_op=AttnBlock, + **ignorekwargs): super().__init__() if use_linear_attn: attn_type = "linear" self.ch = ch @@ -661,12 +573,12 @@ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, # middle self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=block_in, + self.mid.block_1 = resnet_op(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) - self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) - self.mid.block_2 = ResnetBlock(in_channels=block_in, + self.mid.attn_1 = attn_op(block_in) + self.mid.block_2 = resnet_op(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) @@ -678,13 +590,13 @@ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn = nn.ModuleList() block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks+1): - block.append(ResnetBlock(in_channels=block_in, + block.append(resnet_op(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) + attn.append(attn_op(block_in)) up = nn.Module() up.block = block up.attn = attn @@ -695,13 +607,13 @@ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, # end self.norm_out = Normalize(block_in) - self.conv_out = comfy.ops.Conv2d(block_in, + self.conv_out = conv_out_op(block_in, out_ch, kernel_size=3, stride=1, padding=1) - def forward(self, z): + def forward(self, z, **kwargs): #assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape @@ -712,16 +624,16 @@ def forward(self, z): h = self.conv_in(z) # middle - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) + h = self.mid.block_1(h, temb, **kwargs) + h = self.mid.attn_1(h, **kwargs) + h = self.mid.block_2(h, temb, **kwargs) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block](h, temb) + h = self.up[i_level].block[i_block](h, temb, **kwargs) if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h) + h = self.up[i_level].attn[i_block](h, **kwargs) if i_level != 0: h = self.up[i_level].upsample(h) @@ -731,7 +643,7 @@ def forward(self, z): h = self.norm_out(h) h = nonlinearity(h) - h = self.conv_out(h) + h = self.conv_out(h, **kwargs) if self.tanh_out: h = torch.tanh(h) return h diff --git a/comfy/ldm/modules/diffusionmodules/openaimodel.py b/comfy/ldm/modules/diffusionmodules/openaimodel.py index b42637c821a..48264892c26 100644 --- a/comfy/ldm/modules/diffusionmodules/openaimodel.py +++ b/comfy/ldm/modules/diffusionmodules/openaimodel.py @@ -5,6 +5,8 @@ import torch as th import torch.nn as nn import torch.nn.functional as F +from einops import rearrange +from functools import partial from .util import ( checkpoint, @@ -12,8 +14,9 @@ zero_module, normalization, timestep_embedding, + AlphaBlender, ) -from ..attention import SpatialTransformer +from ..attention import SpatialTransformer, SpatialVideoTransformer, default from comfy.ldm.util import exists import comfy.ops @@ -28,39 +31,36 @@ def forward(self, x, emb): Apply the module to `x` given `emb` timestep embeddings. """ - -class TimestepEmbedSequential(nn.Sequential, TimestepBlock): - """ - A sequential module that passes timestep embeddings to the children that - support it as an extra input. - """ - - def forward(self, x, emb, context=None, transformer_options={}, output_shape=None): - for layer in self: - if isinstance(layer, TimestepBlock): - x = layer(x, emb) - elif isinstance(layer, SpatialTransformer): - x = layer(x, context, transformer_options) - elif isinstance(layer, Upsample): - x = layer(x, output_shape=output_shape) - else: - x = layer(x) - return x - -#This is needed because accelerate makes a copy of transformer_options which breaks "current_index" -def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None): +#This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index" +def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None): for layer in ts: - if isinstance(layer, TimestepBlock): + if isinstance(layer, VideoResBlock): + x = layer(x, emb, num_video_frames, image_only_indicator) + elif isinstance(layer, TimestepBlock): x = layer(x, emb) + elif isinstance(layer, SpatialVideoTransformer): + x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options) + if "transformer_index" in transformer_options: + transformer_options["transformer_index"] += 1 elif isinstance(layer, SpatialTransformer): x = layer(x, context, transformer_options) - transformer_options["current_index"] += 1 + if "transformer_index" in transformer_options: + transformer_options["transformer_index"] += 1 elif isinstance(layer, Upsample): x = layer(x, output_shape=output_shape) else: x = layer(x) return x +class TimestepEmbedSequential(nn.Sequential, TimestepBlock): + """ + A sequential module that passes timestep embeddings to the children that + support it as an extra input. + """ + + def forward(self, *args, **kwargs): + return forward_timestep_embed(self, *args, **kwargs) + class Upsample(nn.Module): """ An upsampling layer with an optional convolution. @@ -154,6 +154,9 @@ def __init__( use_checkpoint=False, up=False, down=False, + kernel_size=3, + exchange_temb_dims=False, + skip_t_emb=False, dtype=None, device=None, operations=comfy.ops @@ -166,11 +169,17 @@ def __init__( self.use_conv = use_conv self.use_checkpoint = use_checkpoint self.use_scale_shift_norm = use_scale_shift_norm + self.exchange_temb_dims = exchange_temb_dims + + if isinstance(kernel_size, list): + padding = [k // 2 for k in kernel_size] + else: + padding = kernel_size // 2 self.in_layers = nn.Sequential( nn.GroupNorm(32, channels, dtype=dtype, device=device), nn.SiLU(), - operations.conv_nd(dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device), + operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device), ) self.updown = up or down @@ -184,19 +193,24 @@ def __init__( else: self.h_upd = self.x_upd = nn.Identity() - self.emb_layers = nn.Sequential( - nn.SiLU(), - operations.Linear( - emb_channels, - 2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device - ), - ) + self.skip_t_emb = skip_t_emb + if self.skip_t_emb: + self.emb_layers = None + self.exchange_temb_dims = False + else: + self.emb_layers = nn.Sequential( + nn.SiLU(), + operations.Linear( + emb_channels, + 2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device + ), + ) self.out_layers = nn.Sequential( nn.GroupNorm(32, self.out_channels, dtype=dtype, device=device), nn.SiLU(), nn.Dropout(p=dropout), zero_module( - operations.conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1, dtype=dtype, device=device) + operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device) ), ) @@ -204,7 +218,7 @@ def __init__( self.skip_connection = nn.Identity() elif use_conv: self.skip_connection = operations.conv_nd( - dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device + dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device ) else: self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device) @@ -230,19 +244,110 @@ def _forward(self, x, emb): h = in_conv(h) else: h = self.in_layers(x) - emb_out = self.emb_layers(emb).type(h.dtype) - while len(emb_out.shape) < len(h.shape): - emb_out = emb_out[..., None] + + emb_out = None + if not self.skip_t_emb: + emb_out = self.emb_layers(emb).type(h.dtype) + while len(emb_out.shape) < len(h.shape): + emb_out = emb_out[..., None] if self.use_scale_shift_norm: out_norm, out_rest = self.out_layers[0], self.out_layers[1:] - scale, shift = th.chunk(emb_out, 2, dim=1) - h = out_norm(h) * (1 + scale) + shift + h = out_norm(h) + if emb_out is not None: + scale, shift = th.chunk(emb_out, 2, dim=1) + h *= (1 + scale) + h += shift h = out_rest(h) else: - h = h + emb_out + if emb_out is not None: + if self.exchange_temb_dims: + emb_out = rearrange(emb_out, "b t c ... -> b c t ...") + h = h + emb_out h = self.out_layers(h) return self.skip_connection(x) + h + +class VideoResBlock(ResBlock): + def __init__( + self, + channels: int, + emb_channels: int, + dropout: float, + video_kernel_size=3, + merge_strategy: str = "fixed", + merge_factor: float = 0.5, + out_channels=None, + use_conv: bool = False, + use_scale_shift_norm: bool = False, + dims: int = 2, + use_checkpoint: bool = False, + up: bool = False, + down: bool = False, + dtype=None, + device=None, + operations=comfy.ops + ): + super().__init__( + channels, + emb_channels, + dropout, + out_channels=out_channels, + use_conv=use_conv, + use_scale_shift_norm=use_scale_shift_norm, + dims=dims, + use_checkpoint=use_checkpoint, + up=up, + down=down, + dtype=dtype, + device=device, + operations=operations + ) + + self.time_stack = ResBlock( + default(out_channels, channels), + emb_channels, + dropout=dropout, + dims=3, + out_channels=default(out_channels, channels), + use_scale_shift_norm=False, + use_conv=False, + up=False, + down=False, + kernel_size=video_kernel_size, + use_checkpoint=use_checkpoint, + exchange_temb_dims=True, + dtype=dtype, + device=device, + operations=operations + ) + self.time_mixer = AlphaBlender( + alpha=merge_factor, + merge_strategy=merge_strategy, + rearrange_pattern="b t -> b 1 t 1 1", + ) + + def forward( + self, + x: th.Tensor, + emb: th.Tensor, + num_video_frames: int, + image_only_indicator = None, + ) -> th.Tensor: + x = super().forward(x, emb) + + x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) + x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) + + x = self.time_stack( + x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames) + ) + x = self.time_mixer( + x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator + ) + x = rearrange(x, "b c t h w -> (b t) c h w") + return x + + class Timestep(nn.Module): def __init__(self, dim): super().__init__() @@ -251,6 +356,15 @@ def __init__(self, dim): def forward(self, t): return timestep_embedding(t, self.dim) +def apply_control(h, control, name): + if control is not None and name in control and len(control[name]) > 0: + ctrl = control[name].pop() + if ctrl is not None: + try: + h += ctrl + except: + print("warning control could not be applied", h.shape, ctrl.shape) + return h class UNetModel(nn.Module): """ @@ -259,10 +373,6 @@ class UNetModel(nn.Module): :param model_channels: base channel count for the model. :param out_channels: channels in the output Tensor. :param num_res_blocks: number of residual blocks per downsample. - :param attention_resolutions: a collection of downsample rates at which - attention will take place. May be a set, list, or tuple. - For example, if this contains 4, then at 4x downsampling, attention - will be used. :param dropout: the dropout probability. :param channel_mult: channel multiplier for each level of the UNet. :param conv_resample: if True, use learned convolutions for upsampling and @@ -289,15 +399,13 @@ def __init__( model_channels, out_channels, num_res_blocks, - attention_resolutions, dropout=0, channel_mult=(1, 2, 4, 8), conv_resample=True, dims=2, num_classes=None, use_checkpoint=False, - use_fp16=False, - use_bf16=False, + dtype=th.float32, num_heads=-1, num_head_channels=-1, num_heads_upsample=-1, @@ -315,6 +423,17 @@ def __init__( use_linear_in_transformer=False, adm_in_channels=None, transformer_depth_middle=None, + transformer_depth_output=None, + use_temporal_resblock=False, + use_temporal_attention=False, + time_context_dim=None, + extra_ff_mix_layer=False, + use_spatial_context=False, + merge_strategy=None, + merge_factor=0.0, + video_kernel_size=None, + disable_temporal_crossattention=False, + max_ddpm_temb_period=10000, device=None, operations=comfy.ops, ): @@ -342,10 +461,7 @@ def __init__( self.in_channels = in_channels self.model_channels = model_channels self.out_channels = out_channels - if isinstance(transformer_depth, int): - transformer_depth = len(channel_mult) * [transformer_depth] - if transformer_depth_middle is None: - transformer_depth_middle = transformer_depth[-1] + if isinstance(num_res_blocks, int): self.num_res_blocks = len(channel_mult) * [num_res_blocks] else: @@ -353,30 +469,31 @@ def __init__( raise ValueError("provide num_res_blocks either as an int (globally constant) or " "as a list/tuple (per-level) with the same length as channel_mult") self.num_res_blocks = num_res_blocks + if disable_self_attentions is not None: # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not assert len(disable_self_attentions) == len(channel_mult) if num_attention_blocks is not None: assert len(num_attention_blocks) == len(self.num_res_blocks) - assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) - print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " - f"This option has LESS priority than attention_resolutions {attention_resolutions}, " - f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " - f"attention will still not be set.") - self.attention_resolutions = attention_resolutions + transformer_depth = transformer_depth[:] + transformer_depth_output = transformer_depth_output[:] + self.dropout = dropout self.channel_mult = channel_mult self.conv_resample = conv_resample self.num_classes = num_classes self.use_checkpoint = use_checkpoint - self.dtype = th.float16 if use_fp16 else th.float32 - self.dtype = th.bfloat16 if use_bf16 else self.dtype + self.dtype = dtype self.num_heads = num_heads self.num_head_channels = num_head_channels self.num_heads_upsample = num_heads_upsample + self.use_temporal_resblocks = use_temporal_resblock self.predict_codebook_ids = n_embed is not None + self.default_num_video_frames = None + self.default_image_only_indicator = None + time_embed_dim = model_channels * 4 self.time_embed = nn.Sequential( operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device), @@ -413,13 +530,104 @@ def __init__( input_block_chans = [model_channels] ch = model_channels ds = 1 + + def get_attention_layer( + ch, + num_heads, + dim_head, + depth=1, + context_dim=None, + use_checkpoint=False, + disable_self_attn=False, + ): + if use_temporal_attention: + return SpatialVideoTransformer( + ch, + num_heads, + dim_head, + depth=depth, + context_dim=context_dim, + time_context_dim=time_context_dim, + dropout=dropout, + ff_in=extra_ff_mix_layer, + use_spatial_context=use_spatial_context, + merge_strategy=merge_strategy, + merge_factor=merge_factor, + checkpoint=use_checkpoint, + use_linear=use_linear_in_transformer, + disable_self_attn=disable_self_attn, + disable_temporal_crossattention=disable_temporal_crossattention, + max_time_embed_period=max_ddpm_temb_period, + dtype=self.dtype, device=device, operations=operations + ) + else: + return SpatialTransformer( + ch, num_heads, dim_head, depth=depth, context_dim=context_dim, + disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer, + use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations + ) + + def get_resblock( + merge_factor, + merge_strategy, + video_kernel_size, + ch, + time_embed_dim, + dropout, + out_channels, + dims, + use_checkpoint, + use_scale_shift_norm, + down=False, + up=False, + dtype=None, + device=None, + operations=comfy.ops + ): + if self.use_temporal_resblocks: + return VideoResBlock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + channels=ch, + emb_channels=time_embed_dim, + dropout=dropout, + out_channels=out_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=down, + up=up, + dtype=dtype, + device=device, + operations=operations + ) + else: + return ResBlock( + channels=ch, + emb_channels=time_embed_dim, + dropout=dropout, + out_channels=out_channels, + use_checkpoint=use_checkpoint, + dims=dims, + use_scale_shift_norm=use_scale_shift_norm, + down=down, + up=up, + dtype=dtype, + device=device, + operations=operations + ) + for level, mult in enumerate(channel_mult): for nr in range(self.num_res_blocks[level]): layers = [ - ResBlock( - ch, - time_embed_dim, - dropout, + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch, + time_embed_dim=time_embed_dim, + dropout=dropout, out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, @@ -430,7 +638,8 @@ def __init__( ) ] ch = mult * model_channels - if ds in attention_resolutions: + num_transformers = transformer_depth.pop(0) + if num_transformers > 0: if num_head_channels == -1: dim_head = ch // num_heads else: @@ -445,11 +654,9 @@ def __init__( disabled_sa = False if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: - layers.append(SpatialTransformer( - ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim, - disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, - use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations - ) + layers.append(get_attention_layer( + ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, + disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint) ) self.input_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch @@ -458,10 +665,13 @@ def __init__( out_ch = ch self.input_blocks.append( TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch, + time_embed_dim=time_embed_dim, + dropout=dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, @@ -490,35 +700,43 @@ def __init__( if legacy: #num_heads = 1 dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - self.middle_block = TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, + mid_block = [ + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch, + time_embed_dim=time_embed_dim, + dropout=dropout, + out_channels=None, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, dtype=self.dtype, device=device, operations=operations - ), - SpatialTransformer( # always uses a self-attn + )] + if transformer_depth_middle >= 0: + mid_block += [get_attention_layer( # always uses a self-attn ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, - disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, - use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations + disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint ), - ResBlock( - ch, - time_embed_dim, - dropout, + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch, + time_embed_dim=time_embed_dim, + dropout=dropout, + out_channels=None, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, dtype=self.dtype, device=device, operations=operations - ), - ) + )] + self.middle_block = TimestepEmbedSequential(*mid_block) self._feature_size += ch self.output_blocks = nn.ModuleList([]) @@ -526,10 +744,13 @@ def __init__( for i in range(self.num_res_blocks[level] + 1): ich = input_block_chans.pop() layers = [ - ResBlock( - ch + ich, - time_embed_dim, - dropout, + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch + ich, + time_embed_dim=time_embed_dim, + dropout=dropout, out_channels=model_channels * mult, dims=dims, use_checkpoint=use_checkpoint, @@ -540,7 +761,8 @@ def __init__( ) ] ch = model_channels * mult - if ds in attention_resolutions: + num_transformers = transformer_depth_output.pop() + if num_transformers > 0: if num_head_channels == -1: dim_head = ch // num_heads else: @@ -556,19 +778,21 @@ def __init__( if not exists(num_attention_blocks) or i < num_attention_blocks[level]: layers.append( - SpatialTransformer( - ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim, - disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, - use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations + get_attention_layer( + ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, + disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint ) ) if level and i == self.num_res_blocks[level]: out_ch = ch layers.append( - ResBlock( - ch, - time_embed_dim, - dropout, + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch, + time_embed_dim=time_embed_dim, + dropout=dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, @@ -607,9 +831,13 @@ def forward(self, x, timesteps=None, context=None, y=None, control=None, transfo :return: an [N x C x ...] Tensor of outputs. """ transformer_options["original_shape"] = list(x.shape) - transformer_options["current_index"] = 0 + transformer_options["transformer_index"] = 0 transformer_patches = transformer_options.get("patches", {}) + num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames) + image_only_indicator = kwargs.get("image_only_indicator", self.default_image_only_indicator) + time_context = kwargs.get("time_context", None) + assert (y is not None) == ( self.num_classes is not None ), "must specify y if and only if the model is class-conditional" @@ -624,26 +852,28 @@ def forward(self, x, timesteps=None, context=None, y=None, control=None, transfo h = x.type(self.dtype) for id, module in enumerate(self.input_blocks): transformer_options["block"] = ("input", id) - h = forward_timestep_embed(module, h, emb, context, transformer_options) - if control is not None and 'input' in control and len(control['input']) > 0: - ctrl = control['input'].pop() - if ctrl is not None: - h += ctrl + h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) + h = apply_control(h, control, 'input') + if "input_block_patch" in transformer_patches: + patch = transformer_patches["input_block_patch"] + for p in patch: + h = p(h, transformer_options) + hs.append(h) + if "input_block_patch_after_skip" in transformer_patches: + patch = transformer_patches["input_block_patch_after_skip"] + for p in patch: + h = p(h, transformer_options) + transformer_options["block"] = ("middle", 0) - h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options) - if control is not None and 'middle' in control and len(control['middle']) > 0: - ctrl = control['middle'].pop() - if ctrl is not None: - h += ctrl + h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) + h = apply_control(h, control, 'middle') + for id, module in enumerate(self.output_blocks): transformer_options["block"] = ("output", id) hsp = hs.pop() - if control is not None and 'output' in control and len(control['output']) > 0: - ctrl = control['output'].pop() - if ctrl is not None: - hsp += ctrl + hsp = apply_control(hsp, control, 'output') if "output_block_patch" in transformer_patches: patch = transformer_patches["output_block_patch"] @@ -656,7 +886,7 @@ def forward(self, x, timesteps=None, context=None, y=None, control=None, transfo output_shape = hs[-1].shape else: output_shape = None - h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape) + h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) h = h.type(x.dtype) if self.predict_codebook_ids: return self.id_predictor(h) diff --git a/comfy/ldm/modules/diffusionmodules/util.py b/comfy/ldm/modules/diffusionmodules/util.py index d890c8044aa..704bbe57450 100644 --- a/comfy/ldm/modules/diffusionmodules/util.py +++ b/comfy/ldm/modules/diffusionmodules/util.py @@ -13,11 +13,78 @@ import torch import torch.nn as nn import numpy as np -from einops import repeat +from einops import repeat, rearrange from comfy.ldm.util import instantiate_from_config import comfy.ops +class AlphaBlender(nn.Module): + strategies = ["learned", "fixed", "learned_with_images"] + + def __init__( + self, + alpha: float, + merge_strategy: str = "learned_with_images", + rearrange_pattern: str = "b t -> (b t) 1 1", + ): + super().__init__() + self.merge_strategy = merge_strategy + self.rearrange_pattern = rearrange_pattern + + assert ( + merge_strategy in self.strategies + ), f"merge_strategy needs to be in {self.strategies}" + + if self.merge_strategy == "fixed": + self.register_buffer("mix_factor", torch.Tensor([alpha])) + elif ( + self.merge_strategy == "learned" + or self.merge_strategy == "learned_with_images" + ): + self.register_parameter( + "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) + ) + else: + raise ValueError(f"unknown merge strategy {self.merge_strategy}") + + def get_alpha(self, image_only_indicator: torch.Tensor) -> torch.Tensor: + # skip_time_mix = rearrange(repeat(skip_time_mix, 'b -> (b t) () () ()', t=t), '(b t) 1 ... -> b 1 t ...', t=t) + if self.merge_strategy == "fixed": + # make shape compatible + # alpha = repeat(self.mix_factor, '1 -> b () t () ()', t=t, b=bs) + alpha = self.mix_factor + elif self.merge_strategy == "learned": + alpha = torch.sigmoid(self.mix_factor) + # make shape compatible + # alpha = repeat(alpha, '1 -> s () ()', s = t * bs) + elif self.merge_strategy == "learned_with_images": + assert image_only_indicator is not None, "need image_only_indicator ..." + alpha = torch.where( + image_only_indicator.bool(), + torch.ones(1, 1, device=image_only_indicator.device), + rearrange(torch.sigmoid(self.mix_factor), "... -> ... 1"), + ) + alpha = rearrange(alpha, self.rearrange_pattern) + # make shape compatible + # alpha = repeat(alpha, '1 -> s () ()', s = t * bs) + else: + raise NotImplementedError() + return alpha + + def forward( + self, + x_spatial, + x_temporal, + image_only_indicator=None, + ) -> torch.Tensor: + alpha = self.get_alpha(image_only_indicator) + x = ( + alpha.to(x_spatial.dtype) * x_spatial + + (1.0 - alpha).to(x_spatial.dtype) * x_temporal + ) + return x + + def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): if schedule == "linear": betas = ( @@ -170,8 +237,8 @@ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): if not repeat_only: half = dim // 2 freqs = torch.exp( - -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half - ).to(device=timesteps.device) + -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half + ) args = timesteps[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: diff --git a/comfy/ldm/modules/sub_quadratic_attention.py b/comfy/ldm/modules/sub_quadratic_attention.py index 4d42059b5a8..8e8e8054dfd 100644 --- a/comfy/ldm/modules/sub_quadratic_attention.py +++ b/comfy/ldm/modules/sub_quadratic_attention.py @@ -83,7 +83,8 @@ def _summarize_chunk( ) max_score, _ = torch.max(attn_weights, -1, keepdim=True) max_score = max_score.detach() - torch.exp(attn_weights - max_score, out=attn_weights) + attn_weights -= max_score + torch.exp(attn_weights, out=attn_weights) exp_weights = attn_weights.to(value.dtype) exp_values = torch.bmm(exp_weights, value) max_score = max_score.squeeze(-1) diff --git a/comfy/ldm/modules/temporal_ae.py b/comfy/ldm/modules/temporal_ae.py new file mode 100644 index 00000000000..11ae049f3be --- /dev/null +++ b/comfy/ldm/modules/temporal_ae.py @@ -0,0 +1,244 @@ +import functools +from typing import Callable, Iterable, Union + +import torch +from einops import rearrange, repeat + +import comfy.ops + +from .diffusionmodules.model import ( + AttnBlock, + Decoder, + ResnetBlock, +) +from .diffusionmodules.openaimodel import ResBlock, timestep_embedding +from .attention import BasicTransformerBlock + +def partialclass(cls, *args, **kwargs): + class NewCls(cls): + __init__ = functools.partialmethod(cls.__init__, *args, **kwargs) + + return NewCls + + +class VideoResBlock(ResnetBlock): + def __init__( + self, + out_channels, + *args, + dropout=0.0, + video_kernel_size=3, + alpha=0.0, + merge_strategy="learned", + **kwargs, + ): + super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs) + if video_kernel_size is None: + video_kernel_size = [3, 1, 1] + self.time_stack = ResBlock( + channels=out_channels, + emb_channels=0, + dropout=dropout, + dims=3, + use_scale_shift_norm=False, + use_conv=False, + up=False, + down=False, + kernel_size=video_kernel_size, + use_checkpoint=False, + skip_t_emb=True, + ) + + self.merge_strategy = merge_strategy + if self.merge_strategy == "fixed": + self.register_buffer("mix_factor", torch.Tensor([alpha])) + elif self.merge_strategy == "learned": + self.register_parameter( + "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) + ) + else: + raise ValueError(f"unknown merge strategy {self.merge_strategy}") + + def get_alpha(self, bs): + if self.merge_strategy == "fixed": + return self.mix_factor + elif self.merge_strategy == "learned": + return torch.sigmoid(self.mix_factor) + else: + raise NotImplementedError() + + def forward(self, x, temb, skip_video=False, timesteps=None): + b, c, h, w = x.shape + if timesteps is None: + timesteps = b + + x = super().forward(x, temb) + + if not skip_video: + x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) + + x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) + + x = self.time_stack(x, temb) + + alpha = self.get_alpha(bs=b // timesteps) + x = alpha * x + (1.0 - alpha) * x_mix + + x = rearrange(x, "b c t h w -> (b t) c h w") + return x + + +class AE3DConv(torch.nn.Conv2d): + def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs): + super().__init__(in_channels, out_channels, *args, **kwargs) + if isinstance(video_kernel_size, Iterable): + padding = [int(k // 2) for k in video_kernel_size] + else: + padding = int(video_kernel_size // 2) + + self.time_mix_conv = torch.nn.Conv3d( + in_channels=out_channels, + out_channels=out_channels, + kernel_size=video_kernel_size, + padding=padding, + ) + + def forward(self, input, timesteps=None, skip_video=False): + if timesteps is None: + timesteps = input.shape[0] + x = super().forward(input) + if skip_video: + return x + x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) + x = self.time_mix_conv(x) + return rearrange(x, "b c t h w -> (b t) c h w") + + +class AttnVideoBlock(AttnBlock): + def __init__( + self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned" + ): + super().__init__(in_channels) + # no context, single headed, as in base class + self.time_mix_block = BasicTransformerBlock( + dim=in_channels, + n_heads=1, + d_head=in_channels, + checkpoint=False, + ff_in=True, + ) + + time_embed_dim = self.in_channels * 4 + self.video_time_embed = torch.nn.Sequential( + comfy.ops.Linear(self.in_channels, time_embed_dim), + torch.nn.SiLU(), + comfy.ops.Linear(time_embed_dim, self.in_channels), + ) + + self.merge_strategy = merge_strategy + if self.merge_strategy == "fixed": + self.register_buffer("mix_factor", torch.Tensor([alpha])) + elif self.merge_strategy == "learned": + self.register_parameter( + "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) + ) + else: + raise ValueError(f"unknown merge strategy {self.merge_strategy}") + + def forward(self, x, timesteps=None, skip_time_block=False): + if skip_time_block: + return super().forward(x) + + if timesteps is None: + timesteps = x.shape[0] + + x_in = x + x = self.attention(x) + h, w = x.shape[2:] + x = rearrange(x, "b c h w -> b (h w) c") + + x_mix = x + num_frames = torch.arange(timesteps, device=x.device) + num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) + num_frames = rearrange(num_frames, "b t -> (b t)") + t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False) + emb = self.video_time_embed(t_emb) # b, n_channels + emb = emb[:, None, :] + x_mix = x_mix + emb + + alpha = self.get_alpha() + x_mix = self.time_mix_block(x_mix, timesteps=timesteps) + x = alpha * x + (1.0 - alpha) * x_mix # alpha merge + + x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) + x = self.proj_out(x) + + return x_in + x + + def get_alpha( + self, + ): + if self.merge_strategy == "fixed": + return self.mix_factor + elif self.merge_strategy == "learned": + return torch.sigmoid(self.mix_factor) + else: + raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}") + + + +def make_time_attn( + in_channels, + attn_type="vanilla", + attn_kwargs=None, + alpha: float = 0, + merge_strategy: str = "learned", +): + return partialclass( + AttnVideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy + ) + + +class Conv2DWrapper(torch.nn.Conv2d): + def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor: + return super().forward(input) + + +class VideoDecoder(Decoder): + available_time_modes = ["all", "conv-only", "attn-only"] + + def __init__( + self, + *args, + video_kernel_size: Union[int, list] = 3, + alpha: float = 0.0, + merge_strategy: str = "learned", + time_mode: str = "conv-only", + **kwargs, + ): + self.video_kernel_size = video_kernel_size + self.alpha = alpha + self.merge_strategy = merge_strategy + self.time_mode = time_mode + assert ( + self.time_mode in self.available_time_modes + ), f"time_mode parameter has to be in {self.available_time_modes}" + + if self.time_mode != "attn-only": + kwargs["conv_out_op"] = partialclass(AE3DConv, video_kernel_size=self.video_kernel_size) + if self.time_mode not in ["conv-only", "only-last-conv"]: + kwargs["attn_op"] = partialclass(make_time_attn, alpha=self.alpha, merge_strategy=self.merge_strategy) + if self.time_mode not in ["attn-only", "only-last-conv"]: + kwargs["resnet_op"] = partialclass(VideoResBlock, video_kernel_size=self.video_kernel_size, alpha=self.alpha, merge_strategy=self.merge_strategy) + + super().__init__(*args, **kwargs) + + def get_last_layer(self, skip_time_mix=False, **kwargs): + if self.time_mode == "attn-only": + raise NotImplementedError("TODO") + else: + return ( + self.conv_out.time_mix_conv.weight + if not skip_time_mix + else self.conv_out.weight + ) diff --git a/comfy/lora.py b/comfy/lora.py index 3009a1c9e0c..29c59d89307 100644 --- a/comfy/lora.py +++ b/comfy/lora.py @@ -131,6 +131,18 @@ def load_lora(lora, to_load): loaded_keys.add(b_norm_name) patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = (b_norm,) + diff_name = "{}.diff".format(x) + diff_weight = lora.get(diff_name, None) + if diff_weight is not None: + patch_dict[to_load[x]] = (diff_weight,) + loaded_keys.add(diff_name) + + diff_bias_name = "{}.diff_b".format(x) + diff_bias = lora.get(diff_bias_name, None) + if diff_bias is not None: + patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = (diff_bias,) + loaded_keys.add(diff_bias_name) + for x in lora.keys(): if x not in loaded_keys: print("lora key not loaded", x) @@ -141,9 +153,9 @@ def model_lora_keys_clip(model, key_map={}): text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}" clip_l_present = False - for b in range(32): + for b in range(32): #TODO: clean up for c in LORA_CLIP_MAP: - k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) + k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) if k in sdk: lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) key_map[lora_key] = k @@ -154,6 +166,8 @@ def model_lora_keys_clip(model, key_map={}): k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) if k in sdk: + lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) + key_map[lora_key] = k lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base key_map[lora_key] = k clip_l_present = True diff --git a/comfy/model_base.py b/comfy/model_base.py index ed2dc83e4e0..786c9cf47ba 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -1,16 +1,37 @@ import torch from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation -from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep import comfy.model_management -import numpy as np +import comfy.conds from enum import Enum from . import utils class ModelType(Enum): EPS = 1 V_PREDICTION = 2 + V_PREDICTION_EDM = 3 + + +from comfy.model_sampling import EPS, V_PREDICTION, ModelSamplingDiscrete, ModelSamplingContinuousEDM + + +def model_sampling(model_config, model_type): + s = ModelSamplingDiscrete + + if model_type == ModelType.EPS: + c = EPS + elif model_type == ModelType.V_PREDICTION: + c = V_PREDICTION + elif model_type == ModelType.V_PREDICTION_EDM: + c = V_PREDICTION + s = ModelSamplingContinuousEDM + + class ModelSampling(s, c): + pass + + return ModelSampling(model_config) + class BaseModel(torch.nn.Module): def __init__(self, model_config, model_type=ModelType.EPS, device=None): @@ -19,48 +40,38 @@ def __init__(self, model_config, model_type=ModelType.EPS, device=None): unet_config = model_config.unet_config self.latent_format = model_config.latent_format self.model_config = model_config - self.register_schedule(given_betas=None, beta_schedule=model_config.beta_schedule, timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3) + if not unet_config.get("disable_unet_model_creation", False): self.diffusion_model = UNetModel(**unet_config, device=device) self.model_type = model_type + self.model_sampling = model_sampling(model_config, model_type) + self.adm_channels = unet_config.get("adm_in_channels", None) if self.adm_channels is None: self.adm_channels = 0 + self.inpaint_model = False print("model_type", model_type.name) print("adm", self.adm_channels) - def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, - linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): - if given_betas is not None: - betas = given_betas - else: - betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) - alphas = 1. - betas - alphas_cumprod = np.cumprod(alphas, axis=0) - alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) - - timesteps, = betas.shape - self.num_timesteps = int(timesteps) - self.linear_start = linear_start - self.linear_end = linear_end - - self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32)) - self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32)) - self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32)) - - def apply_model(self, x, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}): + def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs): + sigma = t + xc = self.model_sampling.calculate_input(sigma, x) if c_concat is not None: - xc = torch.cat([x] + [c_concat], dim=1) - else: - xc = x + xc = torch.cat([xc] + [c_concat], dim=1) + context = c_crossattn dtype = self.get_dtype() xc = xc.to(dtype) - t = t.to(dtype) + t = self.model_sampling.timestep(t).float() context = context.to(dtype) - if c_adm is not None: - c_adm = c_adm.to(dtype) - return self.diffusion_model(xc, t, context=context, y=c_adm, control=control, transformer_options=transformer_options).float() + extra_conds = {} + for o in kwargs: + extra = kwargs[o] + if hasattr(extra, "to"): + extra = extra.to(dtype) + extra_conds[o] = extra + model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float() + return self.model_sampling.calculate_denoised(sigma, model_output, x) def get_dtype(self): return self.diffusion_model.dtype @@ -71,6 +82,43 @@ def is_adm(self): def encode_adm(self, **kwargs): return None + def extra_conds(self, **kwargs): + out = {} + if self.inpaint_model: + concat_keys = ("mask", "masked_image") + cond_concat = [] + denoise_mask = kwargs.get("denoise_mask", None) + latent_image = kwargs.get("latent_image", None) + noise = kwargs.get("noise", None) + device = kwargs["device"] + + def blank_inpaint_image_like(latent_image): + blank_image = torch.ones_like(latent_image) + # these are the values for "zero" in pixel space translated to latent space + blank_image[:,0] *= 0.8223 + blank_image[:,1] *= -0.6876 + blank_image[:,2] *= 0.6364 + blank_image[:,3] *= 0.1380 + return blank_image + + for ck in concat_keys: + if denoise_mask is not None: + if ck == "mask": + cond_concat.append(denoise_mask[:,:1].to(device)) + elif ck == "masked_image": + cond_concat.append(latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space + else: + if ck == "mask": + cond_concat.append(torch.ones_like(noise)[:,:1]) + elif ck == "masked_image": + cond_concat.append(blank_inpaint_image_like(noise)) + data = torch.cat(cond_concat, dim=1) + out['c_concat'] = comfy.conds.CONDNoiseShape(data) + adm = self.encode_adm(**kwargs) + if adm is not None: + out['y'] = comfy.conds.CONDRegular(adm) + return out + def load_model_weights(self, sd, unet_prefix=""): to_load = {} keys = list(sd.keys()) @@ -78,6 +126,7 @@ def load_model_weights(self, sd, unet_prefix=""): if k.startswith(unet_prefix): to_load[k[len(unet_prefix):]] = sd.pop(k) + to_load = self.model_config.process_unet_state_dict(to_load) m, u = self.diffusion_model.load_state_dict(to_load, strict=False) if len(m) > 0: print("unet missing:", m) @@ -112,7 +161,18 @@ def state_dict_for_saving(self, clip_state_dict, vae_state_dict): return {**unet_state_dict, **vae_state_dict, **clip_state_dict} def set_inpaint(self): - self.concat_keys = ("mask", "masked_image") + self.inpaint_model = True + + def memory_required(self, input_shape): + if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention(): + #TODO: this needs to be tweaked + area = input_shape[0] * input_shape[2] * input_shape[3] + return (area * comfy.model_management.dtype_size(self.get_dtype()) / 50) * (1024 * 1024) + else: + #TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory. + area = input_shape[0] * input_shape[2] * input_shape[3] + return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024) + def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0): adm_inputs = [] @@ -208,3 +268,48 @@ def encode_adm(self, **kwargs): out.append(self.embedder(torch.Tensor([target_width]))) flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) return torch.cat((clip_pooled.to(flat.device), flat), dim=1) + +class SVD_img2vid(BaseModel): + def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None): + super().__init__(model_config, model_type, device=device) + self.embedder = Timestep(256) + + def encode_adm(self, **kwargs): + fps_id = kwargs.get("fps", 6) - 1 + motion_bucket_id = kwargs.get("motion_bucket_id", 127) + augmentation = kwargs.get("augmentation_level", 0) + + out = [] + out.append(self.embedder(torch.Tensor([fps_id]))) + out.append(self.embedder(torch.Tensor([motion_bucket_id]))) + out.append(self.embedder(torch.Tensor([augmentation]))) + + flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0) + return flat + + def extra_conds(self, **kwargs): + out = {} + adm = self.encode_adm(**kwargs) + if adm is not None: + out['y'] = comfy.conds.CONDRegular(adm) + + latent_image = kwargs.get("concat_latent_image", None) + noise = kwargs.get("noise", None) + device = kwargs["device"] + + if latent_image is None: + latent_image = torch.zeros_like(noise) + + if latent_image.shape[1:] != noise.shape[1:]: + latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") + + latent_image = utils.repeat_to_batch_size(latent_image, noise.shape[0]) + + out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image) + + if "time_conditioning" in kwargs: + out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"]) + + out['image_only_indicator'] = comfy.conds.CONDConstant(torch.zeros((1,), device=device)) + out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0]) + return out diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 787c78575ae..c682c3e1a18 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -14,7 +14,21 @@ def count_blocks(state_dict_keys, prefix_string): count += 1 return count -def detect_unet_config(state_dict, key_prefix, use_fp16): +def calculate_transformer_depth(prefix, state_dict_keys, state_dict): + context_dim = None + use_linear_in_transformer = False + + transformer_prefix = prefix + "1.transformer_blocks." + transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys))) + if len(transformer_keys) > 0: + last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}') + context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1] + use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2 + time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict + return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack + return None + +def detect_unet_config(state_dict, key_prefix, dtype): state_dict_keys = list(state_dict.keys()) unet_config = { @@ -32,7 +46,7 @@ def detect_unet_config(state_dict, key_prefix, use_fp16): else: unet_config["adm_in_channels"] = None - unet_config["use_fp16"] = use_fp16 + unet_config["dtype"] = dtype model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0] in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1] @@ -40,72 +54,95 @@ def detect_unet_config(state_dict, key_prefix, use_fp16): channel_mult = [] attention_resolutions = [] transformer_depth = [] + transformer_depth_output = [] context_dim = None use_linear_in_transformer = False + video_model = False current_res = 1 count = 0 last_res_blocks = 0 - last_transformer_depth = 0 last_channel_mult = 0 - while True: + input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.') + for count in range(input_block_count): prefix = '{}input_blocks.{}.'.format(key_prefix, count) + prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1) + block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys))) if len(block_keys) == 0: break + block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys))) + if "{}0.op.weight".format(prefix) in block_keys: #new layer - if last_transformer_depth > 0: - attention_resolutions.append(current_res) - transformer_depth.append(last_transformer_depth) num_res_blocks.append(last_res_blocks) channel_mult.append(last_channel_mult) current_res *= 2 last_res_blocks = 0 - last_transformer_depth = 0 last_channel_mult = 0 + out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict) + if out is not None: + transformer_depth_output.append(out[0]) + else: + transformer_depth_output.append(0) else: res_block_prefix = "{}0.in_layers.0.weight".format(prefix) if res_block_prefix in block_keys: last_res_blocks += 1 last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels - transformer_prefix = prefix + "1.transformer_blocks." - transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys))) - if len(transformer_keys) > 0: - last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}') - if context_dim is None: - context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1] - use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2 + out = calculate_transformer_depth(prefix, state_dict_keys, state_dict) + if out is not None: + transformer_depth.append(out[0]) + if context_dim is None: + context_dim = out[1] + use_linear_in_transformer = out[2] + video_model = out[3] + else: + transformer_depth.append(0) + + res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output) + if res_block_prefix in block_keys_output: + out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict) + if out is not None: + transformer_depth_output.append(out[0]) + else: + transformer_depth_output.append(0) - count += 1 - if last_transformer_depth > 0: - attention_resolutions.append(current_res) - transformer_depth.append(last_transformer_depth) num_res_blocks.append(last_res_blocks) channel_mult.append(last_channel_mult) - transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}') - - if len(set(num_res_blocks)) == 1: - num_res_blocks = num_res_blocks[0] - - if len(set(transformer_depth)) == 1: - transformer_depth = transformer_depth[0] + if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys: + transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}') + else: + transformer_depth_middle = -1 unet_config["in_channels"] = in_channels unet_config["model_channels"] = model_channels unet_config["num_res_blocks"] = num_res_blocks - unet_config["attention_resolutions"] = attention_resolutions unet_config["transformer_depth"] = transformer_depth + unet_config["transformer_depth_output"] = transformer_depth_output unet_config["channel_mult"] = channel_mult unet_config["transformer_depth_middle"] = transformer_depth_middle unet_config['use_linear_in_transformer'] = use_linear_in_transformer unet_config["context_dim"] = context_dim + + if video_model: + unet_config["extra_ff_mix_layer"] = True + unet_config["use_spatial_context"] = True + unet_config["merge_strategy"] = "learned_with_images" + unet_config["merge_factor"] = 0.0 + unet_config["video_kernel_size"] = [3, 1, 1] + unet_config["use_temporal_resblock"] = True + unet_config["use_temporal_attention"] = True + else: + unet_config["use_temporal_resblock"] = False + unet_config["use_temporal_attention"] = False + return unet_config def model_config_from_unet_config(unet_config): @@ -116,27 +153,73 @@ def model_config_from_unet_config(unet_config): print("no match", unet_config) return None -def model_config_from_unet(state_dict, unet_key_prefix, use_fp16, use_base_if_no_match=False): - unet_config = detect_unet_config(state_dict, unet_key_prefix, use_fp16) +def model_config_from_unet(state_dict, unet_key_prefix, dtype, use_base_if_no_match=False): + unet_config = detect_unet_config(state_dict, unet_key_prefix, dtype) model_config = model_config_from_unet_config(unet_config) if model_config is None and use_base_if_no_match: return comfy.supported_models_base.BASE(unet_config) else: return model_config -def unet_config_from_diffusers_unet(state_dict, use_fp16): +def convert_config(unet_config): + new_config = unet_config.copy() + num_res_blocks = new_config.get("num_res_blocks", None) + channel_mult = new_config.get("channel_mult", None) + + if isinstance(num_res_blocks, int): + num_res_blocks = len(channel_mult) * [num_res_blocks] + + if "attention_resolutions" in new_config: + attention_resolutions = new_config.pop("attention_resolutions") + transformer_depth = new_config.get("transformer_depth", None) + transformer_depth_middle = new_config.get("transformer_depth_middle", None) + + if isinstance(transformer_depth, int): + transformer_depth = len(channel_mult) * [transformer_depth] + if transformer_depth_middle is None: + transformer_depth_middle = transformer_depth[-1] + t_in = [] + t_out = [] + s = 1 + for i in range(len(num_res_blocks)): + res = num_res_blocks[i] + d = 0 + if s in attention_resolutions: + d = transformer_depth[i] + + t_in += [d] * res + t_out += [d] * (res + 1) + s *= 2 + transformer_depth = t_in + transformer_depth_output = t_out + new_config["transformer_depth"] = t_in + new_config["transformer_depth_output"] = t_out + new_config["transformer_depth_middle"] = transformer_depth_middle + + new_config["num_res_blocks"] = num_res_blocks + return new_config + + +def unet_config_from_diffusers_unet(state_dict, dtype): match = {} - attention_resolutions = [] + transformer_depth = [] attn_res = 1 - for i in range(5): - k = "down_blocks.{}.attentions.1.transformer_blocks.0.attn2.to_k.weight".format(i) - if k in state_dict: - match["context_dim"] = state_dict[k].shape[1] - attention_resolutions.append(attn_res) + down_blocks = count_blocks(state_dict, "down_blocks.{}") + for i in range(down_blocks): + attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}') + for ab in range(attn_blocks): + transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}') + transformer_depth.append(transformer_count) + if transformer_count > 0: + match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1] + attn_res *= 2 + if attn_blocks == 0: + transformer_depth.append(0) + transformer_depth.append(0) - match["attention_resolutions"] = attention_resolutions + match["transformer_depth"] = transformer_depth match["model_channels"] = state_dict["conv_in.weight"].shape[0] match["in_channels"] = state_dict["conv_in.weight"].shape[1] @@ -147,51 +230,66 @@ def unet_config_from_diffusers_unet(state_dict, use_fp16): match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1] SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, - 'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 2, 10], 'channel_mult': [1, 2, 4], - 'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64} + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, + 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], + 'use_temporal_attention': False, 'use_temporal_resblock': False} SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2560, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 384, - 'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 4, 4, 0], 'channel_mult': [1, 2, 4, 4], - 'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280, "num_head_channels": 64} + 'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384, + 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4, + 'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'adm_in_channels': None, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2, - 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4], - 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, "num_head_channels": 64} + 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], + 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, + 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2048, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, - 'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4], - 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, "num_head_channels": 64} + 'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, + 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 1536, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, - 'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4], - 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024} + 'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, + 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} - SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'adm_in_channels': None, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2, - 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4], - 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, "num_heads": 8} + SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None, + 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], + 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8, + 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, - 'num_res_blocks': 2, 'attention_resolutions': [4], 'transformer_depth': [0, 0, 1], 'channel_mult': [1, 2, 4], - 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64} + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1, + 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1], + 'use_temporal_attention': False, 'use_temporal_resblock': False} SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, - 'num_res_blocks': 2, 'attention_resolutions': [], 'transformer_depth': [0, 0, 0], 'channel_mult': [1, 2, 4], - 'transformer_depth_middle': 0, 'use_linear_in_transformer': True, "num_head_channels": 64, 'context_dim': 1} + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0, + 'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, - 'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 9, 'model_channels': 320, - 'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 2, 10], 'channel_mult': [1, 2, 4], - 'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64} + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, + 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4], + 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, + 'use_temporal_attention': False, 'use_temporal_resblock': False} - supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint] + supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B] for unet_config in supported_models: matches = True @@ -200,11 +298,11 @@ def unet_config_from_diffusers_unet(state_dict, use_fp16): matches = False break if matches: - return unet_config + return convert_config(unet_config) return None -def model_config_from_diffusers_unet(state_dict, use_fp16): - unet_config = unet_config_from_diffusers_unet(state_dict, use_fp16) +def model_config_from_diffusers_unet(state_dict, dtype): + unet_config = unet_config_from_diffusers_unet(state_dict, dtype) if unet_config is not None: return model_config_from_unet_config(unet_config) return None diff --git a/comfy/model_management.py b/comfy/model_management.py index 8b896372687..d4acd8950ca 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -133,6 +133,10 @@ def get_total_memory(dev=None, torch_total_too=False): import xformers import xformers.ops XFORMERS_IS_AVAILABLE = True + try: + XFORMERS_IS_AVAILABLE = xformers._has_cpp_library + except: + pass try: XFORMERS_VERSION = xformers.version.__version__ print("xformers version:", XFORMERS_VERSION) @@ -154,14 +158,18 @@ def is_nvidia(): return True return False -ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention +ENABLE_PYTORCH_ATTENTION = False +if args.use_pytorch_cross_attention: + ENABLE_PYTORCH_ATTENTION = True + XFORMERS_IS_AVAILABLE = False + VAE_DTYPE = torch.float32 try: if is_nvidia(): torch_version = torch.version.__version__ if int(torch_version[0]) >= 2: - if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False: + if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False: ENABLE_PYTORCH_ATTENTION = True if torch.cuda.is_bf16_supported(): VAE_DTYPE = torch.bfloat16 @@ -186,7 +194,6 @@ def is_nvidia(): torch.backends.cuda.enable_math_sdp(True) torch.backends.cuda.enable_flash_sdp(True) torch.backends.cuda.enable_mem_efficient_sdp(True) - XFORMERS_IS_AVAILABLE = False if args.lowvram: set_vram_to = VRAMState.LOW_VRAM @@ -336,7 +343,11 @@ def free_memory(memory_required, device, keep_loaded=[]): if unloaded_model: soft_empty_cache() - + else: + if vram_state != VRAMState.HIGH_VRAM: + mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True) + if mem_free_torch > mem_free_total * 0.25: + soft_empty_cache() def load_models_gpu(models, memory_required=0): global vram_state @@ -354,6 +365,8 @@ def load_models_gpu(models, memory_required=0): current_loaded_models.insert(0, current_loaded_models.pop(index)) models_already_loaded.append(loaded_model) else: + if hasattr(x, "model"): + print(f"Requested to load {x.model.__class__.__name__}") models_to_load.append(loaded_model) if len(models_to_load) == 0: @@ -363,7 +376,7 @@ def load_models_gpu(models, memory_required=0): free_memory(extra_mem, d, models_already_loaded) return - print("loading new") + print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}") total_memory_required = {} for loaded_model in models_to_load: @@ -405,7 +418,6 @@ def load_model_gpu(model): def cleanup_models(): to_delete = [] for i in range(len(current_loaded_models)): - print(sys.getrefcount(current_loaded_models[i].model)) if sys.getrefcount(current_loaded_models[i].model) <= 2: to_delete = [i] + to_delete @@ -444,6 +456,13 @@ def unet_inital_load_device(parameters, dtype): else: return cpu_dev +def unet_dtype(device=None, model_params=0): + if args.bf16_unet: + return torch.bfloat16 + if should_use_fp16(device=device, model_params=model_params): + return torch.float16 + return torch.float32 + def text_encoder_offload_device(): if args.gpu_only: return get_torch_device() @@ -463,6 +482,21 @@ def text_encoder_device(): else: return torch.device("cpu") +def text_encoder_dtype(device=None): + if args.fp8_e4m3fn_text_enc: + return torch.float8_e4m3fn + elif args.fp8_e5m2_text_enc: + return torch.float8_e5m2 + elif args.fp16_text_enc: + return torch.float16 + elif args.fp32_text_enc: + return torch.float32 + + if should_use_fp16(device, prioritize_performance=False): + return torch.float16 + else: + return torch.float32 + def vae_device(): return get_torch_device() @@ -564,27 +598,6 @@ def get_free_memory(dev=None, torch_free_too=False): else: return mem_free_total -def batch_area_memory(area): - if xformers_enabled() or pytorch_attention_flash_attention(): - #TODO: these formulas are copied from maximum_batch_area below - return (area / 20) * (1024 * 1024) - else: - return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024) - -def maximum_batch_area(): - global vram_state - if vram_state == VRAMState.NO_VRAM: - return 0 - - memory_free = get_free_memory() / (1024 * 1024) - if xformers_enabled() or pytorch_attention_flash_attention(): - #TODO: this needs to be tweaked - area = 20 * memory_free - else: - #TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future - area = ((memory_free - 1024) * 0.9) / (0.6) - return int(max(area, 0)) - def cpu_mode(): global cpu_state return cpu_state == CPUState.CPU @@ -656,7 +669,7 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True): return False #FP16 is just broken on these cards - nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX"] + nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"] for x in nvidia_16_series: if x in props.name: return False diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index ba505221e77..a3cffc3be9d 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -6,11 +6,13 @@ import comfy.model_management class ModelPatcher: - def __init__(self, model, load_device, offload_device, size=0, current_device=None): + def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False): self.size = size self.model = model self.patches = {} self.backup = {} + self.object_patches = {} + self.object_patches_backup = {} self.model_options = {"transformer_options":{}} self.model_size() self.load_device = load_device @@ -20,6 +22,8 @@ def __init__(self, model, load_device, offload_device, size=0, current_device=No else: self.current_device = current_device + self.weight_inplace_update = weight_inplace_update + def model_size(self): if self.size > 0: return self.size @@ -33,11 +37,12 @@ def model_size(self): return size def clone(self): - n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device) + n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update) n.patches = {} for k in self.patches: n.patches[k] = self.patches[k][:] + n.object_patches = self.object_patches.copy() n.model_options = copy.deepcopy(self.model_options) n.model_keys = self.model_keys return n @@ -47,6 +52,9 @@ def is_clone(self, other): return True return False + def memory_required(self, input_shape): + return self.model.memory_required(input_shape=input_shape) + def set_model_sampler_cfg_function(self, sampler_cfg_function): if len(inspect.signature(sampler_cfg_function).parameters) == 3: self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way @@ -88,9 +96,18 @@ def set_model_attn1_output_patch(self, patch): def set_model_attn2_output_patch(self, patch): self.set_model_patch(patch, "attn2_output_patch") + def set_model_input_block_patch(self, patch): + self.set_model_patch(patch, "input_block_patch") + + def set_model_input_block_patch_after_skip(self, patch): + self.set_model_patch(patch, "input_block_patch_after_skip") + def set_model_output_block_patch(self, patch): self.set_model_patch(patch, "output_block_patch") + def add_object_patch(self, name, obj): + self.object_patches[name] = obj + def model_patches_to(self, device): to = self.model_options["transformer_options"] if "patches" in to: @@ -107,6 +124,10 @@ def model_patches_to(self, device): for k in patch_list: if hasattr(patch_list[k], "to"): patch_list[k] = patch_list[k].to(device) + if "model_function_wrapper" in self.model_options: + wrap_func = self.model_options["model_function_wrapper"] + if hasattr(wrap_func, "to"): + self.model_options["model_function_wrapper"] = wrap_func.to(device) def model_dtype(self): if hasattr(self.model, "get_dtype"): @@ -124,6 +145,7 @@ def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): return list(p) def get_key_patches(self, filter_prefix=None): + comfy.model_management.unload_model_clones(self) model_sd = self.model_state_dict() p = {} for k in model_sd: @@ -146,6 +168,12 @@ def model_state_dict(self, filter_prefix=None): return sd def patch_model(self, device_to=None): + for k in self.object_patches: + old = getattr(self.model, k) + if k not in self.object_patches_backup: + self.object_patches_backup[k] = old + setattr(self.model, k, self.object_patches[k]) + model_sd = self.model_state_dict() for key in self.patches: if key not in model_sd: @@ -154,15 +182,20 @@ def patch_model(self, device_to=None): weight = model_sd[key] + inplace_update = self.weight_inplace_update + if key not in self.backup: - self.backup[key] = weight.to(self.offload_device) + self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update) if device_to is not None: temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True) else: temp_weight = weight.to(torch.float32, copy=True) out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype) - comfy.utils.set_attr(self.model, key, out_weight) + if inplace_update: + comfy.utils.copy_to_param(self.model, key, out_weight) + else: + comfy.utils.set_attr(self.model, key, out_weight) del temp_weight if device_to is not None: @@ -278,11 +311,21 @@ def calculate_weight(self, patches, weight, key): def unpatch_model(self, device_to=None): keys = list(self.backup.keys()) - for k in keys: - comfy.utils.set_attr(self.model, k, self.backup[k]) + if self.weight_inplace_update: + for k in keys: + comfy.utils.copy_to_param(self.model, k, self.backup[k]) + else: + for k in keys: + comfy.utils.set_attr(self.model, k, self.backup[k]) self.backup = {} if device_to is not None: self.model.to(device_to) self.current_device = device_to + + keys = list(self.object_patches_backup.keys()) + for k in keys: + setattr(self.model, k, self.object_patches_backup[k]) + + self.object_patches_backup = {} diff --git a/comfy/model_sampling.py b/comfy/model_sampling.py new file mode 100644 index 00000000000..69c8b1f01fc --- /dev/null +++ b/comfy/model_sampling.py @@ -0,0 +1,129 @@ +import torch +import numpy as np +from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule +import math + +class EPS: + def calculate_input(self, sigma, noise): + sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1)) + return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 + + def calculate_denoised(self, sigma, model_output, model_input): + sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + return model_input - model_output * sigma + + +class V_PREDICTION(EPS): + def calculate_denoised(self, sigma, model_output, model_input): + sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 + + +class ModelSamplingDiscrete(torch.nn.Module): + def __init__(self, model_config=None): + super().__init__() + beta_schedule = "linear" + if model_config is not None: + beta_schedule = model_config.sampling_settings.get("beta_schedule", beta_schedule) + self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3) + self.sigma_data = 1.0 + + def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, + linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): + if given_betas is not None: + betas = given_betas + else: + betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) + alphas = 1. - betas + alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32) + # alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) + + timesteps, = betas.shape + self.num_timesteps = int(timesteps) + self.linear_start = linear_start + self.linear_end = linear_end + + # self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32)) + # self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32)) + # self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32)) + + sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 + self.set_sigmas(sigmas) + + def set_sigmas(self, sigmas): + self.register_buffer('sigmas', sigmas) + self.register_buffer('log_sigmas', sigmas.log()) + + @property + def sigma_min(self): + return self.sigmas[0] + + @property + def sigma_max(self): + return self.sigmas[-1] + + def timestep(self, sigma): + log_sigma = sigma.log() + dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] + return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device) + + def sigma(self, timestep): + t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1)) + low_idx = t.floor().long() + high_idx = t.ceil().long() + w = t.frac() + log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx] + return log_sigma.exp().to(timestep.device) + + def percent_to_sigma(self, percent): + if percent <= 0.0: + return 999999999.9 + if percent >= 1.0: + return 0.0 + percent = 1.0 - percent + return self.sigma(torch.tensor(percent * 999.0)).item() + + +class ModelSamplingContinuousEDM(torch.nn.Module): + def __init__(self, model_config=None): + super().__init__() + self.sigma_data = 1.0 + + if model_config is not None: + sampling_settings = model_config.sampling_settings + else: + sampling_settings = {} + + sigma_min = sampling_settings.get("sigma_min", 0.002) + sigma_max = sampling_settings.get("sigma_max", 120.0) + self.set_sigma_range(sigma_min, sigma_max) + + def set_sigma_range(self, sigma_min, sigma_max): + sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp() + + self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers + self.register_buffer('log_sigmas', sigmas.log()) + + @property + def sigma_min(self): + return self.sigmas[0] + + @property + def sigma_max(self): + return self.sigmas[-1] + + def timestep(self, sigma): + return 0.25 * sigma.log() + + def sigma(self, timestep): + return (timestep / 0.25).exp() + + def percent_to_sigma(self, percent): + if percent <= 0.0: + return 999999999.9 + if percent >= 1.0: + return 0.0 + percent = 1.0 - percent + + log_sigma_min = math.log(self.sigma_min) + return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min) diff --git a/comfy/ops.py b/comfy/ops.py index 610d54584fa..0bfb698aa7f 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -1,29 +1,23 @@ import torch from contextlib import contextmanager -class Linear(torch.nn.Module): - def __init__(self, in_features: int, out_features: int, bias: bool = True, - device=None, dtype=None) -> None: - factory_kwargs = {'device': device, 'dtype': dtype} - super().__init__() - self.in_features = in_features - self.out_features = out_features - self.weight = torch.nn.Parameter(torch.empty((out_features, in_features), **factory_kwargs)) - if bias: - self.bias = torch.nn.Parameter(torch.empty(out_features, **factory_kwargs)) - else: - self.register_parameter('bias', None) - - def forward(self, input): - return torch.nn.functional.linear(input, self.weight, self.bias) +class Linear(torch.nn.Linear): + def reset_parameters(self): + return None class Conv2d(torch.nn.Conv2d): def reset_parameters(self): return None +class Conv3d(torch.nn.Conv3d): + def reset_parameters(self): + return None + def conv_nd(dims, *args, **kwargs): if dims == 2: return Conv2d(*args, **kwargs) + elif dims == 3: + return Conv3d(*args, **kwargs) else: raise ValueError(f"unsupported dimensions: {dims}") diff --git a/comfy/sample.py b/comfy/sample.py index e4730b189ad..034db97ee88 100644 --- a/comfy/sample.py +++ b/comfy/sample.py @@ -1,6 +1,7 @@ import torch import comfy.model_management import comfy.samplers +import comfy.conds import comfy.utils import math import numpy as np @@ -33,22 +34,24 @@ def prepare_mask(noise_mask, shape, device): noise_mask = noise_mask.to(device) return noise_mask -def broadcast_cond(cond, batch, device): - """broadcasts conditioning to the batch size""" - copy = [] - for p in cond: - t = comfy.utils.repeat_to_batch_size(p[0], batch) - t = t.to(device) - copy += [[t] + p[1:]] - return copy - def get_models_from_cond(cond, model_type): models = [] for c in cond: - if model_type in c[1]: - models += [c[1][model_type]] + if model_type in c: + models += [c[model_type]] return models +def convert_cond(cond): + out = [] + for c in cond: + temp = c[1].copy() + model_conds = temp.get("model_conds", {}) + if c[0] is not None: + model_conds["c_crossattn"] = comfy.conds.CONDCrossAttn(c[0]) + temp["model_conds"] = model_conds + out.append(temp) + return out + def get_additional_models(positive, negative, dtype): """loads additional models in positive and negative conditioning""" control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")) @@ -70,28 +73,46 @@ def cleanup_additional_models(models): if hasattr(m, 'cleanup'): m.cleanup() -def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): - device = comfy.model_management.get_torch_device() +def prepare_sampling(model, noise_shape, positive, negative, noise_mask): + device = model.load_device + positive = convert_cond(positive) + negative = convert_cond(negative) if noise_mask is not None: - noise_mask = prepare_mask(noise_mask, noise.shape, device) + noise_mask = prepare_mask(noise_mask, noise_shape, device) real_model = None models, inference_memory = get_additional_models(positive, negative, model.model_dtype()) - comfy.model_management.load_models_gpu([model] + models, comfy.model_management.batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]) + inference_memory) + comfy.model_management.load_models_gpu([model] + models, model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory) real_model = model.model - noise = noise.to(device) - latent_image = latent_image.to(device) + return real_model, positive, negative, noise_mask, models + - positive_copy = broadcast_cond(positive, noise.shape[0], device) - negative_copy = broadcast_cond(negative, noise.shape[0], device) +def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): + real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask) + noise = noise.to(model.load_device) + latent_image = latent_image.to(model.load_device) - sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options) + sampler = comfy.samplers.KSampler(real_model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options) samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed) samples = samples.cpu() cleanup_additional_models(models) + cleanup_additional_models(set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))) return samples + +def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=None, callback=None, disable_pbar=False, seed=None): + real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask) + noise = noise.to(model.load_device) + latent_image = latent_image.to(model.load_device) + sigmas = sigmas.to(model.load_device) + + samples = comfy.samplers.sample(real_model, noise, positive_copy, negative_copy, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) + samples = samples.cpu() + cleanup_additional_models(models) + cleanup_additional_models(set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))) + return samples + diff --git a/comfy/samplers.py b/comfy/samplers.py index e3192ca58f4..1d012a514a7 100644 --- a/comfy/samplers.py +++ b/comfy/samplers.py @@ -1,48 +1,42 @@ from .k_diffusion import sampling as k_diffusion_sampling -from .k_diffusion import external as k_diffusion_external from .extra_samplers import uni_pc import torch +import enum from comfy import model_management -from .ldm.models.diffusion.ddim import DDIMSampler -from .ldm.modules.diffusionmodules.util import make_ddim_timesteps import math from comfy import model_base import comfy.utils +import comfy.conds -def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9) - return abs(a*b) // math.gcd(a, b) #The main sampling function shared by all the samplers -#Returns predicted noise -def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}, seed=None): - def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in): +#Returns denoised +def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None): + def get_area_and_mult(conds, x_in, timestep_in): area = (x_in.shape[2], x_in.shape[3], 0, 0) strength = 1.0 - if 'timestep_start' in cond[1]: - timestep_start = cond[1]['timestep_start'] + + if 'timestep_start' in conds: + timestep_start = conds['timestep_start'] if timestep_in[0] > timestep_start: return None - if 'timestep_end' in cond[1]: - timestep_end = cond[1]['timestep_end'] + if 'timestep_end' in conds: + timestep_end = conds['timestep_end'] if timestep_in[0] < timestep_end: return None - if 'area' in cond[1]: - area = cond[1]['area'] - if 'strength' in cond[1]: - strength = cond[1]['strength'] - - adm_cond = None - if 'adm_encoded' in cond[1]: - adm_cond = cond[1]['adm_encoded'] + if 'area' in conds: + area = conds['area'] + if 'strength' in conds: + strength = conds['strength'] input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] - if 'mask' in cond[1]: + if 'mask' in conds: # Scale the mask to the size of the input # The mask should have been resized as we began the sampling process mask_strength = 1.0 - if "mask_strength" in cond[1]: - mask_strength = cond[1]["mask_strength"] - mask = cond[1]['mask'] + if "mask_strength" in conds: + mask_strength = conds["mask_strength"] + mask = conds['mask'] assert(mask.shape[1] == x_in.shape[2]) assert(mask.shape[2] == x_in.shape[3]) mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength @@ -51,7 +45,7 @@ def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in): mask = torch.ones_like(input_x) mult = mask * strength - if 'mask' not in cond[1]: + if 'mask' not in conds: rr = 8 if area[2] != 0: for t in range(rr): @@ -67,24 +61,17 @@ def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in): mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1)) conditionning = {} - conditionning['c_crossattn'] = cond[0] - if cond_concat_in is not None and len(cond_concat_in) > 0: - cropped = [] - for x in cond_concat_in: - cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] - cropped.append(cr) - conditionning['c_concat'] = torch.cat(cropped, dim=1) - - if adm_cond is not None: - conditionning['c_adm'] = adm_cond + model_conds = conds["model_conds"] + for c in model_conds: + conditionning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area) control = None - if 'control' in cond[1]: - control = cond[1]['control'] + if 'control' in conds: + control = conds['control'] patches = None - if 'gligen' in cond[1]: - gligen = cond[1]['gligen'] + if 'gligen' in conds: + gligen = conds['gligen'] patches = {} gligen_type = gligen[0] gligen_model = gligen[1] @@ -102,22 +89,8 @@ def cond_equal_size(c1, c2): return True if c1.keys() != c2.keys(): return False - if 'c_crossattn' in c1: - s1 = c1['c_crossattn'].shape - s2 = c2['c_crossattn'].shape - if s1 != s2: - if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen - return False - - mult_min = lcm(s1[1], s2[1]) - diff = mult_min // min(s1[1], s2[1]) - if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much - return False - if 'c_concat' in c1: - if c1['c_concat'].shape != c2['c_concat'].shape: - return False - if 'c_adm' in c1: - if c1['c_adm'].shape != c2['c_adm'].shape: + for k in c1: + if not c1[k].can_concat(c2[k]): return False return True @@ -146,53 +119,41 @@ def cond_cat(c_list): c_concat = [] c_adm = [] crossattn_max_len = 0 + + temp = {} for x in c_list: - if 'c_crossattn' in x: - c = x['c_crossattn'] - if crossattn_max_len == 0: - crossattn_max_len = c.shape[1] - else: - crossattn_max_len = lcm(crossattn_max_len, c.shape[1]) - c_crossattn.append(c) - if 'c_concat' in x: - c_concat.append(x['c_concat']) - if 'c_adm' in x: - c_adm.append(x['c_adm']) + for k in x: + cur = temp.get(k, []) + cur.append(x[k]) + temp[k] = cur + out = {} - c_crossattn_out = [] - for c in c_crossattn: - if c.shape[1] < crossattn_max_len: - c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result - c_crossattn_out.append(c) - - if len(c_crossattn_out) > 0: - out['c_crossattn'] = torch.cat(c_crossattn_out) - if len(c_concat) > 0: - out['c_concat'] = torch.cat(c_concat) - if len(c_adm) > 0: - out['c_adm'] = torch.cat(c_adm) + for k in temp: + conds = temp[k] + out[k] = conds[0].concat(conds[1:]) + return out - def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options): + def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): out_cond = torch.zeros_like(x_in) - out_count = torch.ones_like(x_in)/100000.0 + out_count = torch.ones_like(x_in) * 1e-37 out_uncond = torch.zeros_like(x_in) - out_uncond_count = torch.ones_like(x_in)/100000.0 + out_uncond_count = torch.ones_like(x_in) * 1e-37 COND = 0 UNCOND = 1 to_run = [] for x in cond: - p = get_area_and_mult(x, x_in, cond_concat_in, timestep) + p = get_area_and_mult(x, x_in, timestep) if p is None: continue to_run += [(p, COND)] if uncond is not None: for x in uncond: - p = get_area_and_mult(x, x_in, cond_concat_in, timestep) + p = get_area_and_mult(x, x_in, timestep) if p is None: continue @@ -209,9 +170,11 @@ def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_tot to_batch_temp.reverse() to_batch = to_batch_temp[:1] + free_memory = model_management.get_free_memory(x_in.device) for i in range(1, len(to_batch_temp) + 1): batch_amount = to_batch_temp[:len(to_batch_temp)//i] - if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area): + input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:] + if model.memory_required(input_shape) < free_memory: to_batch = batch_amount break @@ -257,12 +220,14 @@ def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_tot transformer_options["patches"] = patches transformer_options["cond_or_uncond"] = cond_or_uncond[:] + transformer_options["sigmas"] = timestep + c['transformer_options'] = transformer_options if 'model_function_wrapper' in model_options: - output = model_options['model_function_wrapper'](model_function, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks) + output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks) else: - output = model_function(input_x, timestep_, **c).chunk(batch_chunks) + output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks) del input_x for o in range(batch_chunks): @@ -278,49 +243,38 @@ def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_tot del out_count out_uncond /= out_uncond_count del out_uncond_count - return out_cond, out_uncond - max_total_area = model_management.maximum_batch_area() if math.isclose(cond_scale, 1.0): uncond = None - cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options) + cond, uncond = calc_cond_uncond_batch(model, cond, uncond, x, timestep, model_options) if "sampler_cfg_function" in model_options: - args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep} - return model_options["sampler_cfg_function"](args) + args = {"cond": x - cond, "uncond": x - uncond, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep} + return x - model_options["sampler_cfg_function"](args) else: return uncond + (cond - uncond) * cond_scale - -class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser): - def __init__(self, model, quantize=False, device='cpu'): - super().__init__(model, model.alphas_cumprod, quantize=quantize) - - def get_v(self, x, t, cond, **kwargs): - return self.inner_model.apply_model(x, t, cond, **kwargs) - - class CFGNoisePredictor(torch.nn.Module): def __init__(self, model): super().__init__() self.inner_model = model - self.alphas_cumprod = model.alphas_cumprod - def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}, seed=None): - out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options, seed=seed) + def apply_model(self, x, timestep, cond, uncond, cond_scale, model_options={}, seed=None): + out = sampling_function(self.inner_model, x, timestep, uncond, cond, cond_scale, model_options=model_options, seed=seed) return out - + def forward(self, *args, **kwargs): + return self.apply_model(*args, **kwargs) class KSamplerX0Inpaint(torch.nn.Module): def __init__(self, model): super().__init__() self.inner_model = model - def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}, seed=None): + def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None): if denoise_mask is not None: latent_mask = 1. - denoise_mask x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask - out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options, seed=seed) + out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed) if denoise_mask is not None: out *= denoise_mask @@ -329,44 +283,43 @@ def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat= return out def simple_scheduler(model, steps): + s = model.model_sampling sigs = [] - ss = len(model.sigmas) / steps + ss = len(s.sigmas) / steps for x in range(steps): - sigs += [float(model.sigmas[-(1 + int(x * ss))])] + sigs += [float(s.sigmas[-(1 + int(x * ss))])] sigs += [0.0] return torch.FloatTensor(sigs) def ddim_scheduler(model, steps): + s = model.model_sampling sigs = [] - ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False) - for x in range(len(ddim_timesteps) - 1, -1, -1): - ts = ddim_timesteps[x] - if ts > 999: - ts = 999 - sigs.append(model.t_to_sigma(torch.tensor(ts))) + ss = len(s.sigmas) // steps + x = 1 + while x < len(s.sigmas): + sigs += [float(s.sigmas[x])] + x += ss + sigs = sigs[::-1] sigs += [0.0] return torch.FloatTensor(sigs) -def sgm_scheduler(model, steps): +def normal_scheduler(model, steps, sgm=False, floor=False): + s = model.model_sampling + start = s.timestep(s.sigma_max) + end = s.timestep(s.sigma_min) + + if sgm: + timesteps = torch.linspace(start, end, steps + 1)[:-1] + else: + timesteps = torch.linspace(start, end, steps) + sigs = [] - timesteps = torch.linspace(model.inner_model.inner_model.num_timesteps - 1, 0, steps + 1)[:-1].type(torch.int) for x in range(len(timesteps)): ts = timesteps[x] - if ts > 999: - ts = 999 - sigs.append(model.t_to_sigma(torch.tensor(ts))) + sigs.append(s.sigma(ts)) sigs += [0.0] return torch.FloatTensor(sigs) -def blank_inpaint_image_like(latent_image): - blank_image = torch.ones_like(latent_image) - # these are the values for "zero" in pixel space translated to latent space - blank_image[:,0] *= 0.8223 - blank_image[:,1] *= -0.6876 - blank_image[:,2] *= 0.6364 - blank_image[:,3] *= 0.1380 - return blank_image - def get_mask_aabb(masks): if masks.numel() == 0: return torch.zeros((0, 4), device=masks.device, dtype=torch.int) @@ -395,19 +348,19 @@ def resolve_areas_and_cond_masks(conditions, h, w, device): # While we're doing this, we can also resolve the mask device and scaling for performance reasons for i in range(len(conditions)): c = conditions[i] - if 'area' in c[1]: - area = c[1]['area'] + if 'area' in c: + area = c['area'] if area[0] == "percentage": - modified = c[1].copy() + modified = c.copy() area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w)) modified['area'] = area - c = [c[0], modified] + c = modified conditions[i] = c - if 'mask' in c[1]: - mask = c[1]['mask'] + if 'mask' in c: + mask = c['mask'] mask = mask.to(device=device) - modified = c[1].copy() + modified = c.copy() if len(mask.shape) == 2: mask = mask.unsqueeze(0) if mask.shape[1] != h or mask.shape[2] != w: @@ -428,66 +381,70 @@ def resolve_areas_and_cond_masks(conditions, h, w, device): modified['area'] = area modified['mask'] = mask - conditions[i] = [c[0], modified] + conditions[i] = modified def create_cond_with_same_area_if_none(conds, c): - if 'area' not in c[1]: + if 'area' not in c: return - c_area = c[1]['area'] + c_area = c['area'] smallest = None for x in conds: - if 'area' in x[1]: - a = x[1]['area'] + if 'area' in x: + a = x['area'] if c_area[2] >= a[2] and c_area[3] >= a[3]: if a[0] + a[2] >= c_area[0] + c_area[2]: if a[1] + a[3] >= c_area[1] + c_area[3]: if smallest is None: smallest = x - elif 'area' not in smallest[1]: + elif 'area' not in smallest: smallest = x else: - if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]: + if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]: smallest = x else: if smallest is None: smallest = x if smallest is None: return - if 'area' in smallest[1]: - if smallest[1]['area'] == c_area: + if 'area' in smallest: + if smallest['area'] == c_area: return - n = c[1].copy() - conds += [[smallest[0], n]] + + out = c.copy() + out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied? + conds += [out] def calculate_start_end_timesteps(model, conds): + s = model.model_sampling for t in range(len(conds)): x = conds[t] timestep_start = None timestep_end = None - if 'start_percent' in x[1]: - timestep_start = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['start_percent'] * 999.0))) - if 'end_percent' in x[1]: - timestep_end = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['end_percent'] * 999.0))) + if 'start_percent' in x: + timestep_start = s.percent_to_sigma(x['start_percent']) + if 'end_percent' in x: + timestep_end = s.percent_to_sigma(x['end_percent']) if (timestep_start is not None) or (timestep_end is not None): - n = x[1].copy() + n = x.copy() if (timestep_start is not None): n['timestep_start'] = timestep_start if (timestep_end is not None): n['timestep_end'] = timestep_end - conds[t] = [x[0], n] + conds[t] = n def pre_run_control(model, conds): + s = model.model_sampling for t in range(len(conds)): x = conds[t] timestep_start = None timestep_end = None - percent_to_timestep_function = lambda a: model.sigma_to_t(model.t_to_sigma(torch.tensor(a) * 999.0)) - if 'control' in x[1]: - x[1]['control'].pre_run(model.inner_model.inner_model, percent_to_timestep_function) + percent_to_timestep_function = lambda a: s.percent_to_sigma(a) + if 'control' in x: + x['control'].pre_run(model, percent_to_timestep_function) def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func): cond_cnets = [] @@ -496,16 +453,16 @@ def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func): uncond_other = [] for t in range(len(conds)): x = conds[t] - if 'area' not in x[1]: - if name in x[1] and x[1][name] is not None: - cond_cnets.append(x[1][name]) + if 'area' not in x: + if name in x and x[name] is not None: + cond_cnets.append(x[name]) else: cond_other.append((x, t)) for t in range(len(uncond)): x = uncond[t] - if 'area' not in x[1]: - if name in x[1] and x[1][name] is not None: - uncond_cnets.append(x[1][name]) + if 'area' not in x: + if name in x and x[name] is not None: + uncond_cnets.append(x[name]) else: uncond_other.append((x, t)) @@ -515,50 +472,188 @@ def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func): for x in range(len(cond_cnets)): temp = uncond_other[x % len(uncond_other)] o = temp[0] - if name in o[1] and o[1][name] is not None: - n = o[1].copy() + if name in o and o[name] is not None: + n = o.copy() n[name] = uncond_fill_func(cond_cnets, x) - uncond += [[o[0], n]] + uncond += [n] else: - n = o[1].copy() + n = o.copy() n[name] = uncond_fill_func(cond_cnets, x) - uncond[temp[1]] = [o[0], n] + uncond[temp[1]] = n -def encode_adm(model, conds, batch_size, width, height, device, prompt_type): +def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs): for t in range(len(conds)): x = conds[t] - adm_out = None - if 'adm' in x[1]: - adm_out = x[1]["adm"] + params = x.copy() + params["device"] = device + params["noise"] = noise + params["width"] = params.get("width", noise.shape[3] * 8) + params["height"] = params.get("height", noise.shape[2] * 8) + params["prompt_type"] = params.get("prompt_type", prompt_type) + for k in kwargs: + if k not in params: + params[k] = kwargs[k] + + out = model_function(**params) + x = x.copy() + model_conds = x['model_conds'].copy() + for k in out: + model_conds[k] = out[k] + x['model_conds'] = model_conds + conds[t] = x + return conds + +class Sampler: + def sample(self): + pass + + def max_denoise(self, model_wrap, sigmas): + max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max) + sigma = float(sigmas[0]) + return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma + +class UNIPC(Sampler): + def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False): + return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar) + +class UNIPCBH2(Sampler): + def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False): + return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar) + +KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral", + "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", + "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"] + +class KSAMPLER(Sampler): + def __init__(self, sampler_function, extra_options={}, inpaint_options={}): + self.sampler_function = sampler_function + self.extra_options = extra_options + self.inpaint_options = inpaint_options + + def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False): + extra_args["denoise_mask"] = denoise_mask + model_k = KSamplerX0Inpaint(model_wrap) + model_k.latent_image = latent_image + if self.inpaint_options.get("random", False): #TODO: Should this be the default? + generator = torch.manual_seed(extra_args.get("seed", 41) + 1) + model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device) else: - params = x[1].copy() - params["width"] = params.get("width", width * 8) - params["height"] = params.get("height", height * 8) - params["prompt_type"] = params.get("prompt_type", prompt_type) - adm_out = model.encode_adm(device=device, **params) + model_k.noise = noise - if adm_out is not None: - x[1] = x[1].copy() - x[1]["adm_encoded"] = comfy.utils.repeat_to_batch_size(adm_out, batch_size).to(device) + if self.max_denoise(model_wrap, sigmas): + noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0) + else: + noise = noise * sigmas[0] + + k_callback = None + total_steps = len(sigmas) - 1 + if callback is not None: + k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps) + + if latent_image is not None: + noise += latent_image + + samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options) + return samples - return conds +def ksampler(sampler_name, extra_options={}, inpaint_options={}): + if sampler_name == "dpm_fast": + def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable): + sigma_min = sigmas[-1] + if sigma_min == 0: + sigma_min = sigmas[-2] + total_steps = len(sigmas) - 1 + return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable) + sampler_function = dpm_fast_function + elif sampler_name == "dpm_adaptive": + def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable): + sigma_min = sigmas[-1] + if sigma_min == 0: + sigma_min = sigmas[-2] + return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable) + sampler_function = dpm_adaptive_function + else: + sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name)) + + return KSAMPLER(sampler_function, extra_options, inpaint_options) + +def wrap_model(model): + model_denoise = CFGNoisePredictor(model) + return model_denoise + +def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None): + positive = positive[:] + negative = negative[:] + + resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device) + resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device) + + model_wrap = wrap_model(model) + + calculate_start_end_timesteps(model, negative) + calculate_start_end_timesteps(model, positive) + + #make sure each cond area has an opposite one with the same area + for c in positive: + create_cond_with_same_area_if_none(negative, c) + for c in negative: + create_cond_with_same_area_if_none(positive, c) + + pre_run_control(model, negative + positive) + + apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x]) + apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x]) + + if latent_image is not None: + latent_image = model.process_latent_in(latent_image) + + if hasattr(model, 'extra_conds'): + positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask) + negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask) + + extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed} + + samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar) + return model.process_latent_out(samples.to(torch.float32)) + +SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"] +SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"] + +def calculate_sigmas_scheduler(model, scheduler_name, steps): + if scheduler_name == "karras": + sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max)) + elif scheduler_name == "exponential": + sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max)) + elif scheduler_name == "normal": + sigmas = normal_scheduler(model, steps) + elif scheduler_name == "simple": + sigmas = simple_scheduler(model, steps) + elif scheduler_name == "ddim_uniform": + sigmas = ddim_scheduler(model, steps) + elif scheduler_name == "sgm_uniform": + sigmas = normal_scheduler(model, steps, sgm=True) + else: + print("error invalid scheduler", self.scheduler) + return sigmas + +def sampler_object(name): + if name == "uni_pc": + sampler = UNIPC() + elif name == "uni_pc_bh2": + sampler = UNIPCBH2() + elif name == "ddim": + sampler = ksampler("euler", inpaint_options={"random": True}) + else: + sampler = ksampler(name) + return sampler class KSampler: - SCHEDULERS = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"] - SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral", - "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", - "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "ddim", "uni_pc", "uni_pc_bh2"] + SCHEDULERS = SCHEDULER_NAMES + SAMPLERS = SAMPLER_NAMES def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}): self.model = model - self.model_denoise = CFGNoisePredictor(self.model) - if self.model.model_type == model_base.ModelType.V_PREDICTION: - self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True) - else: - self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True) - - self.model_k = KSamplerX0Inpaint(self.model_wrap) self.device = device if scheduler not in self.SCHEDULERS: scheduler = self.SCHEDULERS[0] @@ -566,8 +661,6 @@ def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=N sampler = self.SAMPLERS[0] self.scheduler = scheduler self.sampler = sampler - self.sigma_min=float(self.model_wrap.sigma_min) - self.sigma_max=float(self.model_wrap.sigma_max) self.set_steps(steps, denoise) self.denoise = denoise self.model_options = model_options @@ -576,24 +669,11 @@ def calculate_sigmas(self, steps): sigmas = None discard_penultimate_sigma = False - if self.sampler in ['dpm_2', 'dpm_2_ancestral']: + if self.sampler in ['dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2']: steps += 1 discard_penultimate_sigma = True - if self.scheduler == "karras": - sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max) - elif self.scheduler == "exponential": - sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max) - elif self.scheduler == "normal": - sigmas = self.model_wrap.get_sigmas(steps) - elif self.scheduler == "simple": - sigmas = simple_scheduler(self.model_wrap, steps) - elif self.scheduler == "ddim_uniform": - sigmas = ddim_scheduler(self.model_wrap, steps) - elif self.scheduler == "sgm_uniform": - sigmas = sgm_scheduler(self.model_wrap, steps) - else: - print("error invalid scheduler", self.scheduler) + sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps) if discard_penultimate_sigma: sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) @@ -611,10 +691,8 @@ def set_steps(self, steps, denoise=None): def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): if sigmas is None: sigmas = self.sigmas - sigma_min = self.sigma_min if last_step is not None and last_step < (len(sigmas) - 1): - sigma_min = sigmas[last_step] sigmas = sigmas[:last_step + 1] if force_full_denoise: sigmas[-1] = 0 @@ -628,117 +706,6 @@ def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=N else: return torch.zeros_like(noise) - positive = positive[:] - negative = negative[:] - - resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], self.device) - resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], self.device) - - calculate_start_end_timesteps(self.model_wrap, negative) - calculate_start_end_timesteps(self.model_wrap, positive) - - #make sure each cond area has an opposite one with the same area - for c in positive: - create_cond_with_same_area_if_none(negative, c) - for c in negative: - create_cond_with_same_area_if_none(positive, c) - - pre_run_control(self.model_wrap, negative + positive) - - apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x]) - apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x]) - - if self.model.is_adm(): - positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "positive") - negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "negative") - - if latent_image is not None: - latent_image = self.model.process_latent_in(latent_image) - - extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options, "seed":seed} - - cond_concat = None - if hasattr(self.model, 'concat_keys'): #inpaint - cond_concat = [] - for ck in self.model.concat_keys: - if denoise_mask is not None: - if ck == "mask": - cond_concat.append(denoise_mask[:,:1]) - elif ck == "masked_image": - cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space - else: - if ck == "mask": - cond_concat.append(torch.ones_like(noise)[:,:1]) - elif ck == "masked_image": - cond_concat.append(blank_inpaint_image_like(noise)) - extra_args["cond_concat"] = cond_concat - - if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0): - max_denoise = False - else: - max_denoise = True - - - if self.sampler == "uni_pc": - samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar) - elif self.sampler == "uni_pc_bh2": - samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar) - elif self.sampler == "ddim": - timesteps = [] - for s in range(sigmas.shape[0]): - timesteps.insert(0, self.model_wrap.sigma_to_discrete_timestep(sigmas[s])) - noise_mask = None - if denoise_mask is not None: - noise_mask = 1.0 - denoise_mask - - ddim_callback = None - if callback is not None: - total_steps = len(timesteps) - 1 - ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps) - - sampler = DDIMSampler(self.model, device=self.device) - sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False) - z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise) - samples, _ = sampler.sample_custom(ddim_timesteps=timesteps, - conditioning=positive, - batch_size=noise.shape[0], - shape=noise.shape[1:], - verbose=False, - unconditional_guidance_scale=cfg, - unconditional_conditioning=negative, - eta=0.0, - x_T=z_enc, - x0=latent_image, - img_callback=ddim_callback, - denoise_function=self.model_wrap.predict_eps_discrete_timestep, - extra_args=extra_args, - mask=noise_mask, - to_zero=sigmas[-1]==0, - end_step=sigmas.shape[0] - 1, - disable_pbar=disable_pbar) - - else: - extra_args["denoise_mask"] = denoise_mask - self.model_k.latent_image = latent_image - self.model_k.noise = noise - - if max_denoise: - noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0) - else: - noise = noise * sigmas[0] - - k_callback = None - total_steps = len(sigmas) - 1 - if callback is not None: - k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps) - - if latent_image is not None: - noise += latent_image - if self.sampler == "dpm_fast": - samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar) - elif self.sampler == "dpm_adaptive": - samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar) - else: - samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar) + sampler = sampler_object(self.sampler) - return self.model.process_latent_out(samples.to(torch.float32)) + return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) diff --git a/comfy/sd.py b/comfy/sd.py index 9bdb2ad64ff..f4f84d0a032 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -4,7 +4,7 @@ from comfy import model_management from .ldm.util import instantiate_from_config -from .ldm.models.autoencoder import AutoencoderKL +from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine import yaml import comfy.utils @@ -23,6 +23,7 @@ import comfy.lora import comfy.t2i_adapter.adapter import comfy.supported_models_base +import comfy.taesd.taesd def load_model_weights(model, sd): m, u = model.load_state_dict(sd, strict=False) @@ -55,13 +56,26 @@ def load_clip_weights(model, sd): def load_lora_for_models(model, clip, lora, strength_model, strength_clip): - key_map = comfy.lora.model_lora_keys_unet(model.model) - key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map) + key_map = {} + if model is not None: + key_map = comfy.lora.model_lora_keys_unet(model.model, key_map) + if clip is not None: + key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map) + loaded = comfy.lora.load_lora(lora, key_map) - new_modelpatcher = model.clone() - k = new_modelpatcher.add_patches(loaded, strength_model) - new_clip = clip.clone() - k1 = new_clip.add_patches(loaded, strength_clip) + if model is not None: + new_modelpatcher = model.clone() + k = new_modelpatcher.add_patches(loaded, strength_model) + else: + k = () + new_modelpatcher = None + + if clip is not None: + new_clip = clip.clone() + k1 = new_clip.add_patches(loaded, strength_clip) + else: + k1 = () + new_clip = None k = set(k) k1 = set(k1) for x in loaded: @@ -82,10 +96,7 @@ def __init__(self, target=None, embedding_directory=None, no_init=False): load_device = model_management.text_encoder_device() offload_device = model_management.text_encoder_offload_device() params['device'] = offload_device - if model_management.should_use_fp16(load_device, prioritize_performance=False): - params['dtype'] = torch.float16 - else: - params['dtype'] = torch.float32 + params['dtype'] = model_management.text_encoder_dtype(load_device) self.cond_stage_model = clip(**(params)) @@ -140,27 +151,48 @@ def get_key_patches(self): return self.patcher.get_key_patches() class VAE: - def __init__(self, ckpt_path=None, device=None, config=None): + def __init__(self, sd=None, device=None, config=None): + if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format + sd = diffusers_convert.convert_vae_state_dict(sd) + + self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower) + self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype) + if config is None: - #default SD1.x/SD2.x VAE parameters - ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} - self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss") + if "decoder.mid.block_1.mix_factor" in sd: + encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} + decoder_config = encoder_config.copy() + decoder_config["video_kernel_size"] = [3, 1, 1] + decoder_config["alpha"] = 0.0 + self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"}, + encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': encoder_config}, + decoder_config={'target': "comfy.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config}) + elif "taesd_decoder.1.weight" in sd: + self.first_stage_model = comfy.taesd.taesd.TAESD() + else: + #default SD1.x/SD2.x VAE parameters + ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} + self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4) else: self.first_stage_model = AutoencoderKL(**(config['params'])) self.first_stage_model = self.first_stage_model.eval() - if ckpt_path is not None: - sd = comfy.utils.load_torch_file(ckpt_path) - if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format - sd = diffusers_convert.convert_vae_state_dict(sd) - self.first_stage_model.load_state_dict(sd, strict=False) + + m, u = self.first_stage_model.load_state_dict(sd, strict=False) + if len(m) > 0: + print("Missing VAE keys", m) + + if len(u) > 0: + print("Leftover VAE keys", u) if device is None: device = model_management.vae_device() self.device = device - self.offload_device = model_management.vae_offload_device() + offload_device = model_management.vae_offload_device() self.vae_dtype = model_management.vae_dtype() self.first_stage_model.to(self.vae_dtype) + self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device) + def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16): steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap) steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap) @@ -181,7 +213,7 @@ def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap) pbar = comfy.utils.ProgressBar(steps) - encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.vae_dtype).to(self.device) - 1.).sample().float() + encode_fn = lambda a: self.first_stage_model.encode((2. * a - 1.).to(self.vae_dtype).to(self.device)).float() samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar) samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar) samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar) @@ -189,10 +221,9 @@ def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): return samples def decode(self, samples_in): - self.first_stage_model = self.first_stage_model.to(self.device) try: - memory_used = (2562 * samples_in.shape[2] * samples_in.shape[3] * 64) * 1.7 - model_management.free_memory(memory_used, self.device) + memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype) + model_management.load_models_gpu([self.patcher], memory_required=memory_used) free_memory = model_management.get_free_memory(self.device) batch_number = int(free_memory / memory_used) batch_number = max(1, batch_number) @@ -200,47 +231,42 @@ def decode(self, samples_in): pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu") for x in range(0, samples_in.shape[0], batch_number): samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device) - pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu().float() + pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples).cpu().float() + 1.0) / 2.0, min=0.0, max=1.0) except model_management.OOM_EXCEPTION as e: print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.") pixel_samples = self.decode_tiled_(samples_in) - self.first_stage_model = self.first_stage_model.to(self.offload_device) pixel_samples = pixel_samples.cpu().movedim(1,-1) return pixel_samples def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16): - self.first_stage_model = self.first_stage_model.to(self.device) + model_management.load_model_gpu(self.patcher) output = self.decode_tiled_(samples, tile_x, tile_y, overlap) - self.first_stage_model = self.first_stage_model.to(self.offload_device) return output.movedim(1,-1) def encode(self, pixel_samples): - self.first_stage_model = self.first_stage_model.to(self.device) pixel_samples = pixel_samples.movedim(-1,1) try: - memory_used = (2078 * pixel_samples.shape[2] * pixel_samples.shape[3]) * 1.7 #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change. - model_management.free_memory(memory_used, self.device) + memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) + model_management.load_models_gpu([self.patcher], memory_required=memory_used) free_memory = model_management.get_free_memory(self.device) batch_number = int(free_memory / memory_used) batch_number = max(1, batch_number) samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu") for x in range(0, pixel_samples.shape[0], batch_number): pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device) - samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu().float() + samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).cpu().float() except model_management.OOM_EXCEPTION as e: print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.") samples = self.encode_tiled_(pixel_samples) - self.first_stage_model = self.first_stage_model.to(self.offload_device) return samples def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): - self.first_stage_model = self.first_stage_model.to(self.device) + model_management.load_model_gpu(self.patcher) pixel_samples = pixel_samples.movedim(-1,1) samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap) - self.first_stage_model = self.first_stage_model.to(self.offload_device) return samples def get_sd(self): @@ -325,7 +351,9 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl if "params" in model_config_params["unet_config"]: unet_config = model_config_params["unet_config"]["params"] if "use_fp16" in unet_config: - fp16 = unet_config["use_fp16"] + fp16 = unet_config.pop("use_fp16") + if fp16: + unet_config["dtype"] = torch.float16 noise_aug_config = None if "noise_aug_config" in model_config_params: @@ -353,7 +381,7 @@ class EmptyClass: from . import latent_formats model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor) - model_config.unet_config = unet_config + model_config.unet_config = model_detection.convert_config(unet_config) if config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"): model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], model_type=model_type) @@ -371,10 +399,8 @@ class EmptyClass: model.load_model_weights(state_dict, "model.diffusion_model.") if output_vae: - w = WeightsLoader() - vae = VAE(config=vae_config) - w.first_stage_model = vae.first_stage_model - load_model_weights(w, state_dict) + vae_sd = comfy.utils.state_dict_prefix_replace(state_dict, {"first_stage_model.": ""}, filter_keys=True) + vae = VAE(sd=vae_sd, config=vae_config) if output_clip: w = WeightsLoader() @@ -383,31 +409,34 @@ class EmptyClass: if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"): clip_target.clip = sd2_clip.SD2ClipModel clip_target.tokenizer = sd2_clip.SD2Tokenizer + clip = CLIP(clip_target, embedding_directory=embedding_directory) + w.cond_stage_model = clip.cond_stage_model.clip_h elif clip_config["target"].endswith("FrozenCLIPEmbedder"): clip_target.clip = sd1_clip.SD1ClipModel clip_target.tokenizer = sd1_clip.SD1Tokenizer - clip = CLIP(clip_target, embedding_directory=embedding_directory) - w.cond_stage_model = clip.cond_stage_model + clip = CLIP(clip_target, embedding_directory=embedding_directory) + w.cond_stage_model = clip.cond_stage_model.clip_l load_clip_weights(w, state_dict) return (comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae) -def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None): +def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True): sd = comfy.utils.load_torch_file(ckpt_path) sd_keys = sd.keys() clip = None clipvision = None vae = None model = None + model_patcher = None clip_target = None parameters = comfy.utils.calculate_parameters(sd, "model.diffusion_model.") - fp16 = model_management.should_use_fp16(model_params=parameters) + unet_dtype = model_management.unet_dtype(model_params=parameters) class WeightsLoader(torch.nn.Module): pass - model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", fp16) + model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", unet_dtype) if model_config is None: raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path)) @@ -415,55 +444,51 @@ class WeightsLoader(torch.nn.Module): if output_clipvision: clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True) - dtype = torch.float32 - if fp16: - dtype = torch.float16 - - inital_load_device = model_management.unet_inital_load_device(parameters, dtype) - offload_device = model_management.unet_offload_device() - model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device) - model.load_model_weights(sd, "model.diffusion_model.") + if output_model: + inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype) + offload_device = model_management.unet_offload_device() + model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device) + model.load_model_weights(sd, "model.diffusion_model.") if output_vae: - vae = VAE() - w = WeightsLoader() - w.first_stage_model = vae.first_stage_model - load_model_weights(w, sd) + vae_sd = comfy.utils.state_dict_prefix_replace(sd, {"first_stage_model.": ""}, filter_keys=True) + vae_sd = model_config.process_vae_state_dict(vae_sd) + vae = VAE(sd=vae_sd) if output_clip: w = WeightsLoader() clip_target = model_config.clip_target() - clip = CLIP(clip_target, embedding_directory=embedding_directory) - w.cond_stage_model = clip.cond_stage_model - sd = model_config.process_clip_state_dict(sd) - load_model_weights(w, sd) + if clip_target is not None: + clip = CLIP(clip_target, embedding_directory=embedding_directory) + w.cond_stage_model = clip.cond_stage_model + sd = model_config.process_clip_state_dict(sd) + load_model_weights(w, sd) left_over = sd.keys() if len(left_over) > 0: print("left over keys:", left_over) - model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device(), current_device=inital_load_device) - if inital_load_device != torch.device("cpu"): - print("loaded straight to GPU") - model_management.load_model_gpu(model_patcher) + if output_model: + model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device(), current_device=inital_load_device) + if inital_load_device != torch.device("cpu"): + print("loaded straight to GPU") + model_management.load_model_gpu(model_patcher) return (model_patcher, clip, vae, clipvision) -def load_unet(unet_path): #load unet in diffusers format - sd = comfy.utils.load_torch_file(unet_path) +def load_unet_state_dict(sd): #load unet in diffusers format parameters = comfy.utils.calculate_parameters(sd) - fp16 = model_management.should_use_fp16(model_params=parameters) + unet_dtype = model_management.unet_dtype(model_params=parameters) if "input_blocks.0.0.weight" in sd: #ldm - model_config = model_detection.model_config_from_unet(sd, "", fp16) + model_config = model_detection.model_config_from_unet(sd, "", unet_dtype) if model_config is None: - raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path)) + return None new_sd = sd else: #diffusers - model_config = model_detection.model_config_from_diffusers_unet(sd, fp16) + model_config = model_detection.model_config_from_diffusers_unet(sd, unet_dtype) if model_config is None: - print("ERROR UNSUPPORTED UNET", unet_path) return None diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config) @@ -478,8 +503,19 @@ def load_unet(unet_path): #load unet in diffusers format model = model_config.get_model(new_sd, "") model = model.to(offload_device) model.load_model_weights(new_sd, "") + left_over = sd.keys() + if len(left_over) > 0: + print("left over keys in unet:", left_over) return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device) +def load_unet(unet_path): + sd = comfy.utils.load_torch_file(unet_path) + model = load_unet_state_dict(sd) + if model is None: + print("ERROR UNSUPPORTED UNET", unet_path) + raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path)) + return model + def save_checkpoint(output_path, model, clip, vae, metadata=None): model_management.load_models_gpu([model, clip.load_model()]) sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd()) diff --git a/comfy/sd1_clip.py b/comfy/sd1_clip.py index 9978b6c35c6..58acb97fce7 100644 --- a/comfy/sd1_clip.py +++ b/comfy/sd1_clip.py @@ -8,34 +8,56 @@ from . import model_management import contextlib +def gen_empty_tokens(special_tokens, length): + start_token = special_tokens.get("start", None) + end_token = special_tokens.get("end", None) + pad_token = special_tokens.get("pad") + output = [] + if start_token is not None: + output.append(start_token) + if end_token is not None: + output.append(end_token) + output += [pad_token] * (length - len(output)) + return output + class ClipTokenWeightEncoder: def encode_token_weights(self, token_weight_pairs): - to_encode = list(self.empty_tokens) + to_encode = list() + max_token_len = 0 + has_weights = False for x in token_weight_pairs: tokens = list(map(lambda a: a[0], x)) + max_token_len = max(len(tokens), max_token_len) + has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x)) to_encode.append(tokens) + sections = len(to_encode) + if has_weights or sections == 0: + to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len)) + out, pooled = self.encode(to_encode) - z_empty = out[0:1] - if pooled.shape[0] > 1: - first_pooled = pooled[1:2] + if pooled is not None: + first_pooled = pooled[0:1].cpu() else: - first_pooled = pooled[0:1] + first_pooled = pooled output = [] - for k in range(1, out.shape[0]): + for k in range(0, sections): z = out[k:k+1] - for i in range(len(z)): - for j in range(len(z[i])): - weight = token_weight_pairs[k - 1][j][1] - z[i][j] = (z[i][j] - z_empty[0][j]) * weight + z_empty[0][j] + if has_weights: + z_empty = out[-1] + for i in range(len(z)): + for j in range(len(z[i])): + weight = token_weight_pairs[k][j][1] + if weight != 1.0: + z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j] output.append(z) if (len(output) == 0): - return z_empty.cpu(), first_pooled.cpu() - return torch.cat(output, dim=-2).cpu(), first_pooled.cpu() + return out[-1:].cpu(), first_pooled + return torch.cat(output, dim=-2).cpu(), first_pooled -class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder): +class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): """Uses the CLIP transformer encoder for text (from huggingface)""" LAYERS = [ "last", @@ -43,37 +65,43 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder): "hidden" ] def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77, - freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None, dtype=None): # clip-vit-base-patch32 + freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None, dtype=None, + special_tokens={"start": 49406, "end": 49407, "pad": 49407},layer_norm_hidden_state=True, config_class=CLIPTextConfig, + model_class=CLIPTextModel, inner_name="text_model"): # clip-vit-base-patch32 super().__init__() assert layer in self.LAYERS self.num_layers = 12 if textmodel_path is not None: - self.transformer = CLIPTextModel.from_pretrained(textmodel_path) + self.transformer = model_class.from_pretrained(textmodel_path) else: if textmodel_json_config is None: textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json") - config = CLIPTextConfig.from_json_file(textmodel_json_config) + config = config_class.from_json_file(textmodel_json_config) self.num_layers = config.num_hidden_layers with comfy.ops.use_comfy_ops(device, dtype): with modeling_utils.no_init_weights(): - self.transformer = CLIPTextModel(config) + self.transformer = model_class(config) + self.inner_name = inner_name if dtype is not None: self.transformer.to(dtype) - self.transformer.text_model.embeddings.token_embedding.to(torch.float32) - self.transformer.text_model.embeddings.position_embedding.to(torch.float32) + inner_model = getattr(self.transformer, self.inner_name) + if hasattr(inner_model, "embeddings"): + inner_model.embeddings.to(torch.float32) + else: + self.transformer.set_input_embeddings(self.transformer.get_input_embeddings().to(torch.float32)) self.max_length = max_length if freeze: self.freeze() self.layer = layer self.layer_idx = None - self.empty_tokens = [[49406] + [49407] * 76] + self.special_tokens = special_tokens self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1])) self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055)) self.enable_attention_masks = False - self.layer_norm_hidden_state = True + self.layer_norm_hidden_state = layer_norm_hidden_state if layer == "hidden": assert layer_idx is not None assert abs(layer_idx) <= self.num_layers @@ -117,7 +145,7 @@ def set_up_textual_embeddings(self, tokens, current_embeds): else: print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1]) while len(tokens_temp) < len(x): - tokens_temp += [self.empty_tokens[0][-1]] + tokens_temp += [self.special_tokens["pad"]] out_tokens += [tokens_temp] n = token_dict_size @@ -142,12 +170,12 @@ def forward(self, tokens): tokens = self.set_up_textual_embeddings(tokens, backup_embeds) tokens = torch.LongTensor(tokens).to(device) - if self.transformer.text_model.final_layer_norm.weight.dtype != torch.float32: + if getattr(self.transformer, self.inner_name).final_layer_norm.weight.dtype != torch.float32: precision_scope = torch.autocast else: - precision_scope = lambda a, b: contextlib.nullcontext(a) + precision_scope = lambda a, dtype: contextlib.nullcontext(a) - with precision_scope(model_management.get_autocast_device(device), torch.float32): + with precision_scope(model_management.get_autocast_device(device), dtype=torch.float32): attention_mask = None if self.enable_attention_masks: attention_mask = torch.zeros_like(tokens) @@ -168,12 +196,16 @@ def forward(self, tokens): else: z = outputs.hidden_states[self.layer_idx] if self.layer_norm_hidden_state: - z = self.transformer.text_model.final_layer_norm(z) + z = getattr(self.transformer, self.inner_name).final_layer_norm(z) - pooled_output = outputs.pooler_output - if self.text_projection is not None: + if hasattr(outputs, "pooler_output"): + pooled_output = outputs.pooler_output.float() + else: + pooled_output = None + + if self.text_projection is not None and pooled_output is not None: pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float() - return z.float(), pooled_output.float() + return z.float(), pooled_output def encode(self, tokens): return self(tokens) @@ -278,7 +310,13 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No valid_file = None for embed_dir in embedding_directory: - embed_path = os.path.join(embed_dir, embedding_name) + embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name)) + embed_dir = os.path.abspath(embed_dir) + try: + if os.path.commonpath((embed_dir, embed_path)) != embed_dir: + continue + except: + continue if not os.path.isfile(embed_path): extensions = ['.safetensors', '.pt', '.bin'] for x in extensions: @@ -336,18 +374,25 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No embed_out = next(iter(values)) return embed_out -class SD1Tokenizer: - def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l'): +class SDTokenizer: + def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True): if tokenizer_path is None: tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer") - self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path) + self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path) self.max_length = max_length - self.max_tokens_per_section = self.max_length - 2 empty = self.tokenizer('')["input_ids"] - self.start_token = empty[0] - self.end_token = empty[1] + if has_start_token: + self.tokens_start = 1 + self.start_token = empty[0] + self.end_token = empty[1] + else: + self.tokens_start = 0 + self.start_token = None + self.end_token = empty[0] self.pad_with_end = pad_with_end + self.pad_to_max_length = pad_to_max_length + vocab = self.tokenizer.get_vocab() self.inv_vocab = {v: k for k, v in vocab.items()} self.embedding_directory = embedding_directory @@ -408,11 +453,13 @@ def tokenize_with_weights(self, text:str, return_word_ids=False): else: continue #parse word - tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][1:-1]]) + tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]]) #reshape token array to CLIP input size batched_tokens = [] - batch = [(self.start_token, 1.0, 0)] + batch = [] + if self.start_token is not None: + batch.append((self.start_token, 1.0, 0)) batched_tokens.append(batch) for i, t_group in enumerate(tokens): #determine if we're going to try and keep the tokens in a single batch @@ -429,16 +476,21 @@ def tokenize_with_weights(self, text:str, return_word_ids=False): #add end token and pad else: batch.append((self.end_token, 1.0, 0)) - batch.extend([(pad_token, 1.0, 0)] * (remaining_length)) + if self.pad_to_max_length: + batch.extend([(pad_token, 1.0, 0)] * (remaining_length)) #start new batch - batch = [(self.start_token, 1.0, 0)] + batch = [] + if self.start_token is not None: + batch.append((self.start_token, 1.0, 0)) batched_tokens.append(batch) else: batch.extend([(t,w,i+1) for t,w in t_group]) t_group = [] #fill last batch - batch.extend([(self.end_token, 1.0, 0)] + [(pad_token, 1.0, 0)] * (self.max_length - len(batch) - 1)) + batch.append((self.end_token, 1.0, 0)) + if self.pad_to_max_length: + batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch))) if not return_word_ids: batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens] @@ -448,3 +500,40 @@ def tokenize_with_weights(self, text:str, return_word_ids=False): def untokenize(self, token_weight_pair): return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair)) + + +class SD1Tokenizer: + def __init__(self, embedding_directory=None, clip_name="l", tokenizer=SDTokenizer): + self.clip_name = clip_name + self.clip = "clip_{}".format(self.clip_name) + setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory)) + + def tokenize_with_weights(self, text:str, return_word_ids=False): + out = {} + out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids) + return out + + def untokenize(self, token_weight_pair): + return getattr(self, self.clip).untokenize(token_weight_pair) + + +class SD1ClipModel(torch.nn.Module): + def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, **kwargs): + super().__init__() + self.clip_name = clip_name + self.clip = "clip_{}".format(self.clip_name) + setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs)) + + def clip_layer(self, layer_idx): + getattr(self, self.clip).clip_layer(layer_idx) + + def reset_clip_layer(self): + getattr(self, self.clip).reset_clip_layer() + + def encode_token_weights(self, token_weight_pairs): + token_weight_pairs = token_weight_pairs[self.clip_name] + out, pooled = getattr(self, self.clip).encode_token_weights(token_weight_pairs) + return out, pooled + + def load_sd(self, sd): + return getattr(self, self.clip).load_sd(sd) diff --git a/comfy/sd2_clip.py b/comfy/sd2_clip.py index 05e50a0057b..2ee0ca05586 100644 --- a/comfy/sd2_clip.py +++ b/comfy/sd2_clip.py @@ -2,16 +2,23 @@ import torch import os -class SD2ClipModel(sd1_clip.SD1ClipModel): +class SD2ClipHModel(sd1_clip.SDClipModel): def __init__(self, arch="ViT-H-14", device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None, dtype=None): if layer == "penultimate": layer="hidden" layer_idx=23 textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd2_clip_config.json") - super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype) - self.empty_tokens = [[49406] + [49407] + [0] * 75] + super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype, special_tokens={"start": 49406, "end": 49407, "pad": 0}) -class SD2Tokenizer(sd1_clip.SD1Tokenizer): +class SD2ClipHTokenizer(sd1_clip.SDTokenizer): def __init__(self, tokenizer_path=None, embedding_directory=None): super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024) + +class SD2Tokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None): + super().__init__(embedding_directory=embedding_directory, clip_name="h", tokenizer=SD2ClipHTokenizer) + +class SD2ClipModel(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None, **kwargs): + super().__init__(device=device, dtype=dtype, clip_name="h", clip_model=SD2ClipHModel, **kwargs) diff --git a/comfy/sdxl_clip.py b/comfy/sdxl_clip.py index e3ac2ee0b4a..673399e2222 100644 --- a/comfy/sdxl_clip.py +++ b/comfy/sdxl_clip.py @@ -2,28 +2,27 @@ import torch import os -class SDXLClipG(sd1_clip.SD1ClipModel): +class SDXLClipG(sd1_clip.SDClipModel): def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None, dtype=None): if layer == "penultimate": layer="hidden" layer_idx=-2 textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json") - super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype) - self.empty_tokens = [[49406] + [49407] + [0] * 75] - self.layer_norm_hidden_state = False + super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype, + special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False) def load_sd(self, sd): return super().load_sd(sd) -class SDXLClipGTokenizer(sd1_clip.SD1Tokenizer): +class SDXLClipGTokenizer(sd1_clip.SDTokenizer): def __init__(self, tokenizer_path=None, embedding_directory=None): super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g') -class SDXLTokenizer(sd1_clip.SD1Tokenizer): +class SDXLTokenizer: def __init__(self, embedding_directory=None): - self.clip_l = sd1_clip.SD1Tokenizer(embedding_directory=embedding_directory) + self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory) self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory) def tokenize_with_weights(self, text:str, return_word_ids=False): @@ -38,8 +37,7 @@ def untokenize(self, token_weight_pair): class SDXLClipModel(torch.nn.Module): def __init__(self, device="cpu", dtype=None): super().__init__() - self.clip_l = sd1_clip.SD1ClipModel(layer="hidden", layer_idx=11, device=device, dtype=dtype) - self.clip_l.layer_norm_hidden_state = False + self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=11, device=device, dtype=dtype, layer_norm_hidden_state=False) self.clip_g = SDXLClipG(device=device, dtype=dtype) def clip_layer(self, layer_idx): @@ -63,21 +61,6 @@ def load_sd(self, sd): else: return self.clip_l.load_sd(sd) -class SDXLRefinerClipModel(torch.nn.Module): +class SDXLRefinerClipModel(sd1_clip.SD1ClipModel): def __init__(self, device="cpu", dtype=None): - super().__init__() - self.clip_g = SDXLClipG(device=device, dtype=dtype) - - def clip_layer(self, layer_idx): - self.clip_g.clip_layer(layer_idx) - - def reset_clip_layer(self): - self.clip_g.reset_clip_layer() - - def encode_token_weights(self, token_weight_pairs): - token_weight_pairs_g = token_weight_pairs["g"] - g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g) - return g_out, g_pooled - - def load_sd(self, sd): - return self.clip_g.load_sd(sd) + super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=SDXLClipG) diff --git a/comfy/supported_models.py b/comfy/supported_models.py index bb8ae2148fd..7e2ac677d51 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -17,6 +17,7 @@ class SD15(supported_models_base.BASE): "model_channels": 320, "use_linear_in_transformer": False, "adm_in_channels": None, + "use_temporal_attention": False, } unet_extra_config = { @@ -38,8 +39,15 @@ def process_clip_state_dict(self, state_dict): if ids.dtype == torch.float32: state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round() + replace_prefix = {} + replace_prefix["cond_stage_model."] = "cond_stage_model.clip_l." + state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix) return state_dict + def process_clip_state_dict_for_saving(self, state_dict): + replace_prefix = {"clip_l.": "cond_stage_model."} + return utils.state_dict_prefix_replace(state_dict, replace_prefix) + def clip_target(self): return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel) @@ -49,6 +57,7 @@ class SD20(supported_models_base.BASE): "model_channels": 320, "use_linear_in_transformer": True, "adm_in_channels": None, + "use_temporal_attention": False, } latent_format = latent_formats.SD15 @@ -62,12 +71,12 @@ def model_type(self, state_dict, prefix=""): return model_base.ModelType.EPS def process_clip_state_dict(self, state_dict): - state_dict = utils.transformers_convert(state_dict, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24) + state_dict = utils.transformers_convert(state_dict, "cond_stage_model.model.", "cond_stage_model.clip_h.transformer.text_model.", 24) return state_dict def process_clip_state_dict_for_saving(self, state_dict): replace_prefix = {} - replace_prefix[""] = "cond_stage_model.model." + replace_prefix["clip_h"] = "cond_stage_model.model" state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix) state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict) return state_dict @@ -81,6 +90,7 @@ class SD21UnclipL(SD20): "model_channels": 320, "use_linear_in_transformer": True, "adm_in_channels": 1536, + "use_temporal_attention": False, } clip_vision_prefix = "embedder.model.visual." @@ -93,6 +103,7 @@ class SD21UnclipH(SD20): "model_channels": 320, "use_linear_in_transformer": True, "adm_in_channels": 2048, + "use_temporal_attention": False, } clip_vision_prefix = "embedder.model.visual." @@ -104,7 +115,8 @@ class SDXLRefiner(supported_models_base.BASE): "use_linear_in_transformer": True, "context_dim": 1280, "adm_in_channels": 2560, - "transformer_depth": [0, 4, 4, 0], + "transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0], + "use_temporal_attention": False, } latent_format = latent_formats.SDXL @@ -139,9 +151,10 @@ class SDXL(supported_models_base.BASE): unet_config = { "model_channels": 320, "use_linear_in_transformer": True, - "transformer_depth": [0, 2, 10], + "transformer_depth": [0, 0, 2, 2, 10, 10], "context_dim": 2048, - "adm_in_channels": 2816 + "adm_in_channels": 2816, + "use_temporal_attention": False, } latent_format = latent_formats.SDXL @@ -165,6 +178,7 @@ def process_clip_state_dict(self, state_dict): replace_prefix["conditioner.embedders.0.transformer.text_model"] = "cond_stage_model.clip_l.transformer.text_model" state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.1.model.", "cond_stage_model.clip_g.transformer.text_model.", 32) keys_to_replace["conditioner.embedders.1.model.text_projection"] = "cond_stage_model.clip_g.text_projection" + keys_to_replace["conditioner.embedders.1.model.text_projection.weight"] = "cond_stage_model.clip_g.text_projection" keys_to_replace["conditioner.embedders.1.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale" state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix) @@ -189,5 +203,40 @@ def process_clip_state_dict_for_saving(self, state_dict): def clip_target(self): return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel) +class SSD1B(SDXL): + unet_config = { + "model_channels": 320, + "use_linear_in_transformer": True, + "transformer_depth": [0, 0, 2, 2, 4, 4], + "context_dim": 2048, + "adm_in_channels": 2816, + "use_temporal_attention": False, + } + +class SVD_img2vid(supported_models_base.BASE): + unet_config = { + "model_channels": 320, + "in_channels": 8, + "use_linear_in_transformer": True, + "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0], + "context_dim": 1024, + "adm_in_channels": 768, + "use_temporal_attention": True, + "use_temporal_resblock": True + } + + clip_vision_prefix = "conditioner.embedders.0.open_clip.model.visual." + + latent_format = latent_formats.SD15 + + sampling_settings = {"sigma_max": 700.0, "sigma_min": 0.002} + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.SVD_img2vid(self, device=device) + return out + + def clip_target(self): + return None -models = [SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL] +models = [SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL, SSD1B] +models += [SVD_img2vid] diff --git a/comfy/supported_models_base.py b/comfy/supported_models_base.py index 88a1d7fde49..3412cfea030 100644 --- a/comfy/supported_models_base.py +++ b/comfy/supported_models_base.py @@ -19,7 +19,7 @@ class BASE: clip_prefix = [] clip_vision_prefix = None noise_aug_config = None - beta_schedule = "linear" + sampling_settings = {} latent_format = latent_formats.LatentFormat @classmethod @@ -53,6 +53,12 @@ def get_model(self, state_dict, prefix="", device=None): def process_clip_state_dict(self, state_dict): return state_dict + def process_unet_state_dict(self, state_dict): + return state_dict + + def process_vae_state_dict(self, state_dict): + return state_dict + def process_clip_state_dict_for_saving(self, state_dict): replace_prefix = {"": "cond_stage_model."} return utils.state_dict_prefix_replace(state_dict, replace_prefix) diff --git a/comfy/taesd/taesd.py b/comfy/taesd/taesd.py index 1549345ae53..46f3097a2a1 100644 --- a/comfy/taesd/taesd.py +++ b/comfy/taesd/taesd.py @@ -6,6 +6,8 @@ import torch import torch.nn as nn +import comfy.utils + def conv(n_in, n_out, **kwargs): return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs) @@ -44,15 +46,16 @@ class TAESD(nn.Module): latent_magnitude = 3 latent_shift = 0.5 - def __init__(self, encoder_path="taesd_encoder.pth", decoder_path="taesd_decoder.pth"): + def __init__(self, encoder_path=None, decoder_path=None): """Initialize pretrained TAESD on the given device from the given checkpoints.""" super().__init__() - self.encoder = Encoder() - self.decoder = Decoder() + self.taesd_encoder = Encoder() + self.taesd_decoder = Decoder() + self.vae_scale = torch.nn.Parameter(torch.tensor(1.0)) if encoder_path is not None: - self.encoder.load_state_dict(torch.load(encoder_path, map_location="cpu", weights_only=True)) + self.taesd_encoder.load_state_dict(comfy.utils.load_torch_file(encoder_path, safe_load=True)) if decoder_path is not None: - self.decoder.load_state_dict(torch.load(decoder_path, map_location="cpu", weights_only=True)) + self.taesd_decoder.load_state_dict(comfy.utils.load_torch_file(decoder_path, safe_load=True)) @staticmethod def scale_latents(x): @@ -63,3 +66,11 @@ def scale_latents(x): def unscale_latents(x): """[0, 1] -> raw latents""" return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude) + + def decode(self, x): + x_sample = self.taesd_decoder(x * self.vae_scale) + x_sample = x_sample.sub(0.5).mul(2) + return x_sample + + def encode(self, x): + return self.taesd_encoder(x * 0.5 + 0.5) / self.vae_scale diff --git a/comfy/utils.py b/comfy/utils.py index 7843b58ccad..294bbb425ff 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -47,12 +47,17 @@ def state_dict_key_replace(state_dict, keys_to_replace): state_dict[keys_to_replace[x]] = state_dict.pop(x) return state_dict -def state_dict_prefix_replace(state_dict, replace_prefix): +def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False): + if filter_keys: + out = {} + else: + out = state_dict for rp in replace_prefix: replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys()))) for x in replace: - state_dict[x[1]] = state_dict.pop(x[0]) - return state_dict + w = state_dict.pop(x[0]) + out[x[1]] = w + return out def transformers_convert(sd, prefix_from, prefix_to, number): @@ -165,25 +170,12 @@ def transformers_convert(sd, prefix_from, prefix_to, number): def unet_to_diffusers(unet_config): num_res_blocks = unet_config["num_res_blocks"] - attention_resolutions = unet_config["attention_resolutions"] channel_mult = unet_config["channel_mult"] - transformer_depth = unet_config["transformer_depth"] + transformer_depth = unet_config["transformer_depth"][:] + transformer_depth_output = unet_config["transformer_depth_output"][:] num_blocks = len(channel_mult) - if isinstance(num_res_blocks, int): - num_res_blocks = [num_res_blocks] * num_blocks - if isinstance(transformer_depth, int): - transformer_depth = [transformer_depth] * num_blocks - - transformers_per_layer = [] - res = 1 - for i in range(num_blocks): - transformers = 0 - if res in attention_resolutions: - transformers = transformer_depth[i] - transformers_per_layer.append(transformers) - res *= 2 - - transformers_mid = unet_config.get("transformer_depth_middle", transformer_depth[-1]) + + transformers_mid = unet_config.get("transformer_depth_middle", None) diffusers_unet_map = {} for x in range(num_blocks): @@ -191,10 +183,11 @@ def unet_to_diffusers(unet_config): for i in range(num_res_blocks[x]): for b in UNET_MAP_RESNET: diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b) - if transformers_per_layer[x] > 0: + num_transformers = transformer_depth.pop(0) + if num_transformers > 0: for b in UNET_MAP_ATTENTIONS: diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b) - for t in range(transformers_per_layer[x]): + for t in range(num_transformers): for b in TRANSFORMER_BLOCKS: diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b) n += 1 @@ -213,7 +206,6 @@ def unet_to_diffusers(unet_config): diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b) num_res_blocks = list(reversed(num_res_blocks)) - transformers_per_layer = list(reversed(transformers_per_layer)) for x in range(num_blocks): n = (num_res_blocks[x] + 1) * x l = num_res_blocks[x] + 1 @@ -222,11 +214,12 @@ def unet_to_diffusers(unet_config): for b in UNET_MAP_RESNET: diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b) c += 1 - if transformers_per_layer[x] > 0: + num_transformers = transformer_depth_output.pop() + if num_transformers > 0: c += 1 for b in UNET_MAP_ATTENTIONS: diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b) - for t in range(transformers_per_layer[x]): + for t in range(num_transformers): for b in TRANSFORMER_BLOCKS: diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b) if i == l - 1: @@ -265,9 +258,17 @@ def set_attr(obj, attr, value): for name in attrs[:-1]: obj = getattr(obj, name) prev = getattr(obj, attrs[-1]) - setattr(obj, attrs[-1], torch.nn.Parameter(value)) + setattr(obj, attrs[-1], torch.nn.Parameter(value, requires_grad=False)) del prev +def copy_to_param(obj, attr, value): + # inplace update tensor instead of replacing it + attrs = attr.split(".") + for name in attrs[:-1]: + obj = getattr(obj, name) + prev = getattr(obj, attrs[-1]) + prev.data.copy_(value) + def get_attr(obj, attr): attrs = attr.split(".") for name in attrs: @@ -306,23 +307,25 @@ def slerp(b1, b2, r): res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1] return res - def generate_bilinear_data(length_old, length_new): - coords_1 = torch.arange(length_old).reshape((1,1,1,-1)).to(torch.float32) + def generate_bilinear_data(length_old, length_new, device): + coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear") ratios = coords_1 - coords_1.floor() coords_1 = coords_1.to(torch.int64) - coords_2 = torch.arange(length_old).reshape((1,1,1,-1)).to(torch.float32) + 1 + coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + 1 coords_2[:,:,:,-1] -= 1 coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear") coords_2 = coords_2.to(torch.int64) return ratios, coords_1, coords_2 - + + orig_dtype = samples.dtype + samples = samples.float() n,c,h,w = samples.shape h_new, w_new = (height, width) #linear w - ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new) + ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device) coords_1 = coords_1.expand((n, c, h, -1)) coords_2 = coords_2.expand((n, c, h, -1)) ratios = ratios.expand((n, 1, h, -1)) @@ -335,7 +338,7 @@ def generate_bilinear_data(length_old, length_new): result = result.reshape(n, h, w_new, c).movedim(-1, 1) #linear h - ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new) + ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device) coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new)) coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new)) ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new)) @@ -346,7 +349,7 @@ def generate_bilinear_data(length_old, length_new): result = slerp(pass_1, pass_2, ratios) result = result.reshape(n, h_new, w_new, c).movedim(-1, 1) - return result + return result.to(orig_dtype) def lanczos(samples, width, height): images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples] @@ -408,6 +411,10 @@ def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_am output[b:b+1] = out/out_div return output +PROGRESS_BAR_ENABLED = True +def set_progress_bar_enabled(enabled): + global PROGRESS_BAR_ENABLED + PROGRESS_BAR_ENABLED = enabled PROGRESS_BAR_HOOK = None def set_progress_bar_global_hook(function): diff --git a/comfy_extras/nodes_compositing.py b/comfy_extras/nodes_compositing.py new file mode 100644 index 00000000000..181b36ed68e --- /dev/null +++ b/comfy_extras/nodes_compositing.py @@ -0,0 +1,202 @@ +import numpy as np +import torch +import comfy.utils +from enum import Enum + +def resize_mask(mask, shape): + return torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[0], shape[1]), mode="bilinear").squeeze(1) + +class PorterDuffMode(Enum): + ADD = 0 + CLEAR = 1 + DARKEN = 2 + DST = 3 + DST_ATOP = 4 + DST_IN = 5 + DST_OUT = 6 + DST_OVER = 7 + LIGHTEN = 8 + MULTIPLY = 9 + OVERLAY = 10 + SCREEN = 11 + SRC = 12 + SRC_ATOP = 13 + SRC_IN = 14 + SRC_OUT = 15 + SRC_OVER = 16 + XOR = 17 + + +def porter_duff_composite(src_image: torch.Tensor, src_alpha: torch.Tensor, dst_image: torch.Tensor, dst_alpha: torch.Tensor, mode: PorterDuffMode): + if mode == PorterDuffMode.ADD: + out_alpha = torch.clamp(src_alpha + dst_alpha, 0, 1) + out_image = torch.clamp(src_image + dst_image, 0, 1) + elif mode == PorterDuffMode.CLEAR: + out_alpha = torch.zeros_like(dst_alpha) + out_image = torch.zeros_like(dst_image) + elif mode == PorterDuffMode.DARKEN: + out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha + out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.min(src_image, dst_image) + elif mode == PorterDuffMode.DST: + out_alpha = dst_alpha + out_image = dst_image + elif mode == PorterDuffMode.DST_ATOP: + out_alpha = src_alpha + out_image = src_alpha * dst_image + (1 - dst_alpha) * src_image + elif mode == PorterDuffMode.DST_IN: + out_alpha = src_alpha * dst_alpha + out_image = dst_image * src_alpha + elif mode == PorterDuffMode.DST_OUT: + out_alpha = (1 - src_alpha) * dst_alpha + out_image = (1 - src_alpha) * dst_image + elif mode == PorterDuffMode.DST_OVER: + out_alpha = dst_alpha + (1 - dst_alpha) * src_alpha + out_image = dst_image + (1 - dst_alpha) * src_image + elif mode == PorterDuffMode.LIGHTEN: + out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha + out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.max(src_image, dst_image) + elif mode == PorterDuffMode.MULTIPLY: + out_alpha = src_alpha * dst_alpha + out_image = src_image * dst_image + elif mode == PorterDuffMode.OVERLAY: + out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha + out_image = torch.where(2 * dst_image < dst_alpha, 2 * src_image * dst_image, + src_alpha * dst_alpha - 2 * (dst_alpha - src_image) * (src_alpha - dst_image)) + elif mode == PorterDuffMode.SCREEN: + out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha + out_image = src_image + dst_image - src_image * dst_image + elif mode == PorterDuffMode.SRC: + out_alpha = src_alpha + out_image = src_image + elif mode == PorterDuffMode.SRC_ATOP: + out_alpha = dst_alpha + out_image = dst_alpha * src_image + (1 - src_alpha) * dst_image + elif mode == PorterDuffMode.SRC_IN: + out_alpha = src_alpha * dst_alpha + out_image = src_image * dst_alpha + elif mode == PorterDuffMode.SRC_OUT: + out_alpha = (1 - dst_alpha) * src_alpha + out_image = (1 - dst_alpha) * src_image + elif mode == PorterDuffMode.SRC_OVER: + out_alpha = src_alpha + (1 - src_alpha) * dst_alpha + out_image = src_image + (1 - src_alpha) * dst_image + elif mode == PorterDuffMode.XOR: + out_alpha = (1 - dst_alpha) * src_alpha + (1 - src_alpha) * dst_alpha + out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + else: + out_alpha = None + out_image = None + return out_image, out_alpha + + +class PorterDuffImageComposite: + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "source": ("IMAGE",), + "source_alpha": ("MASK",), + "destination": ("IMAGE",), + "destination_alpha": ("MASK",), + "mode": ([mode.name for mode in PorterDuffMode], {"default": PorterDuffMode.DST.name}), + }, + } + + RETURN_TYPES = ("IMAGE", "MASK") + FUNCTION = "composite" + CATEGORY = "mask/compositing" + + def composite(self, source: torch.Tensor, source_alpha: torch.Tensor, destination: torch.Tensor, destination_alpha: torch.Tensor, mode): + batch_size = min(len(source), len(source_alpha), len(destination), len(destination_alpha)) + out_images = [] + out_alphas = [] + + for i in range(batch_size): + src_image = source[i] + dst_image = destination[i] + + assert src_image.shape[2] == dst_image.shape[2] # inputs need to have same number of channels + + src_alpha = source_alpha[i].unsqueeze(2) + dst_alpha = destination_alpha[i].unsqueeze(2) + + if dst_alpha.shape[:2] != dst_image.shape[:2]: + upscale_input = dst_alpha.unsqueeze(0).permute(0, 3, 1, 2) + upscale_output = comfy.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center') + dst_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0) + if src_image.shape != dst_image.shape: + upscale_input = src_image.unsqueeze(0).permute(0, 3, 1, 2) + upscale_output = comfy.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center') + src_image = upscale_output.permute(0, 2, 3, 1).squeeze(0) + if src_alpha.shape != dst_alpha.shape: + upscale_input = src_alpha.unsqueeze(0).permute(0, 3, 1, 2) + upscale_output = comfy.utils.common_upscale(upscale_input, dst_alpha.shape[1], dst_alpha.shape[0], upscale_method='bicubic', crop='center') + src_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0) + + out_image, out_alpha = porter_duff_composite(src_image, src_alpha, dst_image, dst_alpha, PorterDuffMode[mode]) + + out_images.append(out_image) + out_alphas.append(out_alpha.squeeze(2)) + + result = (torch.stack(out_images), torch.stack(out_alphas)) + return result + + +class SplitImageWithAlpha: + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "image": ("IMAGE",), + } + } + + CATEGORY = "mask/compositing" + RETURN_TYPES = ("IMAGE", "MASK") + FUNCTION = "split_image_with_alpha" + + def split_image_with_alpha(self, image: torch.Tensor): + out_images = [i[:,:,:3] for i in image] + out_alphas = [i[:,:,3] if i.shape[2] > 3 else torch.ones_like(i[:,:,0]) for i in image] + result = (torch.stack(out_images), 1.0 - torch.stack(out_alphas)) + return result + + +class JoinImageWithAlpha: + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "image": ("IMAGE",), + "alpha": ("MASK",), + } + } + + CATEGORY = "mask/compositing" + RETURN_TYPES = ("IMAGE",) + FUNCTION = "join_image_with_alpha" + + def join_image_with_alpha(self, image: torch.Tensor, alpha: torch.Tensor): + batch_size = min(len(image), len(alpha)) + out_images = [] + + alpha = 1.0 - resize_mask(alpha, image.shape[1:]) + for i in range(batch_size): + out_images.append(torch.cat((image[i][:,:,:3], alpha[i].unsqueeze(2)), dim=2)) + + result = (torch.stack(out_images),) + return result + + +NODE_CLASS_MAPPINGS = { + "PorterDuffImageComposite": PorterDuffImageComposite, + "SplitImageWithAlpha": SplitImageWithAlpha, + "JoinImageWithAlpha": JoinImageWithAlpha, +} + + +NODE_DISPLAY_NAME_MAPPINGS = { + "PorterDuffImageComposite": "Porter-Duff Image Composite", + "SplitImageWithAlpha": "Split Image with Alpha", + "JoinImageWithAlpha": "Join Image with Alpha", +} diff --git a/comfy_extras/nodes_custom_sampler.py b/comfy_extras/nodes_custom_sampler.py new file mode 100644 index 00000000000..008d0b8d6be --- /dev/null +++ b/comfy_extras/nodes_custom_sampler.py @@ -0,0 +1,285 @@ +import comfy.samplers +import comfy.sample +from comfy.k_diffusion import sampling as k_diffusion_sampling +import latent_preview +import torch +import comfy.utils + + +class BasicScheduler: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"model": ("MODEL",), + "scheduler": (comfy.samplers.SCHEDULER_NAMES, ), + "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), + } + } + RETURN_TYPES = ("SIGMAS",) + CATEGORY = "sampling/custom_sampling/schedulers" + + FUNCTION = "get_sigmas" + + def get_sigmas(self, model, scheduler, steps): + sigmas = comfy.samplers.calculate_sigmas_scheduler(model.model, scheduler, steps).cpu() + return (sigmas, ) + + +class KarrasScheduler: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), + "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), + "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), + "rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), + } + } + RETURN_TYPES = ("SIGMAS",) + CATEGORY = "sampling/custom_sampling/schedulers" + + FUNCTION = "get_sigmas" + + def get_sigmas(self, steps, sigma_max, sigma_min, rho): + sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho) + return (sigmas, ) + +class ExponentialScheduler: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), + "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), + "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), + } + } + RETURN_TYPES = ("SIGMAS",) + CATEGORY = "sampling/custom_sampling/schedulers" + + FUNCTION = "get_sigmas" + + def get_sigmas(self, steps, sigma_max, sigma_min): + sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max) + return (sigmas, ) + +class PolyexponentialScheduler: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), + "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), + "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), + "rho": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), + } + } + RETURN_TYPES = ("SIGMAS",) + CATEGORY = "sampling/custom_sampling/schedulers" + + FUNCTION = "get_sigmas" + + def get_sigmas(self, steps, sigma_max, sigma_min, rho): + sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho) + return (sigmas, ) + +class SDTurboScheduler: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"model": ("MODEL",), + "steps": ("INT", {"default": 1, "min": 1, "max": 10}), + } + } + RETURN_TYPES = ("SIGMAS",) + CATEGORY = "sampling/custom_sampling/schedulers" + + FUNCTION = "get_sigmas" + + def get_sigmas(self, model, steps): + timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[:steps] + sigmas = model.model.model_sampling.sigma(timesteps) + sigmas = torch.cat([sigmas, sigmas.new_zeros([1])]) + return (sigmas, ) + +class VPScheduler: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), + "beta_d": ("FLOAT", {"default": 19.9, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), #TODO: fix default values + "beta_min": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), + "eps_s": ("FLOAT", {"default": 0.001, "min": 0.0, "max": 1.0, "step":0.0001, "round": False}), + } + } + RETURN_TYPES = ("SIGMAS",) + CATEGORY = "sampling/custom_sampling/schedulers" + + FUNCTION = "get_sigmas" + + def get_sigmas(self, steps, beta_d, beta_min, eps_s): + sigmas = k_diffusion_sampling.get_sigmas_vp(n=steps, beta_d=beta_d, beta_min=beta_min, eps_s=eps_s) + return (sigmas, ) + +class SplitSigmas: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"sigmas": ("SIGMAS", ), + "step": ("INT", {"default": 0, "min": 0, "max": 10000}), + } + } + RETURN_TYPES = ("SIGMAS","SIGMAS") + CATEGORY = "sampling/custom_sampling/sigmas" + + FUNCTION = "get_sigmas" + + def get_sigmas(self, sigmas, step): + sigmas1 = sigmas[:step + 1] + sigmas2 = sigmas[step:] + return (sigmas1, sigmas2) + +class FlipSigmas: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"sigmas": ("SIGMAS", ), + } + } + RETURN_TYPES = ("SIGMAS",) + CATEGORY = "sampling/custom_sampling/sigmas" + + FUNCTION = "get_sigmas" + + def get_sigmas(self, sigmas): + sigmas = sigmas.flip(0) + if sigmas[0] == 0: + sigmas[0] = 0.0001 + return (sigmas,) + +class KSamplerSelect: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"sampler_name": (comfy.samplers.SAMPLER_NAMES, ), + } + } + RETURN_TYPES = ("SAMPLER",) + CATEGORY = "sampling/custom_sampling/samplers" + + FUNCTION = "get_sampler" + + def get_sampler(self, sampler_name): + sampler = comfy.samplers.sampler_object(sampler_name) + return (sampler, ) + +class SamplerDPMPP_2M_SDE: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"solver_type": (['midpoint', 'heun'], ), + "eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), + "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), + "noise_device": (['gpu', 'cpu'], ), + } + } + RETURN_TYPES = ("SAMPLER",) + CATEGORY = "sampling/custom_sampling/samplers" + + FUNCTION = "get_sampler" + + def get_sampler(self, solver_type, eta, s_noise, noise_device): + if noise_device == 'cpu': + sampler_name = "dpmpp_2m_sde" + else: + sampler_name = "dpmpp_2m_sde_gpu" + sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type}) + return (sampler, ) + + +class SamplerDPMPP_SDE: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), + "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), + "r": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), + "noise_device": (['gpu', 'cpu'], ), + } + } + RETURN_TYPES = ("SAMPLER",) + CATEGORY = "sampling/custom_sampling/samplers" + + FUNCTION = "get_sampler" + + def get_sampler(self, eta, s_noise, r, noise_device): + if noise_device == 'cpu': + sampler_name = "dpmpp_sde" + else: + sampler_name = "dpmpp_sde_gpu" + sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r}) + return (sampler, ) + +class SamplerCustom: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"model": ("MODEL",), + "add_noise": ("BOOLEAN", {"default": True}), + "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), + "positive": ("CONDITIONING", ), + "negative": ("CONDITIONING", ), + "sampler": ("SAMPLER", ), + "sigmas": ("SIGMAS", ), + "latent_image": ("LATENT", ), + } + } + + RETURN_TYPES = ("LATENT","LATENT") + RETURN_NAMES = ("output", "denoised_output") + + FUNCTION = "sample" + + CATEGORY = "sampling/custom_sampling" + + def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image): + latent = latent_image + latent_image = latent["samples"] + if not add_noise: + noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") + else: + batch_inds = latent["batch_index"] if "batch_index" in latent else None + noise = comfy.sample.prepare_noise(latent_image, noise_seed, batch_inds) + + noise_mask = None + if "noise_mask" in latent: + noise_mask = latent["noise_mask"] + + x0_output = {} + callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output) + + disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED + samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed) + + out = latent.copy() + out["samples"] = samples + if "x0" in x0_output: + out_denoised = latent.copy() + out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu()) + else: + out_denoised = out + return (out, out_denoised) + +NODE_CLASS_MAPPINGS = { + "SamplerCustom": SamplerCustom, + "BasicScheduler": BasicScheduler, + "KarrasScheduler": KarrasScheduler, + "ExponentialScheduler": ExponentialScheduler, + "PolyexponentialScheduler": PolyexponentialScheduler, + "VPScheduler": VPScheduler, + "SDTurboScheduler": SDTurboScheduler, + "KSamplerSelect": KSamplerSelect, + "SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE, + "SamplerDPMPP_SDE": SamplerDPMPP_SDE, + "SplitSigmas": SplitSigmas, + "FlipSigmas": FlipSigmas, +} diff --git a/comfy_extras/nodes_freelunch.py b/comfy_extras/nodes_freelunch.py index 07a88bd9614..7512b841d74 100644 --- a/comfy_extras/nodes_freelunch.py +++ b/comfy_extras/nodes_freelunch.py @@ -61,7 +61,53 @@ def output_block_patch(h, hsp, transformer_options): m.set_model_output_block_patch(output_block_patch) return (m, ) +class FreeU_V2: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "b1": ("FLOAT", {"default": 1.3, "min": 0.0, "max": 10.0, "step": 0.01}), + "b2": ("FLOAT", {"default": 1.4, "min": 0.0, "max": 10.0, "step": 0.01}), + "s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}), + "s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "_for_testing" + + def patch(self, model, b1, b2, s1, s2): + model_channels = model.model.model_config.unet_config["model_channels"] + scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} + on_cpu_devices = {} + + def output_block_patch(h, hsp, transformer_options): + scale = scale_dict.get(h.shape[1], None) + if scale is not None: + hidden_mean = h.mean(1).unsqueeze(1) + B = hidden_mean.shape[0] + hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) + hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) + hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) + + h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * ((scale[0] - 1 ) * hidden_mean + 1) + + if hsp.device not in on_cpu_devices: + try: + hsp = Fourier_filter(hsp, threshold=1, scale=scale[1]) + except: + print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.") + on_cpu_devices[hsp.device] = True + hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) + else: + hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) + + return h, hsp + + m = model.clone() + m.set_model_output_block_patch(output_block_patch) + return (m, ) NODE_CLASS_MAPPINGS = { "FreeU": FreeU, + "FreeU_V2": FreeU_V2, } diff --git a/comfy_extras/nodes_hypernetwork.py b/comfy_extras/nodes_hypernetwork.py index d16c49aeb24..f692945a86b 100644 --- a/comfy_extras/nodes_hypernetwork.py +++ b/comfy_extras/nodes_hypernetwork.py @@ -19,6 +19,7 @@ def load_hypernetwork_patch(path, strength): "tanh": torch.nn.Tanh, "sigmoid": torch.nn.Sigmoid, "softsign": torch.nn.Softsign, + "mish": torch.nn.Mish, } if activation_func not in valid_activation: @@ -42,7 +43,8 @@ def load_hypernetwork_patch(path, strength): linears = list(map(lambda a: a[:-len(".weight")], linears)) layers = [] - for i in range(len(linears)): + i = 0 + while i < len(linears): lin_name = linears[i] last_layer = (i == (len(linears) - 1)) penultimate_layer = (i == (len(linears) - 2)) @@ -56,10 +58,17 @@ def load_hypernetwork_patch(path, strength): if (not last_layer) or (activate_output): layers.append(valid_activation[activation_func]()) if is_layer_norm: - layers.append(torch.nn.LayerNorm(lin_weight.shape[0])) + i += 1 + ln_name = linears[i] + ln_weight = attn_weights['{}.weight'.format(ln_name)] + ln_bias = attn_weights['{}.bias'.format(ln_name)] + ln = torch.nn.LayerNorm(ln_weight.shape[0]) + ln.load_state_dict({"weight": ln_weight, "bias": ln_bias}) + layers.append(ln) if use_dropout: if (not last_layer) and (not penultimate_layer or last_layer_dropout): layers.append(torch.nn.Dropout(p=0.3)) + i += 1 output.append(torch.nn.Sequential(*layers)) out[dim] = torch.nn.ModuleList(output) diff --git a/comfy_extras/nodes_hypertile.py b/comfy_extras/nodes_hypertile.py new file mode 100644 index 00000000000..0d7d4c95483 --- /dev/null +++ b/comfy_extras/nodes_hypertile.py @@ -0,0 +1,83 @@ +#Taken from: https://github.com/tfernd/HyperTile/ + +import math +from einops import rearrange +import random + +def random_divisor(value: int, min_value: int, /, max_options: int = 1, counter = 0) -> int: + min_value = min(min_value, value) + + # All big divisors of value (inclusive) + divisors = [i for i in range(min_value, value + 1) if value % i == 0] + + ns = [value // i for i in divisors[:max_options]] # has at least 1 element + + random.seed(counter) + idx = random.randint(0, len(ns) - 1) + + return ns[idx] + +class HyperTile: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "tile_size": ("INT", {"default": 256, "min": 1, "max": 2048}), + "swap_size": ("INT", {"default": 2, "min": 1, "max": 128}), + "max_depth": ("INT", {"default": 0, "min": 0, "max": 10}), + "scale_depth": ("BOOLEAN", {"default": False}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "_for_testing" + + def patch(self, model, tile_size, swap_size, max_depth, scale_depth): + model_channels = model.model.model_config.unet_config["model_channels"] + + apply_to = set() + temp = model_channels + for x in range(max_depth + 1): + apply_to.add(temp) + temp *= 2 + + latent_tile_size = max(32, tile_size) // 8 + self.temp = None + self.counter = 1 + + def hypertile_in(q, k, v, extra_options): + if q.shape[-1] in apply_to: + shape = extra_options["original_shape"] + aspect_ratio = shape[-1] / shape[-2] + + hw = q.size(1) + h, w = round(math.sqrt(hw * aspect_ratio)), round(math.sqrt(hw / aspect_ratio)) + + factor = 2**((q.shape[-1] // model_channels) - 1) if scale_depth else 1 + nh = random_divisor(h, latent_tile_size * factor, swap_size, self.counter) + self.counter += 1 + nw = random_divisor(w, latent_tile_size * factor, swap_size, self.counter) + self.counter += 1 + + if nh * nw > 1: + q = rearrange(q, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw) + self.temp = (nh, nw, h, w) + return q, k, v + + return q, k, v + def hypertile_out(out, extra_options): + if self.temp is not None: + nh, nw, h, w = self.temp + self.temp = None + out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw) + out = rearrange(out, "b nh nw (h w) c -> b (nh h nw w) c", h=h // nh, w=w // nw) + return out + + + m = model.clone() + m.set_model_attn1_patch(hypertile_in) + m.set_model_attn1_output_patch(hypertile_out) + return (m, ) + +NODE_CLASS_MAPPINGS = { + "HyperTile": HyperTile, +} diff --git a/comfy_extras/nodes_images.py b/comfy_extras/nodes_images.py new file mode 100644 index 00000000000..5ad2235a523 --- /dev/null +++ b/comfy_extras/nodes_images.py @@ -0,0 +1,175 @@ +import nodes +import folder_paths +from comfy.cli_args import args + +from PIL import Image +from PIL.PngImagePlugin import PngInfo + +import numpy as np +import json +import os + +MAX_RESOLUTION = nodes.MAX_RESOLUTION + +class ImageCrop: + @classmethod + def INPUT_TYPES(s): + return {"required": { "image": ("IMAGE",), + "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), + "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), + "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + }} + RETURN_TYPES = ("IMAGE",) + FUNCTION = "crop" + + CATEGORY = "image/transform" + + def crop(self, image, width, height, x, y): + x = min(x, image.shape[2] - 1) + y = min(y, image.shape[1] - 1) + to_x = width + x + to_y = height + y + img = image[:,y:to_y, x:to_x, :] + return (img,) + +class RepeatImageBatch: + @classmethod + def INPUT_TYPES(s): + return {"required": { "image": ("IMAGE",), + "amount": ("INT", {"default": 1, "min": 1, "max": 64}), + }} + RETURN_TYPES = ("IMAGE",) + FUNCTION = "repeat" + + CATEGORY = "image/batch" + + def repeat(self, image, amount): + s = image.repeat((amount, 1,1,1)) + return (s,) + +class SaveAnimatedWEBP: + def __init__(self): + self.output_dir = folder_paths.get_output_directory() + self.type = "output" + self.prefix_append = "" + + methods = {"default": 4, "fastest": 0, "slowest": 6} + @classmethod + def INPUT_TYPES(s): + return {"required": + {"images": ("IMAGE", ), + "filename_prefix": ("STRING", {"default": "ComfyUI"}), + "fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}), + "lossless": ("BOOLEAN", {"default": True}), + "quality": ("INT", {"default": 80, "min": 0, "max": 100}), + "method": (list(s.methods.keys()),), + # "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}), + }, + "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, + } + + RETURN_TYPES = () + FUNCTION = "save_images" + + OUTPUT_NODE = True + + CATEGORY = "_for_testing" + + def save_images(self, images, fps, filename_prefix, lossless, quality, method, num_frames=0, prompt=None, extra_pnginfo=None): + method = self.methods.get(method) + filename_prefix += self.prefix_append + full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) + results = list() + pil_images = [] + for image in images: + i = 255. * image.cpu().numpy() + img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) + pil_images.append(img) + + metadata = pil_images[0].getexif() + if not args.disable_metadata: + if prompt is not None: + metadata[0x0110] = "prompt:{}".format(json.dumps(prompt)) + if extra_pnginfo is not None: + inital_exif = 0x010f + for x in extra_pnginfo: + metadata[inital_exif] = "{}:{}".format(x, json.dumps(extra_pnginfo[x])) + inital_exif -= 1 + + if num_frames == 0: + num_frames = len(pil_images) + + c = len(pil_images) + for i in range(0, c, num_frames): + file = f"{filename}_{counter:05}_.webp" + pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], exif=metadata, lossless=lossless, quality=quality, method=method) + results.append({ + "filename": file, + "subfolder": subfolder, + "type": self.type + }) + counter += 1 + + animated = num_frames != 1 + return { "ui": { "images": results, "animated": (animated,) } } + +class SaveAnimatedPNG: + def __init__(self): + self.output_dir = folder_paths.get_output_directory() + self.type = "output" + self.prefix_append = "" + + @classmethod + def INPUT_TYPES(s): + return {"required": + {"images": ("IMAGE", ), + "filename_prefix": ("STRING", {"default": "ComfyUI"}), + "fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}), + "compress_level": ("INT", {"default": 4, "min": 0, "max": 9}) + }, + "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, + } + + RETURN_TYPES = () + FUNCTION = "save_images" + + OUTPUT_NODE = True + + CATEGORY = "_for_testing" + + def save_images(self, images, fps, compress_level, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): + filename_prefix += self.prefix_append + full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) + results = list() + pil_images = [] + for image in images: + i = 255. * image.cpu().numpy() + img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) + pil_images.append(img) + + metadata = None + if not args.disable_metadata: + metadata = PngInfo() + if prompt is not None: + metadata.add(b"comf", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(prompt).encode("latin-1", "strict"), after_idat=True) + if extra_pnginfo is not None: + for x in extra_pnginfo: + metadata.add(b"comf", x.encode("latin-1", "strict") + b"\0" + json.dumps(extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True) + + file = f"{filename}_{counter:05}_.png" + pil_images[0].save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0/fps), append_images=pil_images[1:]) + results.append({ + "filename": file, + "subfolder": subfolder, + "type": self.type + }) + + return { "ui": { "images": results, "animated": (True,)} } + +NODE_CLASS_MAPPINGS = { + "ImageCrop": ImageCrop, + "RepeatImageBatch": RepeatImageBatch, + "SaveAnimatedWEBP": SaveAnimatedWEBP, + "SaveAnimatedPNG": SaveAnimatedPNG, +} diff --git a/comfy_extras/nodes_latent.py b/comfy_extras/nodes_latent.py index 001de39fceb..cedf39d6346 100644 --- a/comfy_extras/nodes_latent.py +++ b/comfy_extras/nodes_latent.py @@ -1,4 +1,5 @@ import comfy.utils +import torch def reshape_latent_to(target_shape, latent): if latent.shape[1:] != target_shape[1:]: @@ -67,8 +68,43 @@ def op(self, samples, multiplier): samples_out["samples"] = s1 * multiplier return (samples_out,) +class LatentInterpolate: + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples1": ("LATENT",), + "samples2": ("LATENT",), + "ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), + }} + + RETURN_TYPES = ("LATENT",) + FUNCTION = "op" + + CATEGORY = "latent/advanced" + + def op(self, samples1, samples2, ratio): + samples_out = samples1.copy() + + s1 = samples1["samples"] + s2 = samples2["samples"] + + s2 = reshape_latent_to(s1.shape, s2) + + m1 = torch.linalg.vector_norm(s1, dim=(1)) + m2 = torch.linalg.vector_norm(s2, dim=(1)) + + s1 = torch.nan_to_num(s1 / m1) + s2 = torch.nan_to_num(s2 / m2) + + t = (s1 * ratio + s2 * (1.0 - ratio)) + mt = torch.linalg.vector_norm(t, dim=(1)) + st = torch.nan_to_num(t / mt) + + samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio)) + return (samples_out,) + NODE_CLASS_MAPPINGS = { "LatentAdd": LatentAdd, "LatentSubtract": LatentSubtract, "LatentMultiply": LatentMultiply, + "LatentInterpolate": LatentInterpolate, } diff --git a/comfy_extras/nodes_mask.py b/comfy_extras/nodes_mask.py index af7cb07bfb3..d8c65c2b6b9 100644 --- a/comfy_extras/nodes_mask.py +++ b/comfy_extras/nodes_mask.py @@ -114,7 +114,7 @@ def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), - "channel": (["red", "green", "blue"],), + "channel": (["red", "green", "blue", "alpha"],), } } @@ -124,7 +124,7 @@ def INPUT_TYPES(s): FUNCTION = "image_to_mask" def image_to_mask(self, image, channel): - channels = ["red", "green", "blue"] + channels = ["red", "green", "blue", "alpha"] mask = image[:, :, :, channels.index(channel)] return (mask,) @@ -240,8 +240,8 @@ def combine(self, destination, source, x, y, operation): right, bottom = (min(left + source.shape[-1], destination.shape[-1]), min(top + source.shape[-2], destination.shape[-2])) visible_width, visible_height = (right - left, bottom - top,) - source_portion = source[:visible_height, :visible_width] - destination_portion = destination[top:bottom, left:right] + source_portion = source[:, :visible_height, :visible_width] + destination_portion = destination[:, top:bottom, left:right] if operation == "multiply": output[:, top:bottom, left:right] = destination_portion * source_portion @@ -282,10 +282,10 @@ def INPUT_TYPES(cls): def feather(self, mask, left, top, right, bottom): output = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).clone() - left = min(left, output.shape[1]) - right = min(right, output.shape[1]) - top = min(top, output.shape[0]) - bottom = min(bottom, output.shape[0]) + left = min(left, output.shape[-1]) + right = min(right, output.shape[-1]) + top = min(top, output.shape[-2]) + bottom = min(bottom, output.shape[-2]) for x in range(left): feather_rate = (x + 1.0) / left @@ -331,15 +331,14 @@ def expand_mask(self, mask, expand, tapered_corners): out = [] for m in mask: output = m.numpy() - while expand < 0: - output = scipy.ndimage.grey_erosion(output, footprint=kernel) - expand += 1 - while expand > 0: - output = scipy.ndimage.grey_dilation(output, footprint=kernel) - expand -= 1 + for _ in range(abs(expand)): + if expand < 0: + output = scipy.ndimage.grey_erosion(output, footprint=kernel) + else: + output = scipy.ndimage.grey_dilation(output, footprint=kernel) output = torch.from_numpy(output) out.append(output) - return (torch.cat(out, dim=0),) + return (torch.stack(out, dim=0),) diff --git a/comfy_extras/nodes_model_advanced.py b/comfy_extras/nodes_model_advanced.py new file mode 100644 index 00000000000..efcdf1932e4 --- /dev/null +++ b/comfy_extras/nodes_model_advanced.py @@ -0,0 +1,205 @@ +import folder_paths +import comfy.sd +import comfy.model_sampling +import torch + +class LCM(comfy.model_sampling.EPS): + def calculate_denoised(self, sigma, model_output, model_input): + timestep = self.timestep(sigma).view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + x0 = model_input - model_output * sigma + + sigma_data = 0.5 + scaled_timestep = timestep * 10.0 #timestep_scaling + + c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2) + c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5 + + return c_out * x0 + c_skip * model_input + +class ModelSamplingDiscreteDistilled(torch.nn.Module): + original_timesteps = 50 + + def __init__(self): + super().__init__() + self.sigma_data = 1.0 + timesteps = 1000 + beta_start = 0.00085 + beta_end = 0.012 + + betas = torch.linspace(beta_start**0.5, beta_end**0.5, timesteps, dtype=torch.float32) ** 2 + alphas = 1.0 - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + + self.skip_steps = timesteps // self.original_timesteps + + + alphas_cumprod_valid = torch.zeros((self.original_timesteps), dtype=torch.float32) + for x in range(self.original_timesteps): + alphas_cumprod_valid[self.original_timesteps - 1 - x] = alphas_cumprod[timesteps - 1 - x * self.skip_steps] + + sigmas = ((1 - alphas_cumprod_valid) / alphas_cumprod_valid) ** 0.5 + self.set_sigmas(sigmas) + + def set_sigmas(self, sigmas): + self.register_buffer('sigmas', sigmas) + self.register_buffer('log_sigmas', sigmas.log()) + + @property + def sigma_min(self): + return self.sigmas[0] + + @property + def sigma_max(self): + return self.sigmas[-1] + + def timestep(self, sigma): + log_sigma = sigma.log() + dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] + return (dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)).to(sigma.device) + + def sigma(self, timestep): + t = torch.clamp(((timestep.float().to(self.log_sigmas.device) - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1)) + low_idx = t.floor().long() + high_idx = t.ceil().long() + w = t.frac() + log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx] + return log_sigma.exp().to(timestep.device) + + def percent_to_sigma(self, percent): + if percent <= 0.0: + return 999999999.9 + if percent >= 1.0: + return 0.0 + percent = 1.0 - percent + return self.sigma(torch.tensor(percent * 999.0)).item() + + +def rescale_zero_terminal_snr_sigmas(sigmas): + alphas_cumprod = 1 / ((sigmas * sigmas) + 1) + alphas_bar_sqrt = alphas_cumprod.sqrt() + + # Store old values. + alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() + alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() + + # Shift so the last timestep is zero. + alphas_bar_sqrt -= (alphas_bar_sqrt_T) + + # Scale so the first timestep is back to the old value. + alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) + + # Convert alphas_bar_sqrt to betas + alphas_bar = alphas_bar_sqrt**2 # Revert sqrt + alphas_bar[-1] = 4.8973451890853435e-08 + return ((1 - alphas_bar) / alphas_bar) ** 0.5 + +class ModelSamplingDiscrete: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "sampling": (["eps", "v_prediction", "lcm"],), + "zsnr": ("BOOLEAN", {"default": False}), + }} + + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "advanced/model" + + def patch(self, model, sampling, zsnr): + m = model.clone() + + sampling_base = comfy.model_sampling.ModelSamplingDiscrete + if sampling == "eps": + sampling_type = comfy.model_sampling.EPS + elif sampling == "v_prediction": + sampling_type = comfy.model_sampling.V_PREDICTION + elif sampling == "lcm": + sampling_type = LCM + sampling_base = ModelSamplingDiscreteDistilled + + class ModelSamplingAdvanced(sampling_base, sampling_type): + pass + + model_sampling = ModelSamplingAdvanced() + if zsnr: + model_sampling.set_sigmas(rescale_zero_terminal_snr_sigmas(model_sampling.sigmas)) + + m.add_object_patch("model_sampling", model_sampling) + return (m, ) + +class ModelSamplingContinuousEDM: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "sampling": (["v_prediction", "eps"],), + "sigma_max": ("FLOAT", {"default": 120.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}), + "sigma_min": ("FLOAT", {"default": 0.002, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}), + }} + + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "advanced/model" + + def patch(self, model, sampling, sigma_max, sigma_min): + m = model.clone() + + if sampling == "eps": + sampling_type = comfy.model_sampling.EPS + elif sampling == "v_prediction": + sampling_type = comfy.model_sampling.V_PREDICTION + + class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingContinuousEDM, sampling_type): + pass + + model_sampling = ModelSamplingAdvanced() + model_sampling.set_sigma_range(sigma_min, sigma_max) + m.add_object_patch("model_sampling", model_sampling) + return (m, ) + +class RescaleCFG: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "advanced/model" + + def patch(self, model, multiplier): + def rescale_cfg(args): + cond = args["cond"] + uncond = args["uncond"] + cond_scale = args["cond_scale"] + sigma = args["sigma"] + sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1)) + x_orig = args["input"] + + #rescale cfg has to be done on v-pred model output + x = x_orig / (sigma * sigma + 1.0) + cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma) + uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma) + + #rescalecfg + x_cfg = uncond + cond_scale * (cond - uncond) + ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True) + ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True) + + x_rescaled = x_cfg * (ro_pos / ro_cfg) + x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg + + return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5) + + m = model.clone() + m.set_model_sampler_cfg_function(rescale_cfg) + return (m, ) + +NODE_CLASS_MAPPINGS = { + "ModelSamplingDiscrete": ModelSamplingDiscrete, + "ModelSamplingContinuousEDM": ModelSamplingContinuousEDM, + "RescaleCFG": RescaleCFG, +} diff --git a/comfy_extras/nodes_model_downscale.py b/comfy_extras/nodes_model_downscale.py new file mode 100644 index 00000000000..48bcc689273 --- /dev/null +++ b/comfy_extras/nodes_model_downscale.py @@ -0,0 +1,53 @@ +import torch +import comfy.utils + +class PatchModelAddDownscale: + upscale_methods = ["bicubic", "nearest-exact", "bilinear", "area", "bislerp"] + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "block_number": ("INT", {"default": 3, "min": 1, "max": 32, "step": 1}), + "downscale_factor": ("FLOAT", {"default": 2.0, "min": 0.1, "max": 9.0, "step": 0.001}), + "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), + "end_percent": ("FLOAT", {"default": 0.35, "min": 0.0, "max": 1.0, "step": 0.001}), + "downscale_after_skip": ("BOOLEAN", {"default": True}), + "downscale_method": (s.upscale_methods,), + "upscale_method": (s.upscale_methods,), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "_for_testing" + + def patch(self, model, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method): + sigma_start = model.model.model_sampling.percent_to_sigma(start_percent) + sigma_end = model.model.model_sampling.percent_to_sigma(end_percent) + + def input_block_patch(h, transformer_options): + if transformer_options["block"][1] == block_number: + sigma = transformer_options["sigmas"][0].item() + if sigma <= sigma_start and sigma >= sigma_end: + h = comfy.utils.common_upscale(h, round(h.shape[-1] * (1.0 / downscale_factor)), round(h.shape[-2] * (1.0 / downscale_factor)), downscale_method, "disabled") + return h + + def output_block_patch(h, hsp, transformer_options): + if h.shape[2] != hsp.shape[2]: + h = comfy.utils.common_upscale(h, hsp.shape[-1], hsp.shape[-2], upscale_method, "disabled") + return h, hsp + + m = model.clone() + if downscale_after_skip: + m.set_model_input_block_patch_after_skip(input_block_patch) + else: + m.set_model_input_block_patch(input_block_patch) + m.set_model_output_block_patch(output_block_patch) + return (m, ) + +NODE_CLASS_MAPPINGS = { + "PatchModelAddDownscale": PatchModelAddDownscale, +} + +NODE_DISPLAY_NAME_MAPPINGS = { + # Sampling + "PatchModelAddDownscale": "PatchModelAddDownscale (Kohya Deep Shrink)", +} diff --git a/comfy_extras/nodes_model_merging.py b/comfy_extras/nodes_model_merging.py index 3d42d78067c..dad1dd6378d 100644 --- a/comfy_extras/nodes_model_merging.py +++ b/comfy_extras/nodes_model_merging.py @@ -1,6 +1,7 @@ import comfy.sd import comfy.utils import comfy.model_base +import comfy.model_management import folder_paths import json @@ -178,6 +179,95 @@ def save(self, model, clip, vae, filename_prefix, prompt=None, extra_pnginfo=Non comfy.sd.save_checkpoint(output_checkpoint, model, clip, vae, metadata=metadata) return {} +class CLIPSave: + def __init__(self): + self.output_dir = folder_paths.get_output_directory() + + @classmethod + def INPUT_TYPES(s): + return {"required": { "clip": ("CLIP",), + "filename_prefix": ("STRING", {"default": "clip/ComfyUI"}),}, + "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},} + RETURN_TYPES = () + FUNCTION = "save" + OUTPUT_NODE = True + + CATEGORY = "advanced/model_merging" + + def save(self, clip, filename_prefix, prompt=None, extra_pnginfo=None): + prompt_info = "" + if prompt is not None: + prompt_info = json.dumps(prompt) + + metadata = {} + if not args.disable_metadata: + metadata["prompt"] = prompt_info + if extra_pnginfo is not None: + for x in extra_pnginfo: + metadata[x] = json.dumps(extra_pnginfo[x]) + + comfy.model_management.load_models_gpu([clip.load_model()]) + clip_sd = clip.get_sd() + + for prefix in ["clip_l.", "clip_g.", ""]: + k = list(filter(lambda a: a.startswith(prefix), clip_sd.keys())) + current_clip_sd = {} + for x in k: + current_clip_sd[x] = clip_sd.pop(x) + if len(current_clip_sd) == 0: + continue + + p = prefix[:-1] + replace_prefix = {} + filename_prefix_ = filename_prefix + if len(p) > 0: + filename_prefix_ = "{}_{}".format(filename_prefix_, p) + replace_prefix[prefix] = "" + replace_prefix["transformer."] = "" + + full_output_folder, filename, counter, subfolder, filename_prefix_ = folder_paths.get_save_image_path(filename_prefix_, self.output_dir) + + output_checkpoint = f"{filename}_{counter:05}_.safetensors" + output_checkpoint = os.path.join(full_output_folder, output_checkpoint) + + current_clip_sd = comfy.utils.state_dict_prefix_replace(current_clip_sd, replace_prefix) + + comfy.utils.save_torch_file(current_clip_sd, output_checkpoint, metadata=metadata) + return {} + +class VAESave: + def __init__(self): + self.output_dir = folder_paths.get_output_directory() + + @classmethod + def INPUT_TYPES(s): + return {"required": { "vae": ("VAE",), + "filename_prefix": ("STRING", {"default": "vae/ComfyUI_vae"}),}, + "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},} + RETURN_TYPES = () + FUNCTION = "save" + OUTPUT_NODE = True + + CATEGORY = "advanced/model_merging" + + def save(self, vae, filename_prefix, prompt=None, extra_pnginfo=None): + full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) + prompt_info = "" + if prompt is not None: + prompt_info = json.dumps(prompt) + + metadata = {} + if not args.disable_metadata: + metadata["prompt"] = prompt_info + if extra_pnginfo is not None: + for x in extra_pnginfo: + metadata[x] = json.dumps(extra_pnginfo[x]) + + output_checkpoint = f"{filename}_{counter:05}_.safetensors" + output_checkpoint = os.path.join(full_output_folder, output_checkpoint) + + comfy.utils.save_torch_file(vae.get_sd(), output_checkpoint, metadata=metadata) + return {} NODE_CLASS_MAPPINGS = { "ModelMergeSimple": ModelMergeSimple, @@ -186,4 +276,6 @@ def save(self, model, clip, vae, filename_prefix, prompt=None, extra_pnginfo=Non "ModelMergeAdd": ModelAdd, "CheckpointSave": CheckpointSave, "CLIPMergeSimple": CLIPMergeSimple, + "CLIPSave": CLIPSave, + "VAESave": VAESave, } diff --git a/comfy_extras/nodes_post_processing.py b/comfy_extras/nodes_post_processing.py index 3f651e59456..12704f545d6 100644 --- a/comfy_extras/nodes_post_processing.py +++ b/comfy_extras/nodes_post_processing.py @@ -23,7 +23,7 @@ def INPUT_TYPES(s): "max": 1.0, "step": 0.01 }), - "blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],), + "blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light", "difference"],), }, } @@ -54,6 +54,8 @@ def blend_mode(self, img1, img2, mode): return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2)) elif mode == "soft_light": return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1)) + elif mode == "difference": + return img1 - img2 else: raise ValueError(f"Unsupported blend mode: {mode}") @@ -126,7 +128,7 @@ def INPUT_TYPES(s): "max": 256, "step": 1 }), - "dither": (["none", "floyd-steinberg"],), + "dither": (["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"],), }, } @@ -135,19 +137,47 @@ def INPUT_TYPES(s): CATEGORY = "image/postprocessing" - def quantize(self, image: torch.Tensor, colors: int = 256, dither: str = "FLOYDSTEINBERG"): + def bayer(im, pal_im, order): + def normalized_bayer_matrix(n): + if n == 0: + return np.zeros((1,1), "float32") + else: + q = 4 ** n + m = q * normalized_bayer_matrix(n - 1) + return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q + + num_colors = len(pal_im.getpalette()) // 3 + spread = 2 * 256 / num_colors + bayer_n = int(math.log2(order)) + bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5) + + result = torch.from_numpy(np.array(im).astype(np.float32)) + tw = math.ceil(result.shape[0] / bayer_matrix.shape[0]) + th = math.ceil(result.shape[1] / bayer_matrix.shape[1]) + tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1) + result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255) + result = result.to(dtype=torch.uint8) + + im = Image.fromarray(result.cpu().numpy()) + im = im.quantize(palette=pal_im, dither=Image.Dither.NONE) + return im + + def quantize(self, image: torch.Tensor, colors: int, dither: str): batch_size, height, width, _ = image.shape result = torch.zeros_like(image) - dither_option = Image.Dither.FLOYDSTEINBERG if dither == "floyd-steinberg" else Image.Dither.NONE - for b in range(batch_size): - tensor_image = image[b] - img = (tensor_image * 255).to(torch.uint8).numpy() - pil_image = Image.fromarray(img, mode='RGB') + im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB') + + pal_im = im.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836 - palette = pil_image.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836 - quantized_image = pil_image.quantize(colors=colors, palette=palette, dither=dither_option) + if dither == "none": + quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE) + elif dither == "floyd-steinberg": + quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG) + elif dither.startswith("bayer"): + order = int(dither.split('-')[-1]) + quantized_image = Quantize.bayer(im, pal_im, order) quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255 result[b] = quantized_array diff --git a/comfy_extras/nodes_rebatch.py b/comfy_extras/nodes_rebatch.py index 0a9daf27276..88a4ebe29f6 100644 --- a/comfy_extras/nodes_rebatch.py +++ b/comfy_extras/nodes_rebatch.py @@ -4,7 +4,7 @@ class LatentRebatch: @classmethod def INPUT_TYPES(s): return {"required": { "latents": ("LATENT",), - "batch_size": ("INT", {"default": 1, "min": 1, "max": 64}), + "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), }} RETURN_TYPES = ("LATENT",) INPUT_IS_LIST = True diff --git a/comfy_extras/nodes_video_model.py b/comfy_extras/nodes_video_model.py new file mode 100644 index 00000000000..26a717a3836 --- /dev/null +++ b/comfy_extras/nodes_video_model.py @@ -0,0 +1,89 @@ +import nodes +import torch +import comfy.utils +import comfy.sd +import folder_paths + + +class ImageOnlyCheckpointLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ), + }} + RETURN_TYPES = ("MODEL", "CLIP_VISION", "VAE") + FUNCTION = "load_checkpoint" + + CATEGORY = "loaders/video_models" + + def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True): + ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name) + out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=False, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings")) + return (out[0], out[3], out[2]) + + +class SVD_img2vid_Conditioning: + @classmethod + def INPUT_TYPES(s): + return {"required": { "clip_vision": ("CLIP_VISION",), + "init_image": ("IMAGE",), + "vae": ("VAE",), + "width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), + "height": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), + "video_frames": ("INT", {"default": 14, "min": 1, "max": 4096}), + "motion_bucket_id": ("INT", {"default": 127, "min": 1, "max": 1023}), + "fps": ("INT", {"default": 6, "min": 1, "max": 1024}), + "augmentation_level": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01}) + }} + RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") + RETURN_NAMES = ("positive", "negative", "latent") + + FUNCTION = "encode" + + CATEGORY = "conditioning/video_models" + + def encode(self, clip_vision, init_image, vae, width, height, video_frames, motion_bucket_id, fps, augmentation_level): + output = clip_vision.encode_image(init_image) + pooled = output.image_embeds.unsqueeze(0) + pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) + encode_pixels = pixels[:,:,:,:3] + if augmentation_level > 0: + encode_pixels += torch.randn_like(pixels) * augmentation_level + t = vae.encode(encode_pixels) + positive = [[pooled, {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": t}]] + negative = [[torch.zeros_like(pooled), {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": torch.zeros_like(t)}]] + latent = torch.zeros([video_frames, 4, height // 8, width // 8]) + return (positive, negative, {"samples":latent}) + +class VideoLinearCFGGuidance: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "sampling/video_models" + + def patch(self, model, min_cfg): + def linear_cfg(args): + cond = args["cond"] + uncond = args["uncond"] + cond_scale = args["cond_scale"] + + scale = torch.linspace(min_cfg, cond_scale, cond.shape[0], device=cond.device).reshape((cond.shape[0], 1, 1, 1)) + return uncond + scale * (cond - uncond) + + m = model.clone() + m.set_model_sampler_cfg_function(linear_cfg) + return (m, ) + +NODE_CLASS_MAPPINGS = { + "ImageOnlyCheckpointLoader": ImageOnlyCheckpointLoader, + "SVD_img2vid_Conditioning": SVD_img2vid_Conditioning, + "VideoLinearCFGGuidance": VideoLinearCFGGuidance, +} + +NODE_DISPLAY_NAME_MAPPINGS = { + "ImageOnlyCheckpointLoader": "Image Only Checkpoint Loader (img2vid model)", +} diff --git a/execution.py b/execution.py index da0991fe9f1..4451400c09a 100644 --- a/execution.py +++ b/execution.py @@ -2,6 +2,7 @@ import sys import copy import json +import logging import threading import heapq import traceback @@ -176,7 +177,7 @@ def recursive_execute(server, prompt, outputs, current_item, extra_data, execute if server.client_id is not None: server.send_sync("executed", { "node": unique_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id) except comfy.model_management.InterruptProcessingException as iex: - print("Processing interrupted") + logging.info("Processing interrupted") # skip formatting inputs/outputs error_details = { @@ -197,8 +198,8 @@ def recursive_execute(server, prompt, outputs, current_item, extra_data, execute for node_id, node_outputs in outputs.items(): output_data_formatted[node_id] = [[format_value(x) for x in l] for l in node_outputs] - print("!!! Exception during processing !!!") - print(traceback.format_exc()) + logging.error("!!! Exception during processing !!!") + logging.error(traceback.format_exc()) error_details = { "node_id": unique_id, @@ -656,11 +657,11 @@ def validate_prompt(prompt): if valid is True: good_outputs.add(o) else: - print(f"Failed to validate prompt for output {o}:") + logging.error(f"Failed to validate prompt for output {o}:") if len(reasons) > 0: - print("* (prompt):") + logging.error("* (prompt):") for reason in reasons: - print(f" - {reason['message']}: {reason['details']}") + logging.error(f" - {reason['message']}: {reason['details']}") errors += [(o, reasons)] for node_id, result in validated.items(): valid = result[0] @@ -676,11 +677,11 @@ def validate_prompt(prompt): "dependent_outputs": [], "class_type": class_type } - print(f"* {class_type} {node_id}:") + logging.error(f"* {class_type} {node_id}:") for reason in reasons: - print(f" - {reason['message']}: {reason['details']}") + logging.error(f" - {reason['message']}: {reason['details']}") node_errors[node_id]["dependent_outputs"].append(o) - print("Output will be ignored") + logging.error("Output will be ignored") if len(good_outputs) == 0: errors_list = [] @@ -700,6 +701,7 @@ def validate_prompt(prompt): return (True, None, list(good_outputs), node_errors) +MAXIMUM_HISTORY_SIZE = 10000 class PromptQueue: def __init__(self, server): @@ -718,10 +720,12 @@ def put(self, item): self.server.queue_updated() self.not_empty.notify() - def get(self): + def get(self, timeout=None): with self.not_empty: while len(self.queue) == 0: - self.not_empty.wait() + self.not_empty.wait(timeout=timeout) + if timeout is not None and len(self.queue) == 0: + return None item = heapq.heappop(self.queue) i = self.task_counter self.currently_running[i] = copy.deepcopy(item) @@ -732,6 +736,8 @@ def get(self): def task_done(self, item_id, outputs): with self.mutex: prompt = self.currently_running.pop(item_id) + if len(self.history) > MAXIMUM_HISTORY_SIZE: + self.history.pop(next(iter(self.history))) self.history[prompt[1]] = { "prompt": prompt, "outputs": {} } for o in outputs: self.history[prompt[1]]["outputs"][o] = outputs[o] @@ -766,10 +772,20 @@ def delete_queue_item(self, function): return True return False - def get_history(self, prompt_id=None): + def get_history(self, prompt_id=None, max_items=None, offset=-1): with self.mutex: if prompt_id is None: - return copy.deepcopy(self.history) + out = {} + i = 0 + if offset < 0 and max_items is not None: + offset = len(self.history) - max_items + for k in self.history: + if i >= offset: + out[k] = self.history[k] + if max_items is not None and len(out) >= max_items: + break + i += 1 + return out elif prompt_id in self.history: return {prompt_id: copy.deepcopy(self.history[prompt_id])} else: diff --git a/extra_model_paths.yaml.example b/extra_model_paths.yaml.example index 36078fffc7b..846d04dbeb4 100644 --- a/extra_model_paths.yaml.example +++ b/extra_model_paths.yaml.example @@ -1,5 +1,6 @@ #Rename this to extra_model_paths.yaml and ComfyUI will load it + #config for a1111 ui #all you have to do is change the base_path to where yours is installed a111: @@ -19,6 +20,21 @@ a111: hypernetworks: models/hypernetworks controlnet: models/ControlNet +#config for comfyui +#your base path should be either an existing comfy install or a central folder where you store all of your models, loras, etc. + +#comfyui: +# base_path: path/to/comfyui/ +# checkpoints: models/checkpoints/ +# clip: models/clip/ +# clip_vision: models/clip_vision/ +# configs: models/configs/ +# controlnet: models/controlnet/ +# embeddings: models/embeddings/ +# loras: models/loras/ +# upscale_models: models/upscale_models/ +# vae: models/vae/ + #other_ui: # base_path: path/to/ui # checkpoints: models/checkpoints diff --git a/folder_paths.py b/folder_paths.py index 4a10c68e7e7..98704945e56 100644 --- a/folder_paths.py +++ b/folder_paths.py @@ -29,6 +29,8 @@ folder_names_and_paths["hypernetworks"] = ([os.path.join(models_dir, "hypernetworks")], supported_pt_extensions) +folder_names_and_paths["classifiers"] = ([os.path.join(models_dir, "classifiers")], {""}) + output_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output") temp_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp") input_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input") @@ -36,7 +38,10 @@ filename_list_cache = {} if not os.path.exists(input_directory): - os.makedirs(input_directory) + try: + os.makedirs(input_directory) + except: + print("Failed to create input directory") def set_output_directory(output_dir): global output_directory @@ -46,6 +51,10 @@ def set_temp_directory(temp_dir): global temp_directory temp_directory = temp_dir +def set_input_directory(input_dir): + global input_directory + input_directory = input_dir + def get_output_directory(): global output_directory return output_directory @@ -140,7 +149,7 @@ def recursive_search(directory, excluded_dir_names=None): return result, dirs def filter_files_extensions(files, extensions): - return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files))) + return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions or len(extensions) == 0, files))) @@ -222,8 +231,12 @@ def compute_vars(input, image_width, image_height): full_output_folder = os.path.join(output_dir, subfolder) if os.path.commonpath((output_dir, os.path.abspath(full_output_folder))) != output_dir: - print("Saving image outside the output folder is not allowed.") - return {} + err = "**** ERROR: Saving image outside the output folder is not allowed." + \ + "\n full_output_folder: " + os.path.abspath(full_output_folder) + \ + "\n output_dir: " + output_dir + \ + "\n commonpath: " + os.path.commonpath((output_dir, os.path.abspath(full_output_folder))) + print(err) + raise Exception(err) try: counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1 diff --git a/latent_preview.py b/latent_preview.py index 87240a58291..61754751efe 100644 --- a/latent_preview.py +++ b/latent_preview.py @@ -5,6 +5,7 @@ from comfy.cli_args import args, LatentPreviewMethod from comfy.taesd.taesd import TAESD import folder_paths +import comfy.utils MAX_PREVIEW_RESOLUTION = 512 @@ -21,10 +22,7 @@ def __init__(self, taesd): self.taesd = taesd def decode_latent_to_preview(self, x0): - x_sample = self.taesd.decoder(x0)[0].detach() - # x_sample = self.taesd.unscale_latents(x_sample).div(4).add(0.5) # returns value in [-2, 2] - x_sample = x_sample.sub(0.5).mul(2) - + x_sample = self.taesd.decode(x0[:1])[0].detach() x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8) @@ -55,7 +53,12 @@ def get_previewer(device, latent_format): # TODO previewer methods taesd_decoder_path = None if latent_format.taesd_decoder_name is not None: - taesd_decoder_path = folder_paths.get_full_path("vae_approx", latent_format.taesd_decoder_name) + taesd_decoder_path = next( + (fn for fn in folder_paths.get_filename_list("vae_approx") + if fn.startswith(latent_format.taesd_decoder_name)), + "" + ) + taesd_decoder_path = folder_paths.get_full_path("vae_approx", taesd_decoder_path) if method == LatentPreviewMethod.Auto: method = LatentPreviewMethod.Latent2RGB @@ -74,4 +77,21 @@ def get_previewer(device, latent_format): previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors) return previewer +def prepare_callback(model, steps, x0_output_dict=None): + preview_format = "JPEG" + if preview_format not in ["JPEG", "PNG"]: + preview_format = "JPEG" + + previewer = get_previewer(model.load_device, model.model.latent_format) + + pbar = comfy.utils.ProgressBar(steps) + def callback(step, x0, x, total_steps): + if x0_output_dict is not None: + x0_output_dict["x0"] = x0 + + preview_bytes = None + if previewer: + preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0) + pbar.update_absolute(step + 1, total_steps, preview_bytes) + return callback diff --git a/main.py b/main.py index 7c5eaee0a83..1f9c5f443c3 100644 --- a/main.py +++ b/main.py @@ -88,18 +88,37 @@ def cuda_malloc_warning(): def prompt_worker(q, server): e = execution.PromptExecutor(server) + last_gc_collect = 0 + need_gc = False + gc_collect_interval = 10.0 + while True: - item, item_id = q.get() - execution_start_time = time.perf_counter() - prompt_id = item[1] - e.execute(item[2], prompt_id, item[3], item[4]) - q.task_done(item_id, e.outputs_ui) - if server.client_id is not None: - server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, server.client_id) - - print("Prompt executed in {:.2f} seconds".format(time.perf_counter() - execution_start_time)) - gc.collect() - comfy.model_management.soft_empty_cache() + timeout = None + if need_gc: + timeout = max(gc_collect_interval - (current_time - last_gc_collect), 0.0) + + queue_item = q.get(timeout=timeout) + if queue_item is not None: + item, item_id = queue_item + execution_start_time = time.perf_counter() + prompt_id = item[1] + e.execute(item[2], prompt_id, item[3], item[4]) + need_gc = True + q.task_done(item_id, e.outputs_ui) + if server.client_id is not None: + server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, server.client_id) + + current_time = time.perf_counter() + execution_time = current_time - execution_start_time + print("Prompt executed in {:.2f} seconds".format(execution_time)) + + if need_gc: + current_time = time.perf_counter() + if (current_time - last_gc_collect) > gc_collect_interval: + gc.collect() + comfy.model_management.soft_empty_cache() + last_gc_collect = current_time + need_gc = False async def run(server, address='', port=8188, verbose=True, call_on_start=None): await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop()) @@ -175,6 +194,16 @@ def load_extra_path_config(yaml_path): print(f"Setting output directory to: {output_dir}") folder_paths.set_output_directory(output_dir) + #These are the default folders that checkpoints, clip and vae models will be saved to when using CheckpointSave, etc.. nodes + folder_paths.add_model_folder_path("checkpoints", os.path.join(folder_paths.get_output_directory(), "checkpoints")) + folder_paths.add_model_folder_path("clip", os.path.join(folder_paths.get_output_directory(), "clip")) + folder_paths.add_model_folder_path("vae", os.path.join(folder_paths.get_output_directory(), "vae")) + + if args.input_directory: + input_dir = os.path.abspath(args.input_directory) + print(f"Setting input directory to: {input_dir}") + folder_paths.set_input_directory(input_dir) + if args.quick_test_for_ci: exit(0) diff --git a/nodes.py b/nodes.py index 4abb0d24d74..24e591fdde8 100644 --- a/nodes.py +++ b/nodes.py @@ -248,8 +248,8 @@ def set_range(self, conditioning, start, end): c = [] for t in conditioning: d = t[1].copy() - d['start_percent'] = 1.0 - start - d['end_percent'] = 1.0 - end + d['start_percent'] = start + d['end_percent'] = end n = [t[0], d] c.append(n) return (c, ) @@ -572,10 +572,69 @@ def load_lora(self, model, clip, lora_name, strength_model, strength_clip): model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip) return (model_lora, clip_lora) +class LoraLoaderModelOnly(LoraLoader): + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "lora_name": (folder_paths.get_filename_list("loras"), ), + "strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "load_lora_model_only" + + def load_lora_model_only(self, model, lora_name, strength_model): + return (self.load_lora(model, None, lora_name, strength_model, 0)[0],) + class VAELoader: + @staticmethod + def vae_list(): + vaes = folder_paths.get_filename_list("vae") + approx_vaes = folder_paths.get_filename_list("vae_approx") + sdxl_taesd_enc = False + sdxl_taesd_dec = False + sd1_taesd_enc = False + sd1_taesd_dec = False + + for v in approx_vaes: + if v.startswith("taesd_decoder."): + sd1_taesd_dec = True + elif v.startswith("taesd_encoder."): + sd1_taesd_enc = True + elif v.startswith("taesdxl_decoder."): + sdxl_taesd_dec = True + elif v.startswith("taesdxl_encoder."): + sdxl_taesd_enc = True + if sd1_taesd_dec and sd1_taesd_enc: + vaes.append("taesd") + if sdxl_taesd_dec and sdxl_taesd_enc: + vaes.append("taesdxl") + return vaes + + @staticmethod + def load_taesd(name): + sd = {} + approx_vaes = folder_paths.get_filename_list("vae_approx") + + encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes)) + decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes)) + + enc = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", encoder)) + for k in enc: + sd["taesd_encoder.{}".format(k)] = enc[k] + + dec = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", decoder)) + for k in dec: + sd["taesd_decoder.{}".format(k)] = dec[k] + + if name == "taesd": + sd["vae_scale"] = torch.tensor(0.18215) + elif name == "taesdxl": + sd["vae_scale"] = torch.tensor(0.13025) + return sd + @classmethod def INPUT_TYPES(s): - return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}} + return {"required": { "vae_name": (s.vae_list(), )}} RETURN_TYPES = ("VAE",) FUNCTION = "load_vae" @@ -583,8 +642,12 @@ def INPUT_TYPES(s): #TODO: scale factor? def load_vae(self, vae_name): - vae_path = folder_paths.get_full_path("vae", vae_name) - vae = comfy.sd.VAE(ckpt_path=vae_path) + if vae_name in ["taesd", "taesdxl"]: + sd = self.load_taesd(vae_name) + else: + vae_path = folder_paths.get_full_path("vae", vae_name) + sd = comfy.utils.load_torch_file(vae_path) + vae = comfy.sd.VAE(sd=sd) return (vae,) class ControlNetLoader: @@ -684,7 +747,7 @@ def apply_controlnet(self, positive, negative, control_net, image, strength, sta if prev_cnet in cnets: c_net = cnets[prev_cnet] else: - c_net = control_net.copy().set_cond_hint(control_hint, strength, (1.0 - start_percent, 1.0 - end_percent)) + c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent)) c_net.set_previous_controlnet(prev_cnet) cnets[prev_cnet] = c_net @@ -1189,11 +1252,8 @@ def set_mask(self, samples, mask): s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])) return (s,) - def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False): - device = comfy.model_management.get_torch_device() latent_image = latent["samples"] - if disable_noise: noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") else: @@ -1204,22 +1264,11 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, if "noise_mask" in latent: noise_mask = latent["noise_mask"] - preview_format = "JPEG" - if preview_format not in ["JPEG", "PNG"]: - preview_format = "JPEG" - - previewer = latent_preview.get_previewer(device, model.model.latent_format) - - pbar = comfy.utils.ProgressBar(steps) - def callback(step, x0, x, total_steps): - preview_bytes = None - if previewer: - preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0) - pbar.update_absolute(step + 1, total_steps, preview_bytes) - + callback = latent_preview.prepare_callback(model, steps) + disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step, - force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed) + force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) out = latent.copy() out["samples"] = samples return (out, ) @@ -1231,7 +1280,7 @@ def INPUT_TYPES(s): {"model": ("MODEL",), "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), - "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}), + "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), "positive": ("CONDITIONING", ), @@ -1257,7 +1306,7 @@ def INPUT_TYPES(s): "add_noise": (["enable", "disable"], ), "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), - "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}), + "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), "positive": ("CONDITIONING", ), @@ -1288,6 +1337,7 @@ def __init__(self): self.output_dir = folder_paths.get_output_directory() self.type = "output" self.prefix_append = "" + self.compress_level = 4 @classmethod def INPUT_TYPES(s): @@ -1321,7 +1371,7 @@ def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pngi metadata.add_text(x, json.dumps(extra_pnginfo[x])) file = f"{filename}_{counter:05}_.png" - img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4) + img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level) results.append({ "filename": file, "subfolder": subfolder, @@ -1336,6 +1386,7 @@ def __init__(self): self.output_dir = folder_paths.get_temp_directory() self.type = "temp" self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) + self.compress_level = 1 @classmethod def INPUT_TYPES(s): @@ -1667,6 +1718,7 @@ def expand_image(self, image, left, top, right, bottom, feathering): "ConditioningZeroOut": ConditioningZeroOut, "ConditioningSetTimestepRange": ConditioningSetTimestepRange, + "LoraLoaderModelOnly": LoraLoaderModelOnly, } NODE_DISPLAY_NAME_MAPPINGS = { @@ -1674,7 +1726,7 @@ def expand_image(self, image, left, top, right, bottom, feathering): "KSampler": "KSampler", "KSamplerAdvanced": "KSampler (Advanced)", # Loaders - "CheckpointLoader": "Load Checkpoint (With Config)", + "CheckpointLoader": "Load Checkpoint With Config (DEPRECATED)", "CheckpointLoaderSimple": "Load Checkpoint", "VAELoader": "Load VAE", "LoraLoader": "Load LoRA", @@ -1772,7 +1824,7 @@ def load_custom_nodes(): node_paths = folder_paths.get_folder_paths("custom_nodes") node_import_times = [] for custom_node_path in node_paths: - possible_modules = os.listdir(custom_node_path) + possible_modules = os.listdir(os.path.realpath(custom_node_path)) if "__pycache__" in possible_modules: possible_modules.remove("__pycache__") @@ -1795,15 +1847,29 @@ def load_custom_nodes(): print() def init_custom_nodes(): - load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_latent.py")) - load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py")) - load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py")) - load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py")) - load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py")) - load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py")) - load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_model_merging.py")) - load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_tomesd.py")) - load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_clip_sdxl.py")) - load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_canny.py")) - load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_freelunch.py")) + extras_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras") + extras_files = [ + "nodes_latent.py", + "nodes_hypernetwork.py", + "nodes_upscale_model.py", + "nodes_post_processing.py", + "nodes_mask.py", + "nodes_compositing.py", + "nodes_rebatch.py", + "nodes_model_merging.py", + "nodes_tomesd.py", + "nodes_clip_sdxl.py", + "nodes_canny.py", + "nodes_freelunch.py", + "nodes_custom_sampler.py", + "nodes_hypertile.py", + "nodes_model_advanced.py", + "nodes_model_downscale.py", + "nodes_images.py", + "nodes_video_model.py", + ] + + for node_file in extras_files: + load_custom_node(os.path.join(extras_dir, node_file)) + load_custom_nodes() diff --git a/notebooks/comfyui_colab.ipynb b/notebooks/comfyui_colab.ipynb index 4fdccaace44..ec83265b42c 100644 --- a/notebooks/comfyui_colab.ipynb +++ b/notebooks/comfyui_colab.ipynb @@ -47,7 +47,7 @@ " !git pull\n", "\n", "!echo -= Install dependencies =-\n", - "!pip install xformers!=0.0.18 -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu118 --extra-index-url https://download.pytorch.org/whl/cu117" + "!pip install xformers!=0.0.18 -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu121 --extra-index-url https://download.pytorch.org/whl/cu118 --extra-index-url https://download.pytorch.org/whl/cu117" ] }, { diff --git a/server.py b/server.py index b2e16716ba8..9b1e3269d7f 100644 --- a/server.py +++ b/server.py @@ -82,7 +82,8 @@ def __init__(self, loop): if args.enable_cors_header: middlewares.append(create_cors_middleware(args.enable_cors_header)) - self.app = web.Application(client_max_size=104857600, middlewares=middlewares) + max_upload_size = round(args.max_upload_size * 1024 * 1024) + self.app = web.Application(client_max_size=max_upload_size, middlewares=middlewares) self.sockets = dict() self.web_root = os.path.join(os.path.dirname( os.path.realpath(__file__)), "web") @@ -413,7 +414,11 @@ def node_info(node_class): async def get_object_info(request): out = {} for x in nodes.NODE_CLASS_MAPPINGS: - out[x] = node_info(x) + try: + out[x] = node_info(x) + except Exception as e: + print(f"[ERROR] An error occurred while retrieving information for the '{x}' node.", file=sys.stderr) + traceback.print_exc() return web.json_response(out) @routes.get("/object_info/{node_class}") @@ -426,7 +431,10 @@ async def get_object_info_node(request): @routes.get("/history") async def get_history(request): - return web.json_response(self.prompt_queue.get_history()) + max_items = request.rel_url.query.get("max_items", None) + if max_items is not None: + max_items = int(max_items) + return web.json_response(self.prompt_queue.get_history(max_items=max_items)) @routes.get("/history/{prompt_id}") async def get_history(request): @@ -568,7 +576,7 @@ async def send_image(self, image_data, sid=None): bytesIO = BytesIO() header = struct.pack(">I", type_num) bytesIO.write(header) - image.save(bytesIO, format=image_type, quality=95, compress_level=4) + image.save(bytesIO, format=image_type, quality=95, compress_level=1) preview_bytes = bytesIO.getvalue() await self.send_bytes(BinaryEventTypes.PREVIEW_IMAGE, preview_bytes, sid=sid) diff --git a/tests-ui/.gitignore b/tests-ui/.gitignore new file mode 100644 index 00000000000..b512c09d476 --- /dev/null +++ b/tests-ui/.gitignore @@ -0,0 +1 @@ +node_modules \ No newline at end of file diff --git a/tests-ui/babel.config.json b/tests-ui/babel.config.json new file mode 100644 index 00000000000..526ddfd8df1 --- /dev/null +++ b/tests-ui/babel.config.json @@ -0,0 +1,3 @@ +{ + "presets": ["@babel/preset-env"] +} diff --git a/tests-ui/globalSetup.js b/tests-ui/globalSetup.js new file mode 100644 index 00000000000..b9d97f58a96 --- /dev/null +++ b/tests-ui/globalSetup.js @@ -0,0 +1,14 @@ +module.exports = async function () { + global.ResizeObserver = class ResizeObserver { + observe() {} + unobserve() {} + disconnect() {} + }; + + const { nop } = require("./utils/nopProxy"); + global.enableWebGLCanvas = nop; + + HTMLCanvasElement.prototype.getContext = nop; + + localStorage["Comfy.Settings.Comfy.Logging.Enabled"] = "false"; +}; diff --git a/tests-ui/jest.config.js b/tests-ui/jest.config.js new file mode 100644 index 00000000000..b5a5d646da7 --- /dev/null +++ b/tests-ui/jest.config.js @@ -0,0 +1,9 @@ +/** @type {import('jest').Config} */ +const config = { + testEnvironment: "jsdom", + setupFiles: ["./globalSetup.js"], + clearMocks: true, + resetModules: true, +}; + +module.exports = config; diff --git a/tests-ui/package-lock.json b/tests-ui/package-lock.json new file mode 100644 index 00000000000..35911cd7ffd --- /dev/null +++ b/tests-ui/package-lock.json @@ -0,0 +1,5566 @@ +{ + "name": "comfui-tests", + "version": "1.0.0", + "lockfileVersion": 3, + "requires": true, + "packages": { + "": { + "name": "comfui-tests", + "version": "1.0.0", + "license": "GPL-3.0", + "devDependencies": { + "@babel/preset-env": "^7.22.20", + "@types/jest": "^29.5.5", + "jest": "^29.7.0", + "jest-environment-jsdom": "^29.7.0" + } + }, + "node_modules/@ampproject/remapping": { + "version": "2.2.1", + "resolved": "https://registry.npmjs.org/@ampproject/remapping/-/remapping-2.2.1.tgz", + "integrity": "sha512-lFMjJTrFL3j7L9yBxwYfCq2k6qqwHyzuUl/XBnif78PWTJYyL/dfowQHWE3sp6U6ZzqWiiIZnpTMO96zhkjwtg==", + "dev": true, + "dependencies": { + "@jridgewell/gen-mapping": "^0.3.0", + "@jridgewell/trace-mapping": "^0.3.9" + }, + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/@babel/code-frame": { + "version": "7.22.13", + "resolved": "https://registry.npmjs.org/@babel/code-frame/-/code-frame-7.22.13.tgz", + "integrity": "sha512-XktuhWlJ5g+3TJXc5upd9Ks1HutSArik6jf2eAjYFyIOf4ej3RN+184cZbzDvbPnuTJIUhPKKJE3cIsYTiAT3w==", + "dev": true, + "dependencies": { + "@babel/highlight": "^7.22.13", + "chalk": "^2.4.2" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/code-frame/node_modules/ansi-styles": { + "version": "3.2.1", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-3.2.1.tgz", + "integrity": "sha512-VT0ZI6kZRdTh8YyJw3SMbYm/u+NqfsAxEpWO0Pf9sq8/e94WxxOpPKx9FR1FlyCtOVDNOQ+8ntlqFxiRc+r5qA==", + "dev": true, + "dependencies": { + "color-convert": "^1.9.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/code-frame/node_modules/chalk": { + "version": "2.4.2", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-2.4.2.tgz", + "integrity": "sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ==", + "dev": true, + "dependencies": { + "ansi-styles": "^3.2.1", + "escape-string-regexp": "^1.0.5", + "supports-color": "^5.3.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/code-frame/node_modules/color-convert": { + "version": "1.9.3", + "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-1.9.3.tgz", + "integrity": "sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg==", + "dev": true, + "dependencies": { + "color-name": "1.1.3" + } + }, + "node_modules/@babel/code-frame/node_modules/color-name": { + "version": "1.1.3", + "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.3.tgz", + "integrity": "sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw==", + "dev": true + }, + "node_modules/@babel/code-frame/node_modules/escape-string-regexp": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz", + "integrity": "sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg==", + "dev": true, + "engines": { + "node": ">=0.8.0" + } + }, + "node_modules/@babel/code-frame/node_modules/has-flag": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz", + "integrity": "sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/code-frame/node_modules/supports-color": { + "version": "5.5.0", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-5.5.0.tgz", + "integrity": "sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow==", + "dev": true, + "dependencies": { + "has-flag": "^3.0.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/compat-data": { + "version": "7.22.20", + "resolved": "https://registry.npmjs.org/@babel/compat-data/-/compat-data-7.22.20.tgz", + "integrity": "sha512-BQYjKbpXjoXwFW5jGqiizJQQT/aC7pFm9Ok1OWssonuguICi264lbgMzRp2ZMmRSlfkX6DsWDDcsrctK8Rwfiw==", + "dev": true, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/core": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/core/-/core-7.23.0.tgz", + "integrity": "sha512-97z/ju/Jy1rZmDxybphrBuI+jtJjFVoz7Mr9yUQVVVi+DNZE333uFQeMOqcCIy1x3WYBIbWftUSLmbNXNT7qFQ==", + "dev": true, + "dependencies": { + "@ampproject/remapping": "^2.2.0", + "@babel/code-frame": "^7.22.13", + "@babel/generator": "^7.23.0", + "@babel/helper-compilation-targets": "^7.22.15", + "@babel/helper-module-transforms": "^7.23.0", + "@babel/helpers": "^7.23.0", + "@babel/parser": "^7.23.0", + "@babel/template": "^7.22.15", + "@babel/traverse": "^7.23.0", + "@babel/types": "^7.23.0", + "convert-source-map": "^2.0.0", + "debug": "^4.1.0", + "gensync": "^1.0.0-beta.2", + "json5": "^2.2.3", + "semver": "^6.3.1" + }, + "engines": { + "node": ">=6.9.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/babel" + } + }, + "node_modules/@babel/generator": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/generator/-/generator-7.23.0.tgz", + "integrity": "sha512-lN85QRR+5IbYrMWM6Y4pE/noaQtg4pNiqeNGX60eqOfo6gtEj6uw/JagelB8vVztSd7R6M5n1+PQkDbHbBRU4g==", + "dev": true, + "dependencies": { + "@babel/types": "^7.23.0", + "@jridgewell/gen-mapping": "^0.3.2", + "@jridgewell/trace-mapping": "^0.3.17", + "jsesc": "^2.5.1" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-annotate-as-pure": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/helper-annotate-as-pure/-/helper-annotate-as-pure-7.22.5.tgz", + "integrity": "sha512-LvBTxu8bQSQkcyKOU+a1btnNFQ1dMAd0R6PyW3arXes06F6QLWLIrd681bxRPIXlrMGR3XYnW9JyML7dP3qgxg==", + "dev": true, + "dependencies": { + "@babel/types": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-builder-binary-assignment-operator-visitor": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/helper-builder-binary-assignment-operator-visitor/-/helper-builder-binary-assignment-operator-visitor-7.22.15.tgz", + "integrity": "sha512-QkBXwGgaoC2GtGZRoma6kv7Szfv06khvhFav67ZExau2RaXzy8MpHSMO2PNoP2XtmQphJQRHFfg77Bq731Yizw==", + "dev": true, + "dependencies": { + "@babel/types": "^7.22.15" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-compilation-targets": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/helper-compilation-targets/-/helper-compilation-targets-7.22.15.tgz", + "integrity": "sha512-y6EEzULok0Qvz8yyLkCvVX+02ic+By2UdOhylwUOvOn9dvYc9mKICJuuU1n1XBI02YWsNsnrY1kc6DVbjcXbtw==", + "dev": true, + "dependencies": { + "@babel/compat-data": "^7.22.9", + "@babel/helper-validator-option": "^7.22.15", + "browserslist": "^4.21.9", + "lru-cache": "^5.1.1", + "semver": "^6.3.1" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-create-class-features-plugin": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/helper-create-class-features-plugin/-/helper-create-class-features-plugin-7.22.15.tgz", + "integrity": "sha512-jKkwA59IXcvSaiK2UN45kKwSC9o+KuoXsBDvHvU/7BecYIp8GQ2UwrVvFgJASUT+hBnwJx6MhvMCuMzwZZ7jlg==", + "dev": true, + "dependencies": { + "@babel/helper-annotate-as-pure": "^7.22.5", + "@babel/helper-environment-visitor": "^7.22.5", + "@babel/helper-function-name": "^7.22.5", + "@babel/helper-member-expression-to-functions": "^7.22.15", + "@babel/helper-optimise-call-expression": "^7.22.5", + "@babel/helper-replace-supers": "^7.22.9", + "@babel/helper-skip-transparent-expression-wrappers": "^7.22.5", + "@babel/helper-split-export-declaration": "^7.22.6", + "semver": "^6.3.1" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/helper-create-regexp-features-plugin": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/helper-create-regexp-features-plugin/-/helper-create-regexp-features-plugin-7.22.15.tgz", + "integrity": "sha512-29FkPLFjn4TPEa3RE7GpW+qbE8tlsu3jntNYNfcGsc49LphF1PQIiD+vMZ1z1xVOKt+93khA9tc2JBs3kBjA7w==", + "dev": true, + "dependencies": { + "@babel/helper-annotate-as-pure": "^7.22.5", + "regexpu-core": "^5.3.1", + "semver": "^6.3.1" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/helper-define-polyfill-provider": { + "version": "0.4.2", + "resolved": "https://registry.npmjs.org/@babel/helper-define-polyfill-provider/-/helper-define-polyfill-provider-0.4.2.tgz", + "integrity": "sha512-k0qnnOqHn5dK9pZpfD5XXZ9SojAITdCKRn2Lp6rnDGzIbaP0rHyMPk/4wsSxVBVz4RfN0q6VpXWP2pDGIoQ7hw==", + "dev": true, + "dependencies": { + "@babel/helper-compilation-targets": "^7.22.6", + "@babel/helper-plugin-utils": "^7.22.5", + "debug": "^4.1.1", + "lodash.debounce": "^4.0.8", + "resolve": "^1.14.2" + }, + "peerDependencies": { + "@babel/core": "^7.4.0 || ^8.0.0-0 <8.0.0" + } + }, + "node_modules/@babel/helper-environment-visitor": { + "version": "7.22.20", + "resolved": "https://registry.npmjs.org/@babel/helper-environment-visitor/-/helper-environment-visitor-7.22.20.tgz", + "integrity": "sha512-zfedSIzFhat/gFhWfHtgWvlec0nqB9YEIVrpuwjruLlXfUSnA8cJB0miHKwqDnQ7d32aKo2xt88/xZptwxbfhA==", + "dev": true, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-function-name": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/helper-function-name/-/helper-function-name-7.23.0.tgz", + "integrity": "sha512-OErEqsrxjZTJciZ4Oo+eoZqeW9UIiOcuYKRJA4ZAgV9myA+pOXhhmpfNCKjEH/auVfEYVFJ6y1Tc4r0eIApqiw==", + "dev": true, + "dependencies": { + "@babel/template": "^7.22.15", + "@babel/types": "^7.23.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-hoist-variables": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/helper-hoist-variables/-/helper-hoist-variables-7.22.5.tgz", + "integrity": "sha512-wGjk9QZVzvknA6yKIUURb8zY3grXCcOZt+/7Wcy8O2uctxhplmUPkOdlgoNhmdVee2c92JXbf1xpMtVNbfoxRw==", + "dev": true, + "dependencies": { + "@babel/types": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-member-expression-to-functions": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/helper-member-expression-to-functions/-/helper-member-expression-to-functions-7.23.0.tgz", + "integrity": "sha512-6gfrPwh7OuT6gZyJZvd6WbTfrqAo7vm4xCzAXOusKqq/vWdKXphTpj5klHKNmRUU6/QRGlBsyU9mAIPaWHlqJA==", + "dev": true, + "dependencies": { + "@babel/types": "^7.23.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-module-imports": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/helper-module-imports/-/helper-module-imports-7.22.15.tgz", + "integrity": "sha512-0pYVBnDKZO2fnSPCrgM/6WMc7eS20Fbok+0r88fp+YtWVLZrp4CkafFGIp+W0VKw4a22sgebPT99y+FDNMdP4w==", + "dev": true, + "dependencies": { + "@babel/types": "^7.22.15" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-module-transforms": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/helper-module-transforms/-/helper-module-transforms-7.23.0.tgz", + "integrity": "sha512-WhDWw1tdrlT0gMgUJSlX0IQvoO1eN279zrAUbVB+KpV2c3Tylz8+GnKOLllCS6Z/iZQEyVYxhZVUdPTqs2YYPw==", + "dev": true, + "dependencies": { + "@babel/helper-environment-visitor": "^7.22.20", + "@babel/helper-module-imports": "^7.22.15", + "@babel/helper-simple-access": "^7.22.5", + "@babel/helper-split-export-declaration": "^7.22.6", + "@babel/helper-validator-identifier": "^7.22.20" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/helper-optimise-call-expression": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/helper-optimise-call-expression/-/helper-optimise-call-expression-7.22.5.tgz", + "integrity": "sha512-HBwaojN0xFRx4yIvpwGqxiV2tUfl7401jlok564NgB9EHS1y6QT17FmKWm4ztqjeVdXLuC4fSvHc5ePpQjoTbw==", + "dev": true, + "dependencies": { + "@babel/types": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-plugin-utils": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/helper-plugin-utils/-/helper-plugin-utils-7.22.5.tgz", + "integrity": "sha512-uLls06UVKgFG9QD4OeFYLEGteMIAa5kpTPcFL28yuCIIzsf6ZyKZMllKVOCZFhiZ5ptnwX4mtKdWCBE/uT4amg==", + "dev": true, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-remap-async-to-generator": { + "version": "7.22.20", + "resolved": "https://registry.npmjs.org/@babel/helper-remap-async-to-generator/-/helper-remap-async-to-generator-7.22.20.tgz", + "integrity": "sha512-pBGyV4uBqOns+0UvhsTO8qgl8hO89PmiDYv+/COyp1aeMcmfrfruz+/nCMFiYyFF/Knn0yfrC85ZzNFjembFTw==", + "dev": true, + "dependencies": { + "@babel/helper-annotate-as-pure": "^7.22.5", + "@babel/helper-environment-visitor": "^7.22.20", + "@babel/helper-wrap-function": "^7.22.20" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/helper-replace-supers": { + "version": "7.22.20", + "resolved": "https://registry.npmjs.org/@babel/helper-replace-supers/-/helper-replace-supers-7.22.20.tgz", + "integrity": "sha512-qsW0In3dbwQUbK8kejJ4R7IHVGwHJlV6lpG6UA7a9hSa2YEiAib+N1T2kr6PEeUT+Fl7najmSOS6SmAwCHK6Tw==", + "dev": true, + "dependencies": { + "@babel/helper-environment-visitor": "^7.22.20", + "@babel/helper-member-expression-to-functions": "^7.22.15", + "@babel/helper-optimise-call-expression": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/helper-simple-access": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/helper-simple-access/-/helper-simple-access-7.22.5.tgz", + "integrity": "sha512-n0H99E/K+Bika3++WNL17POvo4rKWZ7lZEp1Q+fStVbUi8nxPQEBOlTmCOxW/0JsS56SKKQ+ojAe2pHKJHN35w==", + "dev": true, + "dependencies": { + "@babel/types": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-skip-transparent-expression-wrappers": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/helper-skip-transparent-expression-wrappers/-/helper-skip-transparent-expression-wrappers-7.22.5.tgz", + "integrity": "sha512-tK14r66JZKiC43p8Ki33yLBVJKlQDFoA8GYN67lWCDCqoL6EMMSuM9b+Iff2jHaM/RRFYl7K+iiru7hbRqNx8Q==", + "dev": true, + "dependencies": { + "@babel/types": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-split-export-declaration": { + "version": "7.22.6", + "resolved": "https://registry.npmjs.org/@babel/helper-split-export-declaration/-/helper-split-export-declaration-7.22.6.tgz", + "integrity": "sha512-AsUnxuLhRYsisFiaJwvp1QF+I3KjD5FOxut14q/GzovUe6orHLesW2C7d754kRm53h5gqrz6sFl6sxc4BVtE/g==", + "dev": true, + "dependencies": { + "@babel/types": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-string-parser": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/helper-string-parser/-/helper-string-parser-7.22.5.tgz", + "integrity": "sha512-mM4COjgZox8U+JcXQwPijIZLElkgEpO5rsERVDJTc2qfCDfERyob6k5WegS14SX18IIjv+XD+GrqNumY5JRCDw==", + "dev": true, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-validator-identifier": { + "version": "7.22.20", + "resolved": "https://registry.npmjs.org/@babel/helper-validator-identifier/-/helper-validator-identifier-7.22.20.tgz", + "integrity": "sha512-Y4OZ+ytlatR8AI+8KZfKuL5urKp7qey08ha31L8b3BwewJAoJamTzyvxPR/5D+KkdJCGPq/+8TukHBlY10FX9A==", + "dev": true, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-validator-option": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/helper-validator-option/-/helper-validator-option-7.22.15.tgz", + "integrity": "sha512-bMn7RmyFjY/mdECUbgn9eoSY4vqvacUnS9i9vGAGttgFWesO6B4CYWA7XlpbWgBt71iv/hfbPlynohStqnu5hA==", + "dev": true, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-wrap-function": { + "version": "7.22.20", + "resolved": "https://registry.npmjs.org/@babel/helper-wrap-function/-/helper-wrap-function-7.22.20.tgz", + "integrity": "sha512-pms/UwkOpnQe/PDAEdV/d7dVCoBbB+R4FvYoHGZz+4VPcg7RtYy2KP7S2lbuWM6FCSgob5wshfGESbC/hzNXZw==", + "dev": true, + "dependencies": { + "@babel/helper-function-name": "^7.22.5", + "@babel/template": "^7.22.15", + "@babel/types": "^7.22.19" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helpers": { + "version": "7.23.1", + "resolved": "https://registry.npmjs.org/@babel/helpers/-/helpers-7.23.1.tgz", + "integrity": "sha512-chNpneuK18yW5Oxsr+t553UZzzAs3aZnFm4bxhebsNTeshrC95yA7l5yl7GBAG+JG1rF0F7zzD2EixK9mWSDoA==", + "dev": true, + "dependencies": { + "@babel/template": "^7.22.15", + "@babel/traverse": "^7.23.0", + "@babel/types": "^7.23.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/highlight": { + "version": "7.22.20", + "resolved": "https://registry.npmjs.org/@babel/highlight/-/highlight-7.22.20.tgz", + "integrity": "sha512-dkdMCN3py0+ksCgYmGG8jKeGA/8Tk+gJwSYYlFGxG5lmhfKNoAy004YpLxpS1W2J8m/EK2Ew+yOs9pVRwO89mg==", + "dev": true, + "dependencies": { + "@babel/helper-validator-identifier": "^7.22.20", + "chalk": "^2.4.2", + "js-tokens": "^4.0.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/highlight/node_modules/ansi-styles": { + "version": "3.2.1", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-3.2.1.tgz", + "integrity": "sha512-VT0ZI6kZRdTh8YyJw3SMbYm/u+NqfsAxEpWO0Pf9sq8/e94WxxOpPKx9FR1FlyCtOVDNOQ+8ntlqFxiRc+r5qA==", + "dev": true, + "dependencies": { + "color-convert": "^1.9.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/highlight/node_modules/chalk": { + "version": "2.4.2", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-2.4.2.tgz", + "integrity": "sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ==", + "dev": true, + "dependencies": { + "ansi-styles": "^3.2.1", + "escape-string-regexp": "^1.0.5", + "supports-color": "^5.3.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/highlight/node_modules/color-convert": { + "version": "1.9.3", + "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-1.9.3.tgz", + "integrity": "sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg==", + "dev": true, + "dependencies": { + "color-name": "1.1.3" + } + }, + "node_modules/@babel/highlight/node_modules/color-name": { + "version": "1.1.3", + "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.3.tgz", + "integrity": "sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw==", + "dev": true + }, + "node_modules/@babel/highlight/node_modules/escape-string-regexp": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz", + "integrity": "sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg==", + "dev": true, + "engines": { + "node": ">=0.8.0" + } + }, + "node_modules/@babel/highlight/node_modules/has-flag": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz", + "integrity": "sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/highlight/node_modules/supports-color": { + "version": "5.5.0", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-5.5.0.tgz", + "integrity": "sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow==", + "dev": true, + "dependencies": { + "has-flag": "^3.0.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/parser": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/parser/-/parser-7.23.0.tgz", + "integrity": "sha512-vvPKKdMemU85V9WE/l5wZEmImpCtLqbnTvqDS2U1fJ96KrxoW7KrXhNsNCblQlg8Ck4b85yxdTyelsMUgFUXiw==", + "dev": true, + "bin": { + "parser": "bin/babel-parser.js" + }, + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/@babel/plugin-bugfix-safari-id-destructuring-collision-in-function-expression": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/plugin-bugfix-safari-id-destructuring-collision-in-function-expression/-/plugin-bugfix-safari-id-destructuring-collision-in-function-expression-7.22.15.tgz", + "integrity": "sha512-FB9iYlz7rURmRJyXRKEnalYPPdn87H5no108cyuQQyMwlpJ2SJtpIUBI27kdTin956pz+LPypkPVPUTlxOmrsg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/plugin-bugfix-v8-spread-parameters-in-optional-chaining": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/plugin-bugfix-v8-spread-parameters-in-optional-chaining/-/plugin-bugfix-v8-spread-parameters-in-optional-chaining-7.22.15.tgz", + "integrity": "sha512-Hyph9LseGvAeeXzikV88bczhsrLrIZqDPxO+sSmAunMPaGrBGhfMWzCPYTtiW9t+HzSE2wtV8e5cc5P6r1xMDQ==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-skip-transparent-expression-wrappers": "^7.22.5", + "@babel/plugin-transform-optional-chaining": "^7.22.15" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.13.0" + } + }, + "node_modules/@babel/plugin-proposal-private-property-in-object": { + "version": "7.21.0-placeholder-for-preset-env.2", + "resolved": "https://registry.npmjs.org/@babel/plugin-proposal-private-property-in-object/-/plugin-proposal-private-property-in-object-7.21.0-placeholder-for-preset-env.2.tgz", + "integrity": "sha512-SOSkfJDddaM7mak6cPEpswyTRnuRltl429hMraQEglW+OkovnCzsiszTmsrlY//qLFjCpQDFRvjdm2wA5pPm9w==", + "dev": true, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-async-generators": { + "version": "7.8.4", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-async-generators/-/plugin-syntax-async-generators-7.8.4.tgz", + "integrity": "sha512-tycmZxkGfZaxhMRbXlPXuVFpdWlXpir2W4AMhSJgRKzk/eDlIXOhb2LHWoLpDF7TEHylV5zNhykX6KAgHJmTNw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-bigint": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-bigint/-/plugin-syntax-bigint-7.8.3.tgz", + "integrity": "sha512-wnTnFlG+YxQm3vDxpGE57Pj0srRU4sHE/mDkt1qv2YJJSeUAec2ma4WLUnUPeKjyrfntVwe/N6dCXpU+zL3Npg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-class-properties": { + "version": "7.12.13", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-class-properties/-/plugin-syntax-class-properties-7.12.13.tgz", + "integrity": "sha512-fm4idjKla0YahUNgFNLCB0qySdsoPiZP3iQE3rky0mBUtMZ23yDJ9SJdg6dXTSDnulOVqiF3Hgr9nbXvXTQZYA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.12.13" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-class-static-block": { + "version": "7.14.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-class-static-block/-/plugin-syntax-class-static-block-7.14.5.tgz", + "integrity": "sha512-b+YyPmr6ldyNnM6sqYeMWE+bgJcJpO6yS4QD7ymxgH34GBPNDM/THBh8iunyvKIZztiwLH4CJZ0RxTk9emgpjw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.14.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-dynamic-import": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-dynamic-import/-/plugin-syntax-dynamic-import-7.8.3.tgz", + "integrity": "sha512-5gdGbFon+PszYzqs83S3E5mpi7/y/8M9eC90MRTZfduQOYW76ig6SOSPNe41IG5LoP3FGBn2N0RjVDSQiS94kQ==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-export-namespace-from": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-export-namespace-from/-/plugin-syntax-export-namespace-from-7.8.3.tgz", + "integrity": "sha512-MXf5laXo6c1IbEbegDmzGPwGNTsHZmEy6QGznu5Sh2UCWvueywb2ee+CCE4zQiZstxU9BMoQO9i6zUFSY0Kj0Q==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.3" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-import-assertions": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-import-assertions/-/plugin-syntax-import-assertions-7.22.5.tgz", + "integrity": "sha512-rdV97N7KqsRzeNGoWUOK6yUsWarLjE5Su/Snk9IYPU9CwkWHs4t+rTGOvffTR8XGkJMTAdLfO0xVnXm8wugIJg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-import-attributes": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-import-attributes/-/plugin-syntax-import-attributes-7.22.5.tgz", + "integrity": "sha512-KwvoWDeNKPETmozyFE0P2rOLqh39EoQHNjqizrI5B8Vt0ZNS7M56s7dAiAqbYfiAYOuIzIh96z3iR2ktgu3tEg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-import-meta": { + "version": "7.10.4", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-import-meta/-/plugin-syntax-import-meta-7.10.4.tgz", + "integrity": "sha512-Yqfm+XDx0+Prh3VSeEQCPU81yC+JWZ2pDPFSS4ZdpfZhp4MkFMaDC1UqseovEKwSUpnIL7+vK+Clp7bfh0iD7g==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.10.4" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-json-strings": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-json-strings/-/plugin-syntax-json-strings-7.8.3.tgz", + "integrity": "sha512-lY6kdGpWHvjoe2vk4WrAapEuBR69EMxZl+RoGRhrFGNYVK8mOPAW8VfbT/ZgrFbXlDNiiaxQnAtgVCZ6jv30EA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-jsx": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-jsx/-/plugin-syntax-jsx-7.22.5.tgz", + "integrity": "sha512-gvyP4hZrgrs/wWMaocvxZ44Hw0b3W8Pe+cMxc8V1ULQ07oh8VNbIRaoD1LRZVTvD+0nieDKjfgKg89sD7rrKrg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-logical-assignment-operators": { + "version": "7.10.4", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-logical-assignment-operators/-/plugin-syntax-logical-assignment-operators-7.10.4.tgz", + "integrity": "sha512-d8waShlpFDinQ5MtvGU9xDAOzKH47+FFoney2baFIoMr952hKOLp1HR7VszoZvOsV/4+RRszNY7D17ba0te0ig==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.10.4" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-nullish-coalescing-operator": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-nullish-coalescing-operator/-/plugin-syntax-nullish-coalescing-operator-7.8.3.tgz", + "integrity": "sha512-aSff4zPII1u2QD7y+F8oDsz19ew4IGEJg9SVW+bqwpwtfFleiQDMdzA/R+UlWDzfnHFCxxleFT0PMIrR36XLNQ==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-numeric-separator": { + "version": "7.10.4", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-numeric-separator/-/plugin-syntax-numeric-separator-7.10.4.tgz", + "integrity": "sha512-9H6YdfkcK/uOnY/K7/aA2xpzaAgkQn37yzWUMRK7OaPOqOpGS1+n0H5hxT9AUw9EsSjPW8SVyMJwYRtWs3X3ug==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.10.4" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-object-rest-spread": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-object-rest-spread/-/plugin-syntax-object-rest-spread-7.8.3.tgz", + "integrity": "sha512-XoqMijGZb9y3y2XskN+P1wUGiVwWZ5JmoDRwx5+3GmEplNyVM2s2Dg8ILFQm8rWM48orGy5YpI5Bl8U1y7ydlA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-optional-catch-binding": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-optional-catch-binding/-/plugin-syntax-optional-catch-binding-7.8.3.tgz", + "integrity": "sha512-6VPD0Pc1lpTqw0aKoeRTMiB+kWhAoT24PA+ksWSBrFtl5SIRVpZlwN3NNPQjehA2E/91FV3RjLWoVTglWcSV3Q==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-optional-chaining": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-optional-chaining/-/plugin-syntax-optional-chaining-7.8.3.tgz", + "integrity": "sha512-KoK9ErH1MBlCPxV0VANkXW2/dw4vlbGDrFgz8bmUsBGYkFRcbRwMh6cIJubdPrkxRwuGdtCk0v/wPTKbQgBjkg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-private-property-in-object": { + "version": "7.14.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-private-property-in-object/-/plugin-syntax-private-property-in-object-7.14.5.tgz", + "integrity": "sha512-0wVnp9dxJ72ZUJDV27ZfbSj6iHLoytYZmh3rFcxNnvsJF3ktkzLDZPy/mA17HGsaQT3/DQsWYX1f1QGWkCoVUg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.14.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-top-level-await": { + "version": "7.14.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-top-level-await/-/plugin-syntax-top-level-await-7.14.5.tgz", + "integrity": "sha512-hx++upLv5U1rgYfwe1xBQUhRmU41NEvpUvrp8jkrSCdvGSnM5/qdRMtylJ6PG5OFkBaHkbTAKTnd3/YyESRHFw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.14.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-typescript": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-typescript/-/plugin-syntax-typescript-7.22.5.tgz", + "integrity": "sha512-1mS2o03i7t1c6VzH6fdQ3OA8tcEIxwG18zIPRp+UY1Ihv6W+XZzBCVxExF9upussPXJ0xE9XRHwMoNs1ep/nRQ==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-unicode-sets-regex": { + "version": "7.18.6", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-unicode-sets-regex/-/plugin-syntax-unicode-sets-regex-7.18.6.tgz", + "integrity": "sha512-727YkEAPwSIQTv5im8QHz3upqp92JTWhidIC81Tdx4VJYIte/VndKf1qKrfnnhPLiPghStWfvC/iFaMCQu7Nqg==", + "dev": true, + "dependencies": { + "@babel/helper-create-regexp-features-plugin": "^7.18.6", + "@babel/helper-plugin-utils": "^7.18.6" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/plugin-transform-arrow-functions": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-arrow-functions/-/plugin-transform-arrow-functions-7.22.5.tgz", + "integrity": "sha512-26lTNXoVRdAnsaDXPpvCNUq+OVWEVC6bx7Vvz9rC53F2bagUWW4u4ii2+h8Fejfh7RYqPxn+libeFBBck9muEw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-async-generator-functions": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-async-generator-functions/-/plugin-transform-async-generator-functions-7.22.15.tgz", + "integrity": "sha512-jBm1Es25Y+tVoTi5rfd5t1KLmL8ogLKpXszboWOTTtGFGz2RKnQe2yn7HbZ+kb/B8N0FVSGQo874NSlOU1T4+w==", + "dev": true, + "dependencies": { + "@babel/helper-environment-visitor": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-remap-async-to-generator": "^7.22.9", + "@babel/plugin-syntax-async-generators": "^7.8.4" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-async-to-generator": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-async-to-generator/-/plugin-transform-async-to-generator-7.22.5.tgz", + "integrity": "sha512-b1A8D8ZzE/VhNDoV1MSJTnpKkCG5bJo+19R4o4oy03zM7ws8yEMK755j61Dc3EyvdysbqH5BOOTquJ7ZX9C6vQ==", + "dev": true, + "dependencies": { + "@babel/helper-module-imports": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-remap-async-to-generator": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-block-scoped-functions": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-block-scoped-functions/-/plugin-transform-block-scoped-functions-7.22.5.tgz", + "integrity": "sha512-tdXZ2UdknEKQWKJP1KMNmuF5Lx3MymtMN/pvA+p/VEkhK8jVcQ1fzSy8KM9qRYhAf2/lV33hoMPKI/xaI9sADA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-block-scoping": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-block-scoping/-/plugin-transform-block-scoping-7.23.0.tgz", + "integrity": "sha512-cOsrbmIOXmf+5YbL99/S49Y3j46k/T16b9ml8bm9lP6N9US5iQ2yBK7gpui1pg0V/WMcXdkfKbTb7HXq9u+v4g==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-class-properties": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-class-properties/-/plugin-transform-class-properties-7.22.5.tgz", + "integrity": "sha512-nDkQ0NfkOhPTq8YCLiWNxp1+f9fCobEjCb0n8WdbNUBc4IB5V7P1QnX9IjpSoquKrXF5SKojHleVNs2vGeHCHQ==", + "dev": true, + "dependencies": { + "@babel/helper-create-class-features-plugin": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-class-static-block": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-class-static-block/-/plugin-transform-class-static-block-7.22.11.tgz", + "integrity": "sha512-GMM8gGmqI7guS/llMFk1bJDkKfn3v3C4KHK9Yg1ey5qcHcOlKb0QvcMrgzvxo+T03/4szNh5lghY+fEC98Kq9g==", + "dev": true, + "dependencies": { + "@babel/helper-create-class-features-plugin": "^7.22.11", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-class-static-block": "^7.14.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.12.0" + } + }, + "node_modules/@babel/plugin-transform-classes": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-classes/-/plugin-transform-classes-7.22.15.tgz", + "integrity": "sha512-VbbC3PGjBdE0wAWDdHM9G8Gm977pnYI0XpqMd6LrKISj8/DJXEsWqgRuTYaNE9Bv0JGhTZUzHDlMk18IpOuoqw==", + "dev": true, + "dependencies": { + "@babel/helper-annotate-as-pure": "^7.22.5", + "@babel/helper-compilation-targets": "^7.22.15", + "@babel/helper-environment-visitor": "^7.22.5", + "@babel/helper-function-name": "^7.22.5", + "@babel/helper-optimise-call-expression": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-replace-supers": "^7.22.9", + "@babel/helper-split-export-declaration": "^7.22.6", + "globals": "^11.1.0" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-computed-properties": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-computed-properties/-/plugin-transform-computed-properties-7.22.5.tgz", + "integrity": "sha512-4GHWBgRf0krxPX+AaPtgBAlTgTeZmqDynokHOX7aqqAB4tHs3U2Y02zH6ETFdLZGcg9UQSD1WCmkVrE9ErHeOg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/template": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-destructuring": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-destructuring/-/plugin-transform-destructuring-7.23.0.tgz", + "integrity": "sha512-vaMdgNXFkYrB+8lbgniSYWHsgqK5gjaMNcc84bMIOMRLH0L9AqYq3hwMdvnyqj1OPqea8UtjPEuS/DCenah1wg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-dotall-regex": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-dotall-regex/-/plugin-transform-dotall-regex-7.22.5.tgz", + "integrity": "sha512-5/Yk9QxCQCl+sOIB1WelKnVRxTJDSAIxtJLL2/pqL14ZVlbH0fUQUZa/T5/UnQtBNgghR7mfB8ERBKyKPCi7Vw==", + "dev": true, + "dependencies": { + "@babel/helper-create-regexp-features-plugin": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-duplicate-keys": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-duplicate-keys/-/plugin-transform-duplicate-keys-7.22.5.tgz", + "integrity": "sha512-dEnYD+9BBgld5VBXHnF/DbYGp3fqGMsyxKbtD1mDyIA7AkTSpKXFhCVuj/oQVOoALfBs77DudA0BE4d5mcpmqw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-dynamic-import": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-dynamic-import/-/plugin-transform-dynamic-import-7.22.11.tgz", + "integrity": "sha512-g/21plo58sfteWjaO0ZNVb+uEOkJNjAaHhbejrnBmu011l/eNDScmkbjCC3l4FKb10ViaGU4aOkFznSu2zRHgA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-dynamic-import": "^7.8.3" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-exponentiation-operator": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-exponentiation-operator/-/plugin-transform-exponentiation-operator-7.22.5.tgz", + "integrity": "sha512-vIpJFNM/FjZ4rh1myqIya9jXwrwwgFRHPjT3DkUA9ZLHuzox8jiXkOLvwm1H+PQIP3CqfC++WPKeuDi0Sjdj1g==", + "dev": true, + "dependencies": { + "@babel/helper-builder-binary-assignment-operator-visitor": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-export-namespace-from": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-export-namespace-from/-/plugin-transform-export-namespace-from-7.22.11.tgz", + "integrity": "sha512-xa7aad7q7OiT8oNZ1mU7NrISjlSkVdMbNxn9IuLZyL9AJEhs1Apba3I+u5riX1dIkdptP5EKDG5XDPByWxtehw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-export-namespace-from": "^7.8.3" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-for-of": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-for-of/-/plugin-transform-for-of-7.22.15.tgz", + "integrity": "sha512-me6VGeHsx30+xh9fbDLLPi0J1HzmeIIyenoOQHuw2D4m2SAU3NrspX5XxJLBpqn5yrLzrlw2Iy3RA//Bx27iOA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-function-name": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-function-name/-/plugin-transform-function-name-7.22.5.tgz", + "integrity": "sha512-UIzQNMS0p0HHiQm3oelztj+ECwFnj+ZRV4KnguvlsD2of1whUeM6o7wGNj6oLwcDoAXQ8gEqfgC24D+VdIcevg==", + "dev": true, + "dependencies": { + "@babel/helper-compilation-targets": "^7.22.5", + "@babel/helper-function-name": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-json-strings": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-json-strings/-/plugin-transform-json-strings-7.22.11.tgz", + "integrity": "sha512-CxT5tCqpA9/jXFlme9xIBCc5RPtdDq3JpkkhgHQqtDdiTnTI0jtZ0QzXhr5DILeYifDPp2wvY2ad+7+hLMW5Pw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-json-strings": "^7.8.3" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-literals": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-literals/-/plugin-transform-literals-7.22.5.tgz", + "integrity": "sha512-fTLj4D79M+mepcw3dgFBTIDYpbcB9Sm0bpm4ppXPaO+U+PKFFyV9MGRvS0gvGw62sd10kT5lRMKXAADb9pWy8g==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-logical-assignment-operators": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-logical-assignment-operators/-/plugin-transform-logical-assignment-operators-7.22.11.tgz", + "integrity": "sha512-qQwRTP4+6xFCDV5k7gZBF3C31K34ut0tbEcTKxlX/0KXxm9GLcO14p570aWxFvVzx6QAfPgq7gaeIHXJC8LswQ==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-logical-assignment-operators": "^7.10.4" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-member-expression-literals": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-member-expression-literals/-/plugin-transform-member-expression-literals-7.22.5.tgz", + "integrity": "sha512-RZEdkNtzzYCFl9SE9ATaUMTj2hqMb4StarOJLrZRbqqU4HSBE7UlBw9WBWQiDzrJZJdUWiMTVDI6Gv/8DPvfew==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-modules-amd": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-modules-amd/-/plugin-transform-modules-amd-7.23.0.tgz", + "integrity": "sha512-xWT5gefv2HGSm4QHtgc1sYPbseOyf+FFDo2JbpE25GWl5BqTGO9IMwTYJRoIdjsF85GE+VegHxSCUt5EvoYTAw==", + "dev": true, + "dependencies": { + "@babel/helper-module-transforms": "^7.23.0", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-modules-commonjs": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-modules-commonjs/-/plugin-transform-modules-commonjs-7.23.0.tgz", + "integrity": "sha512-32Xzss14/UVc7k9g775yMIvkVK8xwKE0DPdP5JTapr3+Z9w4tzeOuLNY6BXDQR6BdnzIlXnCGAzsk/ICHBLVWQ==", + "dev": true, + "dependencies": { + "@babel/helper-module-transforms": "^7.23.0", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-simple-access": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-modules-systemjs": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-modules-systemjs/-/plugin-transform-modules-systemjs-7.23.0.tgz", + "integrity": "sha512-qBej6ctXZD2f+DhlOC9yO47yEYgUh5CZNz/aBoH4j/3NOlRfJXJbY7xDQCqQVf9KbrqGzIWER1f23doHGrIHFg==", + "dev": true, + "dependencies": { + "@babel/helper-hoist-variables": "^7.22.5", + "@babel/helper-module-transforms": "^7.23.0", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-validator-identifier": "^7.22.20" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-modules-umd": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-modules-umd/-/plugin-transform-modules-umd-7.22.5.tgz", + "integrity": "sha512-+S6kzefN/E1vkSsKx8kmQuqeQsvCKCd1fraCM7zXm4SFoggI099Tr4G8U81+5gtMdUeMQ4ipdQffbKLX0/7dBQ==", + "dev": true, + "dependencies": { + "@babel/helper-module-transforms": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-named-capturing-groups-regex": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-named-capturing-groups-regex/-/plugin-transform-named-capturing-groups-regex-7.22.5.tgz", + "integrity": "sha512-YgLLKmS3aUBhHaxp5hi1WJTgOUb/NCuDHzGT9z9WTt3YG+CPRhJs6nprbStx6DnWM4dh6gt7SU3sZodbZ08adQ==", + "dev": true, + "dependencies": { + "@babel/helper-create-regexp-features-plugin": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/plugin-transform-new-target": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-new-target/-/plugin-transform-new-target-7.22.5.tgz", + "integrity": "sha512-AsF7K0Fx/cNKVyk3a+DW0JLo+Ua598/NxMRvxDnkpCIGFh43+h/v2xyhRUYf6oD8gE4QtL83C7zZVghMjHd+iw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-nullish-coalescing-operator": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-nullish-coalescing-operator/-/plugin-transform-nullish-coalescing-operator-7.22.11.tgz", + "integrity": "sha512-YZWOw4HxXrotb5xsjMJUDlLgcDXSfO9eCmdl1bgW4+/lAGdkjaEvOnQ4p5WKKdUgSzO39dgPl0pTnfxm0OAXcg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-nullish-coalescing-operator": "^7.8.3" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-numeric-separator": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-numeric-separator/-/plugin-transform-numeric-separator-7.22.11.tgz", + "integrity": "sha512-3dzU4QGPsILdJbASKhF/V2TVP+gJya1PsueQCxIPCEcerqF21oEcrob4mzjsp2Py/1nLfF5m+xYNMDpmA8vffg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-numeric-separator": "^7.10.4" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-object-rest-spread": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-object-rest-spread/-/plugin-transform-object-rest-spread-7.22.15.tgz", + "integrity": "sha512-fEB+I1+gAmfAyxZcX1+ZUwLeAuuf8VIg67CTznZE0MqVFumWkh8xWtn58I4dxdVf080wn7gzWoF8vndOViJe9Q==", + "dev": true, + "dependencies": { + "@babel/compat-data": "^7.22.9", + "@babel/helper-compilation-targets": "^7.22.15", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-object-rest-spread": "^7.8.3", + "@babel/plugin-transform-parameters": "^7.22.15" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-object-super": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-object-super/-/plugin-transform-object-super-7.22.5.tgz", + "integrity": "sha512-klXqyaT9trSjIUrcsYIfETAzmOEZL3cBYqOYLJxBHfMFFggmXOv+NYSX/Jbs9mzMVESw/WycLFPRx8ba/b2Ipw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-replace-supers": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-optional-catch-binding": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-optional-catch-binding/-/plugin-transform-optional-catch-binding-7.22.11.tgz", + "integrity": "sha512-rli0WxesXUeCJnMYhzAglEjLWVDF6ahb45HuprcmQuLidBJFWjNnOzssk2kuc6e33FlLaiZhG/kUIzUMWdBKaQ==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-optional-catch-binding": "^7.8.3" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-optional-chaining": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-optional-chaining/-/plugin-transform-optional-chaining-7.23.0.tgz", + "integrity": "sha512-sBBGXbLJjxTzLBF5rFWaikMnOGOk/BmK6vVByIdEggZ7Vn6CvWXZyRkkLFK6WE0IF8jSliyOkUN6SScFgzCM0g==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-skip-transparent-expression-wrappers": "^7.22.5", + "@babel/plugin-syntax-optional-chaining": "^7.8.3" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-parameters": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-parameters/-/plugin-transform-parameters-7.22.15.tgz", + "integrity": "sha512-hjk7qKIqhyzhhUvRT683TYQOFa/4cQKwQy7ALvTpODswN40MljzNDa0YldevS6tGbxwaEKVn502JmY0dP7qEtQ==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-private-methods": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-private-methods/-/plugin-transform-private-methods-7.22.5.tgz", + "integrity": "sha512-PPjh4gyrQnGe97JTalgRGMuU4icsZFnWkzicB/fUtzlKUqvsWBKEpPPfr5a2JiyirZkHxnAqkQMO5Z5B2kK3fA==", + "dev": true, + "dependencies": { + "@babel/helper-create-class-features-plugin": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-private-property-in-object": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-private-property-in-object/-/plugin-transform-private-property-in-object-7.22.11.tgz", + "integrity": "sha512-sSCbqZDBKHetvjSwpyWzhuHkmW5RummxJBVbYLkGkaiTOWGxml7SXt0iWa03bzxFIx7wOj3g/ILRd0RcJKBeSQ==", + "dev": true, + "dependencies": { + "@babel/helper-annotate-as-pure": "^7.22.5", + "@babel/helper-create-class-features-plugin": "^7.22.11", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-private-property-in-object": "^7.14.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-property-literals": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-property-literals/-/plugin-transform-property-literals-7.22.5.tgz", + "integrity": "sha512-TiOArgddK3mK/x1Qwf5hay2pxI6wCZnvQqrFSqbtg1GLl2JcNMitVH/YnqjP+M31pLUeTfzY1HAXFDnUBV30rQ==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-regenerator": { + "version": "7.22.10", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-regenerator/-/plugin-transform-regenerator-7.22.10.tgz", + "integrity": "sha512-F28b1mDt8KcT5bUyJc/U9nwzw6cV+UmTeRlXYIl2TNqMMJif0Jeey9/RQ3C4NOd2zp0/TRsDns9ttj2L523rsw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "regenerator-transform": "^0.15.2" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-reserved-words": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-reserved-words/-/plugin-transform-reserved-words-7.22.5.tgz", + "integrity": "sha512-DTtGKFRQUDm8svigJzZHzb/2xatPc6TzNvAIJ5GqOKDsGFYgAskjRulbR/vGsPKq3OPqtexnz327qYpP57RFyA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-shorthand-properties": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-shorthand-properties/-/plugin-transform-shorthand-properties-7.22.5.tgz", + "integrity": "sha512-vM4fq9IXHscXVKzDv5itkO1X52SmdFBFcMIBZ2FRn2nqVYqw6dBexUgMvAjHW+KXpPPViD/Yo3GrDEBaRC0QYA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-spread": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-spread/-/plugin-transform-spread-7.22.5.tgz", + "integrity": "sha512-5ZzDQIGyvN4w8+dMmpohL6MBo+l2G7tfC/O2Dg7/hjpgeWvUx8FzfeOKxGog9IimPa4YekaQ9PlDqTLOljkcxg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-skip-transparent-expression-wrappers": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-sticky-regex": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-sticky-regex/-/plugin-transform-sticky-regex-7.22.5.tgz", + "integrity": "sha512-zf7LuNpHG0iEeiyCNwX4j3gDg1jgt1k3ZdXBKbZSoA3BbGQGvMiSvfbZRR3Dr3aeJe3ooWFZxOOG3IRStYp2Bw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-template-literals": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-template-literals/-/plugin-transform-template-literals-7.22.5.tgz", + "integrity": "sha512-5ciOehRNf+EyUeewo8NkbQiUs4d6ZxiHo6BcBcnFlgiJfu16q0bQUw9Jvo0b0gBKFG1SMhDSjeKXSYuJLeFSMA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-typeof-symbol": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-typeof-symbol/-/plugin-transform-typeof-symbol-7.22.5.tgz", + "integrity": "sha512-bYkI5lMzL4kPii4HHEEChkD0rkc+nvnlR6+o/qdqR6zrm0Sv/nodmyLhlq2DO0YKLUNd2VePmPRjJXSBh9OIdA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-unicode-escapes": { + "version": "7.22.10", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-unicode-escapes/-/plugin-transform-unicode-escapes-7.22.10.tgz", + "integrity": "sha512-lRfaRKGZCBqDlRU3UIFovdp9c9mEvlylmpod0/OatICsSfuQ9YFthRo1tpTkGsklEefZdqlEFdY4A2dwTb6ohg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-unicode-property-regex": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-unicode-property-regex/-/plugin-transform-unicode-property-regex-7.22.5.tgz", + "integrity": "sha512-HCCIb+CbJIAE6sXn5CjFQXMwkCClcOfPCzTlilJ8cUatfzwHlWQkbtV0zD338u9dZskwvuOYTuuaMaA8J5EI5A==", + "dev": true, + "dependencies": { + "@babel/helper-create-regexp-features-plugin": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-unicode-regex": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-unicode-regex/-/plugin-transform-unicode-regex-7.22.5.tgz", + "integrity": "sha512-028laaOKptN5vHJf9/Arr/HiJekMd41hOEZYvNsrsXqJ7YPYuX2bQxh31fkZzGmq3YqHRJzYFFAVYvKfMPKqyg==", + "dev": true, + "dependencies": { + "@babel/helper-create-regexp-features-plugin": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-unicode-sets-regex": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-unicode-sets-regex/-/plugin-transform-unicode-sets-regex-7.22.5.tgz", + "integrity": "sha512-lhMfi4FC15j13eKrh3DnYHjpGj6UKQHtNKTbtc1igvAhRy4+kLhV07OpLcsN0VgDEw/MjAvJO4BdMJsHwMhzCg==", + "dev": true, + "dependencies": { + "@babel/helper-create-regexp-features-plugin": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/preset-env": { + "version": "7.22.20", + "resolved": "https://registry.npmjs.org/@babel/preset-env/-/preset-env-7.22.20.tgz", + "integrity": "sha512-11MY04gGC4kSzlPHRfvVkNAZhUxOvm7DCJ37hPDnUENwe06npjIRAfInEMTGSb4LZK5ZgDFkv5hw0lGebHeTyg==", + "dev": true, + "dependencies": { + "@babel/compat-data": "^7.22.20", + "@babel/helper-compilation-targets": "^7.22.15", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-validator-option": "^7.22.15", + "@babel/plugin-bugfix-safari-id-destructuring-collision-in-function-expression": "^7.22.15", + "@babel/plugin-bugfix-v8-spread-parameters-in-optional-chaining": "^7.22.15", + "@babel/plugin-proposal-private-property-in-object": "7.21.0-placeholder-for-preset-env.2", + "@babel/plugin-syntax-async-generators": "^7.8.4", + "@babel/plugin-syntax-class-properties": "^7.12.13", + "@babel/plugin-syntax-class-static-block": "^7.14.5", + "@babel/plugin-syntax-dynamic-import": "^7.8.3", + "@babel/plugin-syntax-export-namespace-from": "^7.8.3", + "@babel/plugin-syntax-import-assertions": "^7.22.5", + "@babel/plugin-syntax-import-attributes": "^7.22.5", + "@babel/plugin-syntax-import-meta": "^7.10.4", + "@babel/plugin-syntax-json-strings": "^7.8.3", + "@babel/plugin-syntax-logical-assignment-operators": "^7.10.4", + "@babel/plugin-syntax-nullish-coalescing-operator": "^7.8.3", + "@babel/plugin-syntax-numeric-separator": "^7.10.4", + "@babel/plugin-syntax-object-rest-spread": "^7.8.3", + "@babel/plugin-syntax-optional-catch-binding": "^7.8.3", + "@babel/plugin-syntax-optional-chaining": "^7.8.3", + "@babel/plugin-syntax-private-property-in-object": "^7.14.5", + "@babel/plugin-syntax-top-level-await": "^7.14.5", + "@babel/plugin-syntax-unicode-sets-regex": "^7.18.6", + "@babel/plugin-transform-arrow-functions": "^7.22.5", + "@babel/plugin-transform-async-generator-functions": "^7.22.15", + "@babel/plugin-transform-async-to-generator": "^7.22.5", + "@babel/plugin-transform-block-scoped-functions": "^7.22.5", + "@babel/plugin-transform-block-scoping": "^7.22.15", + "@babel/plugin-transform-class-properties": "^7.22.5", + "@babel/plugin-transform-class-static-block": "^7.22.11", + "@babel/plugin-transform-classes": "^7.22.15", + "@babel/plugin-transform-computed-properties": "^7.22.5", + "@babel/plugin-transform-destructuring": "^7.22.15", + "@babel/plugin-transform-dotall-regex": "^7.22.5", + "@babel/plugin-transform-duplicate-keys": "^7.22.5", + "@babel/plugin-transform-dynamic-import": "^7.22.11", + "@babel/plugin-transform-exponentiation-operator": "^7.22.5", + "@babel/plugin-transform-export-namespace-from": "^7.22.11", + "@babel/plugin-transform-for-of": "^7.22.15", + "@babel/plugin-transform-function-name": "^7.22.5", + "@babel/plugin-transform-json-strings": "^7.22.11", + "@babel/plugin-transform-literals": "^7.22.5", + "@babel/plugin-transform-logical-assignment-operators": "^7.22.11", + "@babel/plugin-transform-member-expression-literals": "^7.22.5", + "@babel/plugin-transform-modules-amd": "^7.22.5", + "@babel/plugin-transform-modules-commonjs": "^7.22.15", + "@babel/plugin-transform-modules-systemjs": "^7.22.11", + "@babel/plugin-transform-modules-umd": "^7.22.5", + "@babel/plugin-transform-named-capturing-groups-regex": "^7.22.5", + "@babel/plugin-transform-new-target": "^7.22.5", + "@babel/plugin-transform-nullish-coalescing-operator": "^7.22.11", + "@babel/plugin-transform-numeric-separator": "^7.22.11", + "@babel/plugin-transform-object-rest-spread": "^7.22.15", + "@babel/plugin-transform-object-super": "^7.22.5", + "@babel/plugin-transform-optional-catch-binding": "^7.22.11", + "@babel/plugin-transform-optional-chaining": "^7.22.15", + "@babel/plugin-transform-parameters": "^7.22.15", + "@babel/plugin-transform-private-methods": "^7.22.5", + "@babel/plugin-transform-private-property-in-object": "^7.22.11", + "@babel/plugin-transform-property-literals": "^7.22.5", + "@babel/plugin-transform-regenerator": "^7.22.10", + "@babel/plugin-transform-reserved-words": "^7.22.5", + "@babel/plugin-transform-shorthand-properties": "^7.22.5", + "@babel/plugin-transform-spread": "^7.22.5", + "@babel/plugin-transform-sticky-regex": "^7.22.5", + "@babel/plugin-transform-template-literals": "^7.22.5", + "@babel/plugin-transform-typeof-symbol": "^7.22.5", + "@babel/plugin-transform-unicode-escapes": "^7.22.10", + "@babel/plugin-transform-unicode-property-regex": "^7.22.5", + "@babel/plugin-transform-unicode-regex": "^7.22.5", + "@babel/plugin-transform-unicode-sets-regex": "^7.22.5", + "@babel/preset-modules": "0.1.6-no-external-plugins", + "@babel/types": "^7.22.19", + "babel-plugin-polyfill-corejs2": "^0.4.5", + "babel-plugin-polyfill-corejs3": "^0.8.3", + "babel-plugin-polyfill-regenerator": "^0.5.2", + "core-js-compat": "^3.31.0", + "semver": "^6.3.1" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/preset-modules": { + "version": "0.1.6-no-external-plugins", + "resolved": "https://registry.npmjs.org/@babel/preset-modules/-/preset-modules-0.1.6-no-external-plugins.tgz", + "integrity": "sha512-HrcgcIESLm9aIR842yhJ5RWan/gebQUJ6E/E5+rf0y9o6oj7w0Br+sWuL6kEQ/o/AdfvR1Je9jG18/gnpwjEyA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.0.0", + "@babel/types": "^7.4.4", + "esutils": "^2.0.2" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0 || ^8.0.0-0 <8.0.0" + } + }, + "node_modules/@babel/regjsgen": { + "version": "0.8.0", + "resolved": "https://registry.npmjs.org/@babel/regjsgen/-/regjsgen-0.8.0.tgz", + "integrity": "sha512-x/rqGMdzj+fWZvCOYForTghzbtqPDZ5gPwaoNGHdgDfF2QA/XZbCBp4Moo5scrkAMPhB7z26XM/AaHuIJdgauA==", + "dev": true + }, + "node_modules/@babel/runtime": { + "version": "7.23.1", + "resolved": "https://registry.npmjs.org/@babel/runtime/-/runtime-7.23.1.tgz", + "integrity": "sha512-hC2v6p8ZSI/W0HUzh3V8C5g+NwSKzKPtJwSpTjwl0o297GP9+ZLQSkdvHz46CM3LqyoXxq+5G9komY+eSqSO0g==", + "dev": true, + "dependencies": { + "regenerator-runtime": "^0.14.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/template": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/template/-/template-7.22.15.tgz", + "integrity": "sha512-QPErUVm4uyJa60rkI73qneDacvdvzxshT3kksGqlGWYdOTIUOwJ7RDUL8sGqslY1uXWSL6xMFKEXDS3ox2uF0w==", + "dev": true, + "dependencies": { + "@babel/code-frame": "^7.22.13", + "@babel/parser": "^7.22.15", + "@babel/types": "^7.22.15" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/traverse": { + "version": "7.23.2", + "resolved": "https://registry.npmjs.org/@babel/traverse/-/traverse-7.23.2.tgz", + "integrity": "sha512-azpe59SQ48qG6nu2CzcMLbxUudtN+dOM9kDbUqGq3HXUJRlo7i8fvPoxQUzYgLZ4cMVmuZgm8vvBpNeRhd6XSw==", + "dev": true, + "dependencies": { + "@babel/code-frame": "^7.22.13", + "@babel/generator": "^7.23.0", + "@babel/helper-environment-visitor": "^7.22.20", + "@babel/helper-function-name": "^7.23.0", + "@babel/helper-hoist-variables": "^7.22.5", + "@babel/helper-split-export-declaration": "^7.22.6", + "@babel/parser": "^7.23.0", + "@babel/types": "^7.23.0", + "debug": "^4.1.0", + "globals": "^11.1.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/types": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/types/-/types-7.23.0.tgz", + "integrity": "sha512-0oIyUfKoI3mSqMvsxBdclDwxXKXAUA8v/apZbc+iSyARYou1o8ZGDxbUYyLFoW2arqS2jDGqJuZvv1d/io1axg==", + "dev": true, + "dependencies": { + "@babel/helper-string-parser": "^7.22.5", + "@babel/helper-validator-identifier": "^7.22.20", + "to-fast-properties": "^2.0.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@bcoe/v8-coverage": { + "version": "0.2.3", + "resolved": "https://registry.npmjs.org/@bcoe/v8-coverage/-/v8-coverage-0.2.3.tgz", + "integrity": "sha512-0hYQ8SB4Db5zvZB4axdMHGwEaQjkZzFjQiN9LVYvIFB2nSUHW9tYpxWriPrWDASIxiaXax83REcLxuSdnGPZtw==", + "dev": true + }, + "node_modules/@istanbuljs/load-nyc-config": { + "version": "1.1.0", + "resolved": "https://registry.npmjs.org/@istanbuljs/load-nyc-config/-/load-nyc-config-1.1.0.tgz", + "integrity": "sha512-VjeHSlIzpv/NyD3N0YuHfXOPDIixcA1q2ZV98wsMqcYlPmv2n3Yb2lYP9XMElnaFVXg5A7YLTeLu6V84uQDjmQ==", + "dev": true, + "dependencies": { + "camelcase": "^5.3.1", + "find-up": "^4.1.0", + "get-package-type": "^0.1.0", + "js-yaml": "^3.13.1", + "resolve-from": "^5.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/@istanbuljs/schema": { + "version": "0.1.3", + "resolved": "https://registry.npmjs.org/@istanbuljs/schema/-/schema-0.1.3.tgz", + "integrity": "sha512-ZXRY4jNvVgSVQ8DL3LTcakaAtXwTVUxE81hslsyD2AtoXW/wVob10HkOJ1X/pAlcI7D+2YoZKg5do8G/w6RYgA==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/@jest/console": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/console/-/console-29.7.0.tgz", + "integrity": "sha512-5Ni4CU7XHQi32IJ398EEP4RrB8eV09sXP2ROqD4bksHrnTree52PsxvX8tpL8LvTZ3pFzXyPbNQReSN41CAhOg==", + "dev": true, + "dependencies": { + "@jest/types": "^29.6.3", + "@types/node": "*", + "chalk": "^4.0.0", + "jest-message-util": "^29.7.0", + "jest-util": "^29.7.0", + "slash": "^3.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/core": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/core/-/core-29.7.0.tgz", + "integrity": "sha512-n7aeXWKMnGtDA48y8TLWJPJmLmmZ642Ceo78cYWEpiD7FzDgmNDV/GCVRorPABdXLJZ/9wzzgZAlHjXjxDHGsg==", + "dev": true, + "dependencies": { + "@jest/console": "^29.7.0", + "@jest/reporters": "^29.7.0", + "@jest/test-result": "^29.7.0", + "@jest/transform": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "ansi-escapes": "^4.2.1", + "chalk": "^4.0.0", + "ci-info": "^3.2.0", + "exit": "^0.1.2", + "graceful-fs": "^4.2.9", + "jest-changed-files": "^29.7.0", + "jest-config": "^29.7.0", + "jest-haste-map": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-regex-util": "^29.6.3", + "jest-resolve": "^29.7.0", + "jest-resolve-dependencies": "^29.7.0", + "jest-runner": "^29.7.0", + "jest-runtime": "^29.7.0", + "jest-snapshot": "^29.7.0", + "jest-util": "^29.7.0", + "jest-validate": "^29.7.0", + "jest-watcher": "^29.7.0", + "micromatch": "^4.0.4", + "pretty-format": "^29.7.0", + "slash": "^3.0.0", + "strip-ansi": "^6.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" + }, + "peerDependenciesMeta": { + "node-notifier": { + "optional": true + } + } + }, + "node_modules/@jest/environment": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/environment/-/environment-29.7.0.tgz", + "integrity": "sha512-aQIfHDq33ExsN4jP1NWGXhxgQ/wixs60gDiKO+XVMd8Mn0NWPWgc34ZQDTb2jKaUWQ7MuwoitXAsN2XVXNMpAw==", + "dev": true, + "dependencies": { + "@jest/fake-timers": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "jest-mock": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/expect": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/expect/-/expect-29.7.0.tgz", + "integrity": "sha512-8uMeAMycttpva3P1lBHB8VciS9V0XAr3GymPpipdyQXbBcuhkLQOSe8E/p92RyAdToS6ZD1tFkX+CkhoECE0dQ==", + "dev": true, + "dependencies": { + "expect": "^29.7.0", + "jest-snapshot": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/expect-utils": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/expect-utils/-/expect-utils-29.7.0.tgz", + "integrity": "sha512-GlsNBWiFQFCVi9QVSx7f5AgMeLxe9YCCs5PuP2O2LdjDAA8Jh9eX7lA1Jq/xdXw3Wb3hyvlFNfZIfcRetSzYcA==", + "dev": true, + "dependencies": { + "jest-get-type": "^29.6.3" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/fake-timers": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/fake-timers/-/fake-timers-29.7.0.tgz", + "integrity": "sha512-q4DH1Ha4TTFPdxLsqDXK1d3+ioSL7yL5oCMJZgDYm6i+6CygW5E5xVr/D1HdsGxjt1ZWSfUAs9OxSB/BNelWrQ==", + "dev": true, + "dependencies": { + "@jest/types": "^29.6.3", + "@sinonjs/fake-timers": "^10.0.2", + "@types/node": "*", + "jest-message-util": "^29.7.0", + "jest-mock": "^29.7.0", + "jest-util": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/globals": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/globals/-/globals-29.7.0.tgz", + "integrity": "sha512-mpiz3dutLbkW2MNFubUGUEVLkTGiqW6yLVTA+JbP6fI6J5iL9Y0Nlg8k95pcF8ctKwCS7WVxteBs29hhfAotzQ==", + "dev": true, + "dependencies": { + "@jest/environment": "^29.7.0", + "@jest/expect": "^29.7.0", + "@jest/types": "^29.6.3", + "jest-mock": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/reporters": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/reporters/-/reporters-29.7.0.tgz", + "integrity": "sha512-DApq0KJbJOEzAFYjHADNNxAE3KbhxQB1y5Kplb5Waqw6zVbuWatSnMjE5gs8FUgEPmNsnZA3NCWl9NG0ia04Pg==", + "dev": true, + "dependencies": { + "@bcoe/v8-coverage": "^0.2.3", + "@jest/console": "^29.7.0", + "@jest/test-result": "^29.7.0", + "@jest/transform": "^29.7.0", + "@jest/types": "^29.6.3", + "@jridgewell/trace-mapping": "^0.3.18", + "@types/node": "*", + "chalk": "^4.0.0", + "collect-v8-coverage": "^1.0.0", + "exit": "^0.1.2", + "glob": "^7.1.3", + "graceful-fs": "^4.2.9", + "istanbul-lib-coverage": "^3.0.0", + "istanbul-lib-instrument": "^6.0.0", + "istanbul-lib-report": "^3.0.0", + "istanbul-lib-source-maps": "^4.0.0", + "istanbul-reports": "^3.1.3", + "jest-message-util": "^29.7.0", + "jest-util": "^29.7.0", + "jest-worker": "^29.7.0", + "slash": "^3.0.0", + "string-length": "^4.0.1", + "strip-ansi": "^6.0.0", + "v8-to-istanbul": "^9.0.1" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" + }, + "peerDependenciesMeta": { + "node-notifier": { + "optional": true + } + } + }, + "node_modules/@jest/schemas": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/@jest/schemas/-/schemas-29.6.3.tgz", + "integrity": "sha512-mo5j5X+jIZmJQveBKeS/clAueipV7KgiX1vMgCxam1RNYiqE1w62n0/tJJnHtjW8ZHcQco5gY85jA3mi0L+nSA==", + "dev": true, + "dependencies": { + "@sinclair/typebox": "^0.27.8" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/source-map": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/@jest/source-map/-/source-map-29.6.3.tgz", + "integrity": "sha512-MHjT95QuipcPrpLM+8JMSzFx6eHp5Bm+4XeFDJlwsvVBjmKNiIAvasGK2fxz2WbGRlnvqehFbh07MMa7n3YJnw==", + "dev": true, + "dependencies": { + "@jridgewell/trace-mapping": "^0.3.18", + "callsites": "^3.0.0", + "graceful-fs": "^4.2.9" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/test-result": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/test-result/-/test-result-29.7.0.tgz", + "integrity": "sha512-Fdx+tv6x1zlkJPcWXmMDAG2HBnaR9XPSd5aDWQVsfrZmLVT3lU1cwyxLgRmXR9yrq4NBoEm9BMsfgFzTQAbJYA==", + "dev": true, + "dependencies": { + "@jest/console": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/istanbul-lib-coverage": "^2.0.0", + "collect-v8-coverage": "^1.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/test-sequencer": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/test-sequencer/-/test-sequencer-29.7.0.tgz", + "integrity": "sha512-GQwJ5WZVrKnOJuiYiAF52UNUJXgTZx1NHjFSEB0qEMmSZKAkdMoIzw/Cj6x6NF4AvV23AUqDpFzQkN/eYCYTxw==", + "dev": true, + "dependencies": { + "@jest/test-result": "^29.7.0", + "graceful-fs": "^4.2.9", + "jest-haste-map": "^29.7.0", + "slash": "^3.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/transform": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/transform/-/transform-29.7.0.tgz", + "integrity": "sha512-ok/BTPFzFKVMwO5eOHRrvnBVHdRy9IrsrW1GpMaQ9MCnilNLXQKmAX8s1YXDFaai9xJpac2ySzV0YeRRECr2Vw==", + "dev": true, + "dependencies": { + "@babel/core": "^7.11.6", + "@jest/types": "^29.6.3", + "@jridgewell/trace-mapping": "^0.3.18", + "babel-plugin-istanbul": "^6.1.1", + "chalk": "^4.0.0", + "convert-source-map": "^2.0.0", + "fast-json-stable-stringify": "^2.1.0", + "graceful-fs": "^4.2.9", + "jest-haste-map": "^29.7.0", + "jest-regex-util": "^29.6.3", + "jest-util": "^29.7.0", + "micromatch": "^4.0.4", + "pirates": "^4.0.4", + "slash": "^3.0.0", + "write-file-atomic": "^4.0.2" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/types": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/@jest/types/-/types-29.6.3.tgz", + "integrity": "sha512-u3UPsIilWKOM3F9CXtrG8LEJmNxwoCQC/XVj4IKYXvvpx7QIi/Kg1LI5uDmDpKlac62NUtX7eLjRh+jVZcLOzw==", + "dev": true, + "dependencies": { + "@jest/schemas": "^29.6.3", + "@types/istanbul-lib-coverage": "^2.0.0", + "@types/istanbul-reports": "^3.0.0", + "@types/node": "*", + "@types/yargs": "^17.0.8", + "chalk": "^4.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jridgewell/gen-mapping": { + "version": "0.3.3", + "resolved": "https://registry.npmjs.org/@jridgewell/gen-mapping/-/gen-mapping-0.3.3.tgz", + "integrity": "sha512-HLhSWOLRi875zjjMG/r+Nv0oCW8umGb0BgEhyX3dDX3egwZtB8PqLnjz3yedt8R5StBrzcg4aBpnh8UA9D1BoQ==", + "dev": true, + "dependencies": { + "@jridgewell/set-array": "^1.0.1", + "@jridgewell/sourcemap-codec": "^1.4.10", + "@jridgewell/trace-mapping": "^0.3.9" + }, + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/@jridgewell/resolve-uri": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/@jridgewell/resolve-uri/-/resolve-uri-3.1.1.tgz", + "integrity": "sha512-dSYZh7HhCDtCKm4QakX0xFpsRDqjjtZf/kjI/v3T3Nwt5r8/qz/M19F9ySyOqU94SXBmeG9ttTul+YnR4LOxFA==", + "dev": true, + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/@jridgewell/set-array": { + "version": "1.1.2", + "resolved": "https://registry.npmjs.org/@jridgewell/set-array/-/set-array-1.1.2.tgz", + "integrity": "sha512-xnkseuNADM0gt2bs+BvhO0p78Mk762YnZdsuzFV018NoG1Sj1SCQvpSqa7XUaTam5vAGasABV9qXASMKnFMwMw==", + "dev": true, + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/@jridgewell/sourcemap-codec": { + "version": "1.4.15", + "resolved": "https://registry.npmjs.org/@jridgewell/sourcemap-codec/-/sourcemap-codec-1.4.15.tgz", + "integrity": "sha512-eF2rxCRulEKXHTRiDrDy6erMYWqNw4LPdQ8UQA4huuxaQsVeRPFl2oM8oDGxMFhJUWZf9McpLtJasDDZb/Bpeg==", + "dev": true + }, + "node_modules/@jridgewell/trace-mapping": { + "version": "0.3.19", + "resolved": "https://registry.npmjs.org/@jridgewell/trace-mapping/-/trace-mapping-0.3.19.tgz", + "integrity": "sha512-kf37QtfW+Hwx/buWGMPcR60iF9ziHa6r/CZJIHbmcm4+0qrXiVdxegAH0F6yddEVQ7zdkjcGCgCzUu+BcbhQxw==", + "dev": true, + "dependencies": { + "@jridgewell/resolve-uri": "^3.1.0", + "@jridgewell/sourcemap-codec": "^1.4.14" + } + }, + "node_modules/@sinclair/typebox": { + "version": "0.27.8", + "resolved": "https://registry.npmjs.org/@sinclair/typebox/-/typebox-0.27.8.tgz", + "integrity": "sha512-+Fj43pSMwJs4KRrH/938Uf+uAELIgVBmQzg/q1YG10djyfA3TnrU8N8XzqCh/okZdszqBQTZf96idMfE5lnwTA==", + "dev": true + }, + "node_modules/@sinonjs/commons": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/@sinonjs/commons/-/commons-3.0.0.tgz", + "integrity": "sha512-jXBtWAF4vmdNmZgD5FoKsVLv3rPgDnLgPbU84LIJ3otV44vJlDRokVng5v8NFJdCf/da9legHcKaRuZs4L7faA==", + "dev": true, + "dependencies": { + "type-detect": "4.0.8" + } + }, + "node_modules/@sinonjs/fake-timers": { + "version": "10.3.0", + "resolved": "https://registry.npmjs.org/@sinonjs/fake-timers/-/fake-timers-10.3.0.tgz", + "integrity": "sha512-V4BG07kuYSUkTCSBHG8G8TNhM+F19jXFWnQtzj+we8DrkpSBCee9Z3Ms8yiGer/dlmhe35/Xdgyo3/0rQKg7YA==", + "dev": true, + "dependencies": { + "@sinonjs/commons": "^3.0.0" + } + }, + "node_modules/@tootallnate/once": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/@tootallnate/once/-/once-2.0.0.tgz", + "integrity": "sha512-XCuKFP5PS55gnMVu3dty8KPatLqUoy/ZYzDzAGCQ8JNFCkLXzmI7vNHCR+XpbZaMWQK/vQubr7PkYq8g470J/A==", + "dev": true, + "engines": { + "node": ">= 10" + } + }, + "node_modules/@types/babel__core": { + "version": "7.20.2", + "resolved": "https://registry.npmjs.org/@types/babel__core/-/babel__core-7.20.2.tgz", + "integrity": "sha512-pNpr1T1xLUc2l3xJKuPtsEky3ybxN3m4fJkknfIpTCTfIZCDW57oAg+EfCgIIp2rvCe0Wn++/FfodDS4YXxBwA==", + "dev": true, + "dependencies": { + "@babel/parser": "^7.20.7", + "@babel/types": "^7.20.7", + "@types/babel__generator": "*", + "@types/babel__template": "*", + "@types/babel__traverse": "*" + } + }, + "node_modules/@types/babel__generator": { + "version": "7.6.5", + "resolved": "https://registry.npmjs.org/@types/babel__generator/-/babel__generator-7.6.5.tgz", + "integrity": "sha512-h9yIuWbJKdOPLJTbmSpPzkF67e659PbQDba7ifWm5BJ8xTv+sDmS7rFmywkWOvXedGTivCdeGSIIX8WLcRTz8w==", + "dev": true, + "dependencies": { + "@babel/types": "^7.0.0" + } + }, + "node_modules/@types/babel__template": { + "version": "7.4.2", + "resolved": "https://registry.npmjs.org/@types/babel__template/-/babel__template-7.4.2.tgz", + "integrity": "sha512-/AVzPICMhMOMYoSx9MoKpGDKdBRsIXMNByh1PXSZoa+v6ZoLa8xxtsT/uLQ/NJm0XVAWl/BvId4MlDeXJaeIZQ==", + "dev": true, + "dependencies": { + "@babel/parser": "^7.1.0", + "@babel/types": "^7.0.0" + } + }, + "node_modules/@types/babel__traverse": { + "version": "7.20.2", + "resolved": "https://registry.npmjs.org/@types/babel__traverse/-/babel__traverse-7.20.2.tgz", + "integrity": "sha512-ojlGK1Hsfce93J0+kn3H5R73elidKUaZonirN33GSmgTUMpzI/MIFfSpF3haANe3G1bEBS9/9/QEqwTzwqFsKw==", + "dev": true, + "dependencies": { + "@babel/types": "^7.20.7" + } + }, + "node_modules/@types/graceful-fs": { + "version": "4.1.7", + "resolved": "https://registry.npmjs.org/@types/graceful-fs/-/graceful-fs-4.1.7.tgz", + "integrity": "sha512-MhzcwU8aUygZroVwL2jeYk6JisJrPl/oov/gsgGCue9mkgl9wjGbzReYQClxiUgFDnib9FuHqTndccKeZKxTRw==", + "dev": true, + "dependencies": { + "@types/node": "*" + } + }, + "node_modules/@types/istanbul-lib-coverage": { + "version": "2.0.4", + "resolved": "https://registry.npmjs.org/@types/istanbul-lib-coverage/-/istanbul-lib-coverage-2.0.4.tgz", + "integrity": "sha512-z/QT1XN4K4KYuslS23k62yDIDLwLFkzxOuMplDtObz0+y7VqJCaO2o+SPwHCvLFZh7xazvvoor2tA/hPz9ee7g==", + "dev": true + }, + "node_modules/@types/istanbul-lib-report": { + "version": "3.0.1", + "resolved": "https://registry.npmjs.org/@types/istanbul-lib-report/-/istanbul-lib-report-3.0.1.tgz", + "integrity": "sha512-gPQuzaPR5h/djlAv2apEG1HVOyj1IUs7GpfMZixU0/0KXT3pm64ylHuMUI1/Akh+sq/iikxg6Z2j+fcMDXaaTQ==", + "dev": true, + "dependencies": { + "@types/istanbul-lib-coverage": "*" + } + }, + "node_modules/@types/istanbul-reports": { + "version": "3.0.2", + "resolved": "https://registry.npmjs.org/@types/istanbul-reports/-/istanbul-reports-3.0.2.tgz", + "integrity": "sha512-kv43F9eb3Lhj+lr/Hn6OcLCs/sSM8bt+fIaP11rCYngfV6NVjzWXJ17owQtDQTL9tQ8WSLUrGsSJ6rJz0F1w1A==", + "dev": true, + "dependencies": { + "@types/istanbul-lib-report": "*" + } + }, + "node_modules/@types/jest": { + "version": "29.5.5", + "resolved": "https://registry.npmjs.org/@types/jest/-/jest-29.5.5.tgz", + "integrity": "sha512-ebylz2hnsWR9mYvmBFbXJXr+33UPc4+ZdxyDXh5w0FlPBTfCVN3wPL+kuOiQt3xvrK419v7XWeAs+AeOksafXg==", + "dev": true, + "dependencies": { + "expect": "^29.0.0", + "pretty-format": "^29.0.0" + } + }, + "node_modules/@types/jsdom": { + "version": "20.0.1", + "resolved": "https://registry.npmjs.org/@types/jsdom/-/jsdom-20.0.1.tgz", + "integrity": "sha512-d0r18sZPmMQr1eG35u12FZfhIXNrnsPU/g5wvRKCUf/tOGilKKwYMYGqh33BNR6ba+2gkHw1EUiHoN3mn7E5IQ==", + "dev": true, + "dependencies": { + "@types/node": "*", + "@types/tough-cookie": "*", + "parse5": "^7.0.0" + } + }, + "node_modules/@types/node": { + "version": "20.8.3", + "resolved": "https://registry.npmjs.org/@types/node/-/node-20.8.3.tgz", + "integrity": "sha512-jxiZQFpb+NlH5kjW49vXxvxTjeeqlbsnTAdBTKpzEdPs9itay7MscYXz3Fo9VYFEsfQ6LJFitHad3faerLAjCw==", + "dev": true + }, + "node_modules/@types/stack-utils": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/@types/stack-utils/-/stack-utils-2.0.1.tgz", + "integrity": "sha512-Hl219/BT5fLAaz6NDkSuhzasy49dwQS/DSdu4MdggFB8zcXv7vflBI3xp7FEmkmdDkBUI2bPUNeMttp2knYdxw==", + "dev": true + }, + "node_modules/@types/tough-cookie": { + "version": "4.0.3", + "resolved": "https://registry.npmjs.org/@types/tough-cookie/-/tough-cookie-4.0.3.tgz", + "integrity": "sha512-THo502dA5PzG/sfQH+42Lw3fvmYkceefOspdCwpHRul8ik2Jv1K8I5OZz1AT3/rs46kwgMCe9bSBmDLYkkOMGg==", + "dev": true + }, + "node_modules/@types/yargs": { + "version": "17.0.28", + "resolved": "https://registry.npmjs.org/@types/yargs/-/yargs-17.0.28.tgz", + "integrity": "sha512-N3e3fkS86hNhtk6BEnc0rj3zcehaxx8QWhCROJkqpl5Zaoi7nAic3jH8q94jVD3zu5LGk+PUB6KAiDmimYOEQw==", + "dev": true, + "dependencies": { + "@types/yargs-parser": "*" + } + }, + "node_modules/@types/yargs-parser": { + "version": "21.0.1", + "resolved": "https://registry.npmjs.org/@types/yargs-parser/-/yargs-parser-21.0.1.tgz", + "integrity": "sha512-axdPBuLuEJt0c4yI5OZssC19K2Mq1uKdrfZBzuxLvaztgqUtFYZUNw7lETExPYJR9jdEoIg4mb7RQKRQzOkeGQ==", + "dev": true + }, + "node_modules/abab": { + "version": "2.0.6", + "resolved": "https://registry.npmjs.org/abab/-/abab-2.0.6.tgz", + "integrity": "sha512-j2afSsaIENvHZN2B8GOpF566vZ5WVk5opAiMTvWgaQT8DkbOqsTfvNAvHoRGU2zzP8cPoqys+xHTRDWW8L+/BA==", + "dev": true + }, + "node_modules/acorn": { + "version": "8.10.0", + "resolved": "https://registry.npmjs.org/acorn/-/acorn-8.10.0.tgz", + "integrity": "sha512-F0SAmZ8iUtS//m8DmCTA0jlh6TDKkHQyK6xc6V4KDTyZKA9dnvX9/3sRTVQrWm79glUAZbnmmNcdYwUIHWVybw==", + "dev": true, + "bin": { + "acorn": "bin/acorn" + }, + "engines": { + "node": ">=0.4.0" + } + }, + "node_modules/acorn-globals": { + "version": "7.0.1", + "resolved": "https://registry.npmjs.org/acorn-globals/-/acorn-globals-7.0.1.tgz", + "integrity": "sha512-umOSDSDrfHbTNPuNpC2NSnnA3LUrqpevPb4T9jRx4MagXNS0rs+gwiTcAvqCRmsD6utzsrzNt+ebm00SNWiC3Q==", + "dev": true, + "dependencies": { + "acorn": "^8.1.0", + "acorn-walk": "^8.0.2" + } + }, + "node_modules/acorn-walk": { + "version": "8.2.0", + "resolved": "https://registry.npmjs.org/acorn-walk/-/acorn-walk-8.2.0.tgz", + "integrity": "sha512-k+iyHEuPgSw6SbuDpGQM+06HQUa04DZ3o+F6CSzXMvvI5KMvnaEqXe+YVe555R9nn6GPt404fos4wcgpw12SDA==", + "dev": true, + "engines": { + "node": ">=0.4.0" + } + }, + "node_modules/agent-base": { + "version": "6.0.2", + "resolved": "https://registry.npmjs.org/agent-base/-/agent-base-6.0.2.tgz", + "integrity": "sha512-RZNwNclF7+MS/8bDg70amg32dyeZGZxiDuQmZxKLAlQjr3jGyLx+4Kkk58UO7D2QdgFIQCovuSuZESne6RG6XQ==", + "dev": true, + "dependencies": { + "debug": "4" + }, + "engines": { + "node": ">= 6.0.0" + } + }, + "node_modules/ansi-escapes": { + "version": "4.3.2", + "resolved": "https://registry.npmjs.org/ansi-escapes/-/ansi-escapes-4.3.2.tgz", + "integrity": "sha512-gKXj5ALrKWQLsYG9jlTRmR/xKluxHV+Z9QEwNIgCfM1/uwPMCuzVVnh5mwTd+OuBZcwSIMbqssNWRm1lE51QaQ==", + "dev": true, + "dependencies": { + "type-fest": "^0.21.3" + }, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/ansi-regex": { + "version": "5.0.1", + "resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-5.0.1.tgz", + "integrity": "sha512-quJQXlTSUGL2LH9SUXo8VwsY4soanhgo6LNSm84E1LBcE8s3O0wpdiRzyR9z/ZZJMlMWv37qOOb9pdJlMUEKFQ==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/ansi-styles": { + "version": "4.3.0", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", + "integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==", + "dev": true, + "dependencies": { + "color-convert": "^2.0.1" + }, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/chalk/ansi-styles?sponsor=1" + } + }, + "node_modules/anymatch": { + "version": "3.1.3", + "resolved": "https://registry.npmjs.org/anymatch/-/anymatch-3.1.3.tgz", + "integrity": "sha512-KMReFUr0B4t+D+OBkjR3KYqvocp2XaSzO55UcB6mgQMd3KbcE+mWTyvVV7D/zsdEbNnV6acZUutkiHQXvTr1Rw==", + "dev": true, + "dependencies": { + "normalize-path": "^3.0.0", + "picomatch": "^2.0.4" + }, + "engines": { + "node": ">= 8" + } + }, + "node_modules/argparse": { + "version": "1.0.10", + "resolved": "https://registry.npmjs.org/argparse/-/argparse-1.0.10.tgz", + "integrity": "sha512-o5Roy6tNG4SL/FOkCAN6RzjiakZS25RLYFrcMttJqbdd8BWrnA+fGz57iN5Pb06pvBGvl5gQ0B48dJlslXvoTg==", + "dev": true, + "dependencies": { + "sprintf-js": "~1.0.2" + } + }, + "node_modules/asynckit": { + "version": "0.4.0", + "resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz", + "integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==", + "dev": true + }, + "node_modules/babel-jest": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/babel-jest/-/babel-jest-29.7.0.tgz", + "integrity": "sha512-BrvGY3xZSwEcCzKvKsCi2GgHqDqsYkOP4/by5xCgIwGXQxIEh+8ew3gmrE1y7XRR6LHZIj6yLYnUi/mm2KXKBg==", + "dev": true, + "dependencies": { + "@jest/transform": "^29.7.0", + "@types/babel__core": "^7.1.14", + "babel-plugin-istanbul": "^6.1.1", + "babel-preset-jest": "^29.6.3", + "chalk": "^4.0.0", + "graceful-fs": "^4.2.9", + "slash": "^3.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "@babel/core": "^7.8.0" + } + }, + "node_modules/babel-plugin-istanbul": { + "version": "6.1.1", + "resolved": "https://registry.npmjs.org/babel-plugin-istanbul/-/babel-plugin-istanbul-6.1.1.tgz", + "integrity": "sha512-Y1IQok9821cC9onCx5otgFfRm7Lm+I+wwxOx738M/WLPZ9Q42m4IG5W0FNX8WLL2gYMZo3JkuXIH2DOpWM+qwA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.0.0", + "@istanbuljs/load-nyc-config": "^1.0.0", + "@istanbuljs/schema": "^0.1.2", + "istanbul-lib-instrument": "^5.0.4", + "test-exclude": "^6.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/babel-plugin-istanbul/node_modules/istanbul-lib-instrument": { + "version": "5.2.1", + "resolved": "https://registry.npmjs.org/istanbul-lib-instrument/-/istanbul-lib-instrument-5.2.1.tgz", + "integrity": "sha512-pzqtp31nLv/XFOzXGuvhCb8qhjmTVo5vjVk19XE4CRlSWz0KoeJ3bw9XsA7nOp9YBf4qHjwBxkDzKcME/J29Yg==", + "dev": true, + "dependencies": { + "@babel/core": "^7.12.3", + "@babel/parser": "^7.14.7", + "@istanbuljs/schema": "^0.1.2", + "istanbul-lib-coverage": "^3.2.0", + "semver": "^6.3.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/babel-plugin-jest-hoist": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/babel-plugin-jest-hoist/-/babel-plugin-jest-hoist-29.6.3.tgz", + "integrity": "sha512-ESAc/RJvGTFEzRwOTT4+lNDk/GNHMkKbNzsvT0qKRfDyyYTskxB5rnU2njIDYVxXCBHHEI1c0YwHob3WaYujOg==", + "dev": true, + "dependencies": { + "@babel/template": "^7.3.3", + "@babel/types": "^7.3.3", + "@types/babel__core": "^7.1.14", + "@types/babel__traverse": "^7.0.6" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/babel-plugin-polyfill-corejs2": { + "version": "0.4.5", + "resolved": "https://registry.npmjs.org/babel-plugin-polyfill-corejs2/-/babel-plugin-polyfill-corejs2-0.4.5.tgz", + "integrity": "sha512-19hwUH5FKl49JEsvyTcoHakh6BE0wgXLLptIyKZ3PijHc/Ci521wygORCUCCred+E/twuqRyAkE02BAWPmsHOg==", + "dev": true, + "dependencies": { + "@babel/compat-data": "^7.22.6", + "@babel/helper-define-polyfill-provider": "^0.4.2", + "semver": "^6.3.1" + }, + "peerDependencies": { + "@babel/core": "^7.4.0 || ^8.0.0-0 <8.0.0" + } + }, + "node_modules/babel-plugin-polyfill-corejs3": { + "version": "0.8.4", + "resolved": "https://registry.npmjs.org/babel-plugin-polyfill-corejs3/-/babel-plugin-polyfill-corejs3-0.8.4.tgz", + "integrity": "sha512-9l//BZZsPR+5XjyJMPtZSK4jv0BsTO1zDac2GC6ygx9WLGlcsnRd1Co0B2zT5fF5Ic6BZy+9m3HNZ3QcOeDKfg==", + "dev": true, + "dependencies": { + "@babel/helper-define-polyfill-provider": "^0.4.2", + "core-js-compat": "^3.32.2" + }, + "peerDependencies": { + "@babel/core": "^7.4.0 || ^8.0.0-0 <8.0.0" + } + }, + "node_modules/babel-plugin-polyfill-regenerator": { + "version": "0.5.2", + "resolved": "https://registry.npmjs.org/babel-plugin-polyfill-regenerator/-/babel-plugin-polyfill-regenerator-0.5.2.tgz", + "integrity": "sha512-tAlOptU0Xj34V1Y2PNTL4Y0FOJMDB6bZmoW39FeCQIhigGLkqu3Fj6uiXpxIf6Ij274ENdYx64y6Au+ZKlb1IA==", + "dev": true, + "dependencies": { + "@babel/helper-define-polyfill-provider": "^0.4.2" + }, + "peerDependencies": { + "@babel/core": "^7.4.0 || ^8.0.0-0 <8.0.0" + } + }, + "node_modules/babel-preset-current-node-syntax": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/babel-preset-current-node-syntax/-/babel-preset-current-node-syntax-1.0.1.tgz", + "integrity": "sha512-M7LQ0bxarkxQoN+vz5aJPsLBn77n8QgTFmo8WK0/44auK2xlCXrYcUxHFxgU7qW5Yzw/CjmLRK2uJzaCd7LvqQ==", + "dev": true, + "dependencies": { + "@babel/plugin-syntax-async-generators": "^7.8.4", + "@babel/plugin-syntax-bigint": "^7.8.3", + "@babel/plugin-syntax-class-properties": "^7.8.3", + "@babel/plugin-syntax-import-meta": "^7.8.3", + "@babel/plugin-syntax-json-strings": "^7.8.3", + "@babel/plugin-syntax-logical-assignment-operators": "^7.8.3", + "@babel/plugin-syntax-nullish-coalescing-operator": "^7.8.3", + "@babel/plugin-syntax-numeric-separator": "^7.8.3", + "@babel/plugin-syntax-object-rest-spread": "^7.8.3", + "@babel/plugin-syntax-optional-catch-binding": "^7.8.3", + "@babel/plugin-syntax-optional-chaining": "^7.8.3", + "@babel/plugin-syntax-top-level-await": "^7.8.3" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/babel-preset-jest": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/babel-preset-jest/-/babel-preset-jest-29.6.3.tgz", + "integrity": "sha512-0B3bhxR6snWXJZtR/RliHTDPRgn1sNHOR0yVtq/IiQFyuOVjFS+wuio/R4gSNkyYmKmJB4wGZv2NZanmKmTnNA==", + "dev": true, + "dependencies": { + "babel-plugin-jest-hoist": "^29.6.3", + "babel-preset-current-node-syntax": "^1.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/balanced-match": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/balanced-match/-/balanced-match-1.0.2.tgz", + "integrity": "sha512-3oSeUO0TMV67hN1AmbXsK4yaqU7tjiHlbxRDZOpH0KW9+CeX4bRAaX0Anxt0tx2MrpRpWwQaPwIlISEJhYU5Pw==", + "dev": true + }, + "node_modules/brace-expansion": { + "version": "1.1.11", + "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-1.1.11.tgz", + "integrity": "sha512-iCuPHDFgrHX7H2vEI/5xpz07zSHB00TpugqhmYtVmMO6518mCuRMoOYFldEBl0g187ufozdaHgWKcYFb61qGiA==", + "dev": true, + "dependencies": { + "balanced-match": "^1.0.0", + "concat-map": "0.0.1" + } + }, + "node_modules/braces": { + "version": "3.0.2", + "resolved": "https://registry.npmjs.org/braces/-/braces-3.0.2.tgz", + "integrity": "sha512-b8um+L1RzM3WDSzvhm6gIz1yfTbBt6YTlcEKAvsmqCZZFw46z626lVj9j1yEPW33H5H+lBQpZMP1k8l+78Ha0A==", + "dev": true, + "dependencies": { + "fill-range": "^7.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/browserslist": { + "version": "4.22.1", + "resolved": "https://registry.npmjs.org/browserslist/-/browserslist-4.22.1.tgz", + "integrity": "sha512-FEVc202+2iuClEhZhrWy6ZiAcRLvNMyYcxZ8raemul1DYVOVdFsbqckWLdsixQZCpJlwe77Z3UTalE7jsjnKfQ==", + "dev": true, + "funding": [ + { + "type": "opencollective", + "url": "https://opencollective.com/browserslist" + }, + { + "type": "tidelift", + "url": "https://tidelift.com/funding/github/npm/browserslist" + }, + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ], + "dependencies": { + "caniuse-lite": "^1.0.30001541", + "electron-to-chromium": "^1.4.535", + "node-releases": "^2.0.13", + "update-browserslist-db": "^1.0.13" + }, + "bin": { + "browserslist": "cli.js" + }, + "engines": { + "node": "^6 || ^7 || ^8 || ^9 || ^10 || ^11 || ^12 || >=13.7" + } + }, + "node_modules/bser": { + "version": "2.1.1", + "resolved": "https://registry.npmjs.org/bser/-/bser-2.1.1.tgz", + "integrity": "sha512-gQxTNE/GAfIIrmHLUE3oJyp5FO6HRBfhjnw4/wMmA63ZGDJnWBmgY/lyQBpnDUkGmAhbSe39tx2d/iTOAfglwQ==", + "dev": true, + "dependencies": { + "node-int64": "^0.4.0" + } + }, + "node_modules/buffer-from": { + "version": "1.1.2", + "resolved": "https://registry.npmjs.org/buffer-from/-/buffer-from-1.1.2.tgz", + "integrity": "sha512-E+XQCRwSbaaiChtv6k6Dwgc+bx+Bs6vuKJHHl5kox/BaKbhiXzqQOwK4cO22yElGp2OCmjwVhT3HmxgyPGnJfQ==", + "dev": true + }, + "node_modules/callsites": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/callsites/-/callsites-3.1.0.tgz", + "integrity": "sha512-P8BjAsXvZS+VIDUI11hHCQEv74YT67YUi5JJFNWIqL235sBmjX4+qx9Muvls5ivyNENctx46xQLQ3aTuE7ssaQ==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/camelcase": { + "version": "5.3.1", + "resolved": "https://registry.npmjs.org/camelcase/-/camelcase-5.3.1.tgz", + "integrity": "sha512-L28STB170nwWS63UjtlEOE3dldQApaJXZkOI1uMFfzf3rRuPegHaHesyee+YxQ+W6SvRDQV6UrdOdRiR153wJg==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/caniuse-lite": { + "version": "1.0.30001546", + "resolved": "https://registry.npmjs.org/caniuse-lite/-/caniuse-lite-1.0.30001546.tgz", + "integrity": "sha512-zvtSJwuQFpewSyRrI3AsftF6rM0X80mZkChIt1spBGEvRglCrjTniXvinc8JKRoqTwXAgvqTImaN9igfSMtUBw==", + "dev": true, + "funding": [ + { + "type": "opencollective", + "url": "https://opencollective.com/browserslist" + }, + { + "type": "tidelift", + "url": "https://tidelift.com/funding/github/npm/caniuse-lite" + }, + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ] + }, + "node_modules/chalk": { + "version": "4.1.2", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz", + "integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==", + "dev": true, + "dependencies": { + "ansi-styles": "^4.1.0", + "supports-color": "^7.1.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/chalk?sponsor=1" + } + }, + "node_modules/char-regex": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/char-regex/-/char-regex-1.0.2.tgz", + "integrity": "sha512-kWWXztvZ5SBQV+eRgKFeh8q5sLuZY2+8WUIzlxWVTg+oGwY14qylx1KbKzHd8P6ZYkAg0xyIDU9JMHhyJMZ1jw==", + "dev": true, + "engines": { + "node": ">=10" + } + }, + "node_modules/ci-info": { + "version": "3.9.0", + "resolved": "https://registry.npmjs.org/ci-info/-/ci-info-3.9.0.tgz", + "integrity": "sha512-NIxF55hv4nSqQswkAeiOi1r83xy8JldOFDTWiug55KBu9Jnblncd2U6ViHmYgHf01TPZS77NJBhBMKdWj9HQMQ==", + "dev": true, + "funding": [ + { + "type": "github", + "url": "https://github.com/sponsors/sibiraj-s" + } + ], + "engines": { + "node": ">=8" + } + }, + "node_modules/cjs-module-lexer": { + "version": "1.2.3", + "resolved": "https://registry.npmjs.org/cjs-module-lexer/-/cjs-module-lexer-1.2.3.tgz", + "integrity": "sha512-0TNiGstbQmCFwt4akjjBg5pLRTSyj/PkWQ1ZoO2zntmg9yLqSRxwEa4iCfQLGjqhiqBfOJa7W/E8wfGrTDmlZQ==", + "dev": true + }, + "node_modules/cliui": { + "version": "8.0.1", + "resolved": "https://registry.npmjs.org/cliui/-/cliui-8.0.1.tgz", + "integrity": "sha512-BSeNnyus75C4//NQ9gQt1/csTXyo/8Sb+afLAkzAptFuMsod9HFokGNudZpi/oQV73hnVK+sR+5PVRMd+Dr7YQ==", + "dev": true, + "dependencies": { + "string-width": "^4.2.0", + "strip-ansi": "^6.0.1", + "wrap-ansi": "^7.0.0" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/co": { + "version": "4.6.0", + "resolved": "https://registry.npmjs.org/co/-/co-4.6.0.tgz", + "integrity": "sha512-QVb0dM5HvG+uaxitm8wONl7jltx8dqhfU33DcqtOZcLSVIKSDDLDi7+0LbAKiyI8hD9u42m2YxXSkMGWThaecQ==", + "dev": true, + "engines": { + "iojs": ">= 1.0.0", + "node": ">= 0.12.0" + } + }, + "node_modules/collect-v8-coverage": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/collect-v8-coverage/-/collect-v8-coverage-1.0.2.tgz", + "integrity": "sha512-lHl4d5/ONEbLlJvaJNtsF/Lz+WvB07u2ycqTYbdrq7UypDXailES4valYb2eWiJFxZlVmpGekfqoxQhzyFdT4Q==", + "dev": true + }, + "node_modules/color-convert": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz", + "integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==", + "dev": true, + "dependencies": { + "color-name": "~1.1.4" + }, + "engines": { + "node": ">=7.0.0" + } + }, + "node_modules/color-name": { + "version": "1.1.4", + "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz", + "integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==", + "dev": true + }, + "node_modules/combined-stream": { + "version": "1.0.8", + "resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz", + "integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==", + "dev": true, + "dependencies": { + "delayed-stream": "~1.0.0" + }, + "engines": { + "node": ">= 0.8" + } + }, + "node_modules/concat-map": { + "version": "0.0.1", + "resolved": "https://registry.npmjs.org/concat-map/-/concat-map-0.0.1.tgz", + "integrity": "sha512-/Srv4dswyQNBfohGpz9o6Yb3Gz3SrUDqBH5rTuhGR7ahtlbYKnVxw2bCFMRljaA7EXHaXZ8wsHdodFvbkhKmqg==", + "dev": true + }, + "node_modules/convert-source-map": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/convert-source-map/-/convert-source-map-2.0.0.tgz", + "integrity": "sha512-Kvp459HrV2FEJ1CAsi1Ku+MY3kasH19TFykTz2xWmMeq6bk2NU3XXvfJ+Q61m0xktWwt+1HSYf3JZsTms3aRJg==", + "dev": true + }, + "node_modules/core-js-compat": { + "version": "3.33.0", + "resolved": "https://registry.npmjs.org/core-js-compat/-/core-js-compat-3.33.0.tgz", + "integrity": "sha512-0w4LcLXsVEuNkIqwjjf9rjCoPhK8uqA4tMRh4Ge26vfLtUutshn+aRJU21I9LCJlh2QQHfisNToLjw1XEJLTWw==", + "dev": true, + "dependencies": { + "browserslist": "^4.22.1" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/core-js" + } + }, + "node_modules/create-jest": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/create-jest/-/create-jest-29.7.0.tgz", + "integrity": "sha512-Adz2bdH0Vq3F53KEMJOoftQFutWCukm6J24wbPWRO4k1kMY7gS7ds/uoJkNuV8wDCtWWnuwGcJwpWcih+zEW1Q==", + "dev": true, + "dependencies": { + "@jest/types": "^29.6.3", + "chalk": "^4.0.0", + "exit": "^0.1.2", + "graceful-fs": "^4.2.9", + "jest-config": "^29.7.0", + "jest-util": "^29.7.0", + "prompts": "^2.0.1" + }, + "bin": { + "create-jest": "bin/create-jest.js" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/cross-spawn": { + "version": "7.0.3", + "resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz", + "integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==", + "dev": true, + "dependencies": { + "path-key": "^3.1.0", + "shebang-command": "^2.0.0", + "which": "^2.0.1" + }, + "engines": { + "node": ">= 8" + } + }, + "node_modules/cssom": { + "version": "0.5.0", + "resolved": "https://registry.npmjs.org/cssom/-/cssom-0.5.0.tgz", + "integrity": "sha512-iKuQcq+NdHqlAcwUY0o/HL69XQrUaQdMjmStJ8JFmUaiiQErlhrmuigkg/CU4E2J0IyUKUrMAgl36TvN67MqTw==", + "dev": true + }, + "node_modules/cssstyle": { + "version": "2.3.0", + "resolved": "https://registry.npmjs.org/cssstyle/-/cssstyle-2.3.0.tgz", + "integrity": "sha512-AZL67abkUzIuvcHqk7c09cezpGNcxUxU4Ioi/05xHk4DQeTkWmGYftIE6ctU6AEt+Gn4n1lDStOtj7FKycP71A==", + "dev": true, + "dependencies": { + "cssom": "~0.3.6" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/cssstyle/node_modules/cssom": { + "version": "0.3.8", + "resolved": "https://registry.npmjs.org/cssom/-/cssom-0.3.8.tgz", + "integrity": "sha512-b0tGHbfegbhPJpxpiBPU2sCkigAqtM9O121le6bbOlgyV+NyGyCmVfJ6QW9eRjz8CpNfWEOYBIMIGRYkLwsIYg==", + "dev": true + }, + "node_modules/data-urls": { + "version": "3.0.2", + "resolved": "https://registry.npmjs.org/data-urls/-/data-urls-3.0.2.tgz", + "integrity": "sha512-Jy/tj3ldjZJo63sVAvg6LHt2mHvl4V6AgRAmNDtLdm7faqtsx+aJG42rsyCo9JCoRVKwPFzKlIPx3DIibwSIaQ==", + "dev": true, + "dependencies": { + "abab": "^2.0.6", + "whatwg-mimetype": "^3.0.0", + "whatwg-url": "^11.0.0" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/debug": { + "version": "4.3.4", + "resolved": "https://registry.npmjs.org/debug/-/debug-4.3.4.tgz", + "integrity": "sha512-PRWFHuSU3eDtQJPvnNY7Jcket1j0t5OuOsFzPPzsekD52Zl8qUfFIPEiswXqIvHWGVHOgX+7G/vCNNhehwxfkQ==", + "dev": true, + "dependencies": { + "ms": "2.1.2" + }, + "engines": { + "node": ">=6.0" + }, + "peerDependenciesMeta": { + "supports-color": { + "optional": true + } + } + }, + "node_modules/decimal.js": { + "version": "10.4.3", + "resolved": "https://registry.npmjs.org/decimal.js/-/decimal.js-10.4.3.tgz", + "integrity": "sha512-VBBaLc1MgL5XpzgIP7ny5Z6Nx3UrRkIViUkPUdtl9aya5amy3De1gsUUSB1g3+3sExYNjCAsAznmukyxCb1GRA==", + "dev": true + }, + "node_modules/dedent": { + "version": "1.5.1", + "resolved": "https://registry.npmjs.org/dedent/-/dedent-1.5.1.tgz", + "integrity": "sha512-+LxW+KLWxu3HW3M2w2ympwtqPrqYRzU8fqi6Fhd18fBALe15blJPI/I4+UHveMVG6lJqB4JNd4UG0S5cnVHwIg==", + "dev": true, + "peerDependencies": { + "babel-plugin-macros": "^3.1.0" + }, + "peerDependenciesMeta": { + "babel-plugin-macros": { + "optional": true + } + } + }, + "node_modules/deepmerge": { + "version": "4.3.1", + "resolved": "https://registry.npmjs.org/deepmerge/-/deepmerge-4.3.1.tgz", + "integrity": "sha512-3sUqbMEc77XqpdNO7FRyRog+eW3ph+GYCbj+rK+uYyRMuwsVy0rMiVtPn+QJlKFvWP/1PYpapqYn0Me2knFn+A==", + "dev": true, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/delayed-stream": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz", + "integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==", + "dev": true, + "engines": { + "node": ">=0.4.0" + } + }, + "node_modules/detect-newline": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/detect-newline/-/detect-newline-3.1.0.tgz", + "integrity": "sha512-TLz+x/vEXm/Y7P7wn1EJFNLxYpUD4TgMosxY6fAVJUnJMbupHBOncxyWUG9OpTaH9EBD7uFI5LfEgmMOc54DsA==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/diff-sequences": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/diff-sequences/-/diff-sequences-29.6.3.tgz", + "integrity": "sha512-EjePK1srD3P08o2j4f0ExnylqRs5B9tJjcp9t1krH2qRi8CCdsYfwe9JgSLurFBWwq4uOlipzfk5fHNvwFKr8Q==", + "dev": true, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/domexception": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/domexception/-/domexception-4.0.0.tgz", + "integrity": "sha512-A2is4PLG+eeSfoTMA95/s4pvAoSo2mKtiM5jlHkAVewmiO8ISFTFKZjH7UAM1Atli/OT/7JHOrJRJiMKUZKYBw==", + "dev": true, + "dependencies": { + "webidl-conversions": "^7.0.0" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/electron-to-chromium": { + "version": "1.4.544", + "resolved": "https://registry.npmjs.org/electron-to-chromium/-/electron-to-chromium-1.4.544.tgz", + "integrity": "sha512-54z7squS1FyFRSUqq/knOFSptjjogLZXbKcYk3B0qkE1KZzvqASwRZnY2KzZQJqIYLVD38XZeoiMRflYSwyO4w==", + "dev": true + }, + "node_modules/emittery": { + "version": "0.13.1", + "resolved": "https://registry.npmjs.org/emittery/-/emittery-0.13.1.tgz", + "integrity": "sha512-DeWwawk6r5yR9jFgnDKYt4sLS0LmHJJi3ZOnb5/JdbYwj3nW+FxQnHIjhBKz8YLC7oRNPVM9NQ47I3CVx34eqQ==", + "dev": true, + "engines": { + "node": ">=12" + }, + "funding": { + "url": "https://github.com/sindresorhus/emittery?sponsor=1" + } + }, + "node_modules/emoji-regex": { + "version": "8.0.0", + "resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-8.0.0.tgz", + "integrity": "sha512-MSjYzcWNOA0ewAHpz0MxpYFvwg6yjy1NG3xteoqz644VCo/RPgnr1/GGt+ic3iJTzQ8Eu3TdM14SawnVUmGE6A==", + "dev": true + }, + "node_modules/entities": { + "version": "4.5.0", + "resolved": "https://registry.npmjs.org/entities/-/entities-4.5.0.tgz", + "integrity": "sha512-V0hjH4dGPh9Ao5p0MoRY6BVqtwCjhz6vI5LT8AJ55H+4g9/4vbHx1I54fS0XuclLhDHArPQCiMjDxjaL8fPxhw==", + "dev": true, + "engines": { + "node": ">=0.12" + }, + "funding": { + "url": "https://github.com/fb55/entities?sponsor=1" + } + }, + "node_modules/error-ex": { + "version": "1.3.2", + "resolved": "https://registry.npmjs.org/error-ex/-/error-ex-1.3.2.tgz", + "integrity": "sha512-7dFHNmqeFSEt2ZBsCriorKnn3Z2pj+fd9kmI6QoWw4//DL+icEBfc0U7qJCisqrTsKTjw4fNFy2pW9OqStD84g==", + "dev": true, + "dependencies": { + "is-arrayish": "^0.2.1" + } + }, + "node_modules/escalade": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/escalade/-/escalade-3.1.1.tgz", + "integrity": "sha512-k0er2gUkLf8O0zKJiAhmkTnJlTvINGv7ygDNPbeIsX/TJjGJZHuh9B2UxbsaEkmlEo9MfhrSzmhIlhRlI2GXnw==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/escape-string-regexp": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-2.0.0.tgz", + "integrity": "sha512-UpzcLCXolUWcNu5HtVMHYdXJjArjsF9C0aNnquZYY4uW/Vu0miy5YoWvbV345HauVvcAUnpRuhMMcqTcGOY2+w==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/escodegen": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/escodegen/-/escodegen-2.1.0.tgz", + "integrity": "sha512-2NlIDTwUWJN0mRPQOdtQBzbUHvdGY2P1VXSyU83Q3xKxM7WHX2Ql8dKq782Q9TgQUNOLEzEYu9bzLNj1q88I5w==", + "dev": true, + "dependencies": { + "esprima": "^4.0.1", + "estraverse": "^5.2.0", + "esutils": "^2.0.2" + }, + "bin": { + "escodegen": "bin/escodegen.js", + "esgenerate": "bin/esgenerate.js" + }, + "engines": { + "node": ">=6.0" + }, + "optionalDependencies": { + "source-map": "~0.6.1" + } + }, + "node_modules/esprima": { + "version": "4.0.1", + "resolved": "https://registry.npmjs.org/esprima/-/esprima-4.0.1.tgz", + "integrity": "sha512-eGuFFw7Upda+g4p+QHvnW0RyTX/SVeJBDM/gCtMARO0cLuT2HcEKnTPvhjV6aGeqrCB/sbNop0Kszm0jsaWU4A==", + "dev": true, + "bin": { + "esparse": "bin/esparse.js", + "esvalidate": "bin/esvalidate.js" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/estraverse": { + "version": "5.3.0", + "resolved": "https://registry.npmjs.org/estraverse/-/estraverse-5.3.0.tgz", + "integrity": "sha512-MMdARuVEQziNTeJD8DgMqmhwR11BRQ/cBP+pLtYdSTnf3MIO8fFeiINEbX36ZdNlfU/7A9f3gUw49B3oQsvwBA==", + "dev": true, + "engines": { + "node": ">=4.0" + } + }, + "node_modules/esutils": { + "version": "2.0.3", + "resolved": "https://registry.npmjs.org/esutils/-/esutils-2.0.3.tgz", + "integrity": "sha512-kVscqXk4OCp68SZ0dkgEKVi6/8ij300KBWTJq32P/dYeWTSwK41WyTxalN1eRmA5Z9UU/LX9D7FWSmV9SAYx6g==", + "dev": true, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/execa": { + "version": "5.1.1", + "resolved": "https://registry.npmjs.org/execa/-/execa-5.1.1.tgz", + "integrity": "sha512-8uSpZZocAZRBAPIEINJj3Lo9HyGitllczc27Eh5YYojjMFMn8yHMDMaUHE2Jqfq05D/wucwI4JGURyXt1vchyg==", + "dev": true, + "dependencies": { + "cross-spawn": "^7.0.3", + "get-stream": "^6.0.0", + "human-signals": "^2.1.0", + "is-stream": "^2.0.0", + "merge-stream": "^2.0.0", + "npm-run-path": "^4.0.1", + "onetime": "^5.1.2", + "signal-exit": "^3.0.3", + "strip-final-newline": "^2.0.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sindresorhus/execa?sponsor=1" + } + }, + "node_modules/exit": { + "version": "0.1.2", + "resolved": "https://registry.npmjs.org/exit/-/exit-0.1.2.tgz", + "integrity": "sha512-Zk/eNKV2zbjpKzrsQ+n1G6poVbErQxJ0LBOJXaKZ1EViLzH+hrLu9cdXI4zw9dBQJslwBEpbQ2P1oS7nDxs6jQ==", + "dev": true, + "engines": { + "node": ">= 0.8.0" + } + }, + "node_modules/expect": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/expect/-/expect-29.7.0.tgz", + "integrity": "sha512-2Zks0hf1VLFYI1kbh0I5jP3KHHyCHpkfyHBzsSXRFgl/Bg9mWYfMW8oD+PdMPlEwy5HNsR9JutYy6pMeOh61nw==", + "dev": true, + "dependencies": { + "@jest/expect-utils": "^29.7.0", + "jest-get-type": "^29.6.3", + "jest-matcher-utils": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-util": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/fast-json-stable-stringify": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/fast-json-stable-stringify/-/fast-json-stable-stringify-2.1.0.tgz", + "integrity": "sha512-lhd/wF+Lk98HZoTCtlVraHtfh5XYijIjalXck7saUtuanSDyLMxnHhSXEDJqHxD7msR8D0uCmqlkwjCV8xvwHw==", + "dev": true + }, + "node_modules/fb-watchman": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/fb-watchman/-/fb-watchman-2.0.2.tgz", + "integrity": "sha512-p5161BqbuCaSnB8jIbzQHOlpgsPmK5rJVDfDKO91Axs5NC1uu3HRQm6wt9cd9/+GtQQIO53JdGXXoyDpTAsgYA==", + "dev": true, + "dependencies": { + "bser": "2.1.1" + } + }, + "node_modules/fill-range": { + "version": "7.0.1", + "resolved": "https://registry.npmjs.org/fill-range/-/fill-range-7.0.1.tgz", + "integrity": "sha512-qOo9F+dMUmC2Lcb4BbVvnKJxTPjCm+RRpe4gDuGrzkL7mEVl/djYSu2OdQ2Pa302N4oqkSg9ir6jaLWJ2USVpQ==", + "dev": true, + "dependencies": { + "to-regex-range": "^5.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/find-up": { + "version": "4.1.0", + "resolved": "https://registry.npmjs.org/find-up/-/find-up-4.1.0.tgz", + "integrity": "sha512-PpOwAdQ/YlXQ2vj8a3h8IipDuYRi3wceVQQGYWxNINccq40Anw7BlsEXCMbt1Zt+OLA6Fq9suIpIWD0OsnISlw==", + "dev": true, + "dependencies": { + "locate-path": "^5.0.0", + "path-exists": "^4.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/form-data": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz", + "integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==", + "dev": true, + "dependencies": { + "asynckit": "^0.4.0", + "combined-stream": "^1.0.8", + "mime-types": "^2.1.12" + }, + "engines": { + "node": ">= 6" + } + }, + "node_modules/fs.realpath": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/fs.realpath/-/fs.realpath-1.0.0.tgz", + "integrity": "sha512-OO0pH2lK6a0hZnAdau5ItzHPI6pUlvI7jMVnxUQRtw4owF2wk8lOSabtGDCTP4Ggrg2MbGnWO9X8K1t4+fGMDw==", + "dev": true + }, + "node_modules/fsevents": { + "version": "2.3.3", + "resolved": "https://registry.npmjs.org/fsevents/-/fsevents-2.3.3.tgz", + "integrity": "sha512-5xoDfX+fL7faATnagmWPpbFtwh/R77WmMMqqHGS65C3vvB0YHrgF+B1YmZ3441tMj5n63k0212XNoJwzlhffQw==", + "dev": true, + "hasInstallScript": true, + "optional": true, + "os": [ + "darwin" + ], + "engines": { + "node": "^8.16.0 || ^10.6.0 || >=11.0.0" + } + }, + "node_modules/gensync": { + "version": "1.0.0-beta.2", + "resolved": "https://registry.npmjs.org/gensync/-/gensync-1.0.0-beta.2.tgz", + "integrity": "sha512-3hN7NaskYvMDLQY55gnW3NQ+mesEAepTqlg+VEbj7zzqEMBVNhzcGYYeqFo/TlYz6eQiFcp1HcsCZO+nGgS8zg==", + "dev": true, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/get-caller-file": { + "version": "2.0.5", + "resolved": "https://registry.npmjs.org/get-caller-file/-/get-caller-file-2.0.5.tgz", + "integrity": "sha512-DyFP3BM/3YHTQOCUL/w0OZHR0lpKeGrxotcHWcqNEdnltqFwXVfhEBQ94eIo34AfQpo0rGki4cyIiftY06h2Fg==", + "dev": true, + "engines": { + "node": "6.* || 8.* || >= 10.*" + } + }, + "node_modules/get-package-type": { + "version": "0.1.0", + "resolved": "https://registry.npmjs.org/get-package-type/-/get-package-type-0.1.0.tgz", + "integrity": "sha512-pjzuKtY64GYfWizNAJ0fr9VqttZkNiK2iS430LtIHzjBEr6bX8Am2zm4sW4Ro5wjWW5cAlRL1qAMTcXbjNAO2Q==", + "dev": true, + "engines": { + "node": ">=8.0.0" + } + }, + "node_modules/get-stream": { + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/get-stream/-/get-stream-6.0.1.tgz", + "integrity": "sha512-ts6Wi+2j3jQjqi70w5AlN8DFnkSwC+MqmxEzdEALB2qXZYV3X/b1CTfgPLGJNMeAWxdPfU8FO1ms3NUfaHCPYg==", + "dev": true, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/glob": { + "version": "7.2.3", + "resolved": "https://registry.npmjs.org/glob/-/glob-7.2.3.tgz", + "integrity": "sha512-nFR0zLpU2YCaRxwoCJvL6UvCH2JFyFVIvwTLsIf21AuHlMskA1hhTdk+LlYJtOlYt9v6dvszD2BGRqBL+iQK9Q==", + "dev": true, + "dependencies": { + "fs.realpath": "^1.0.0", + "inflight": "^1.0.4", + "inherits": "2", + "minimatch": "^3.1.1", + "once": "^1.3.0", + "path-is-absolute": "^1.0.0" + }, + "engines": { + "node": "*" + }, + "funding": { + "url": "https://github.com/sponsors/isaacs" + } + }, + "node_modules/globals": { + "version": "11.12.0", + "resolved": "https://registry.npmjs.org/globals/-/globals-11.12.0.tgz", + "integrity": "sha512-WOBp/EEGUiIsJSp7wcv/y6MO+lV9UoncWqxuFfm8eBwzWNgyfBd6Gz+IeKQ9jCmyhoH99g15M3T+QaVHFjizVA==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/graceful-fs": { + "version": "4.2.11", + "resolved": "https://registry.npmjs.org/graceful-fs/-/graceful-fs-4.2.11.tgz", + "integrity": "sha512-RbJ5/jmFcNNCcDV5o9eTnBLJ/HszWV0P73bc+Ff4nS/rJj+YaS6IGyiOL0VoBYX+l1Wrl3k63h/KrH+nhJ0XvQ==", + "dev": true + }, + "node_modules/has": { + "version": "1.0.4", + "resolved": "https://registry.npmjs.org/has/-/has-1.0.4.tgz", + "integrity": "sha512-qdSAmqLF6209RFj4VVItywPMbm3vWylknmB3nvNiUIs72xAimcM8nVYxYr7ncvZq5qzk9MKIZR8ijqD/1QuYjQ==", + "dev": true, + "engines": { + "node": ">= 0.4.0" + } + }, + "node_modules/has-flag": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", + "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/html-encoding-sniffer": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/html-encoding-sniffer/-/html-encoding-sniffer-3.0.0.tgz", + "integrity": "sha512-oWv4T4yJ52iKrufjnyZPkrN0CH3QnrUqdB6In1g5Fe1mia8GmF36gnfNySxoZtxD5+NmYw1EElVXiBk93UeskA==", + "dev": true, + "dependencies": { + "whatwg-encoding": "^2.0.0" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/html-escaper": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/html-escaper/-/html-escaper-2.0.2.tgz", + "integrity": "sha512-H2iMtd0I4Mt5eYiapRdIDjp+XzelXQ0tFE4JS7YFwFevXXMmOp9myNrUvCg0D6ws8iqkRPBfKHgbwig1SmlLfg==", + "dev": true + }, + "node_modules/http-proxy-agent": { + "version": "5.0.0", + "resolved": "https://registry.npmjs.org/http-proxy-agent/-/http-proxy-agent-5.0.0.tgz", + "integrity": "sha512-n2hY8YdoRE1i7r6M0w9DIw5GgZN0G25P8zLCRQ8rjXtTU3vsNFBI/vWK/UIeE6g5MUUz6avwAPXmL6Fy9D/90w==", + "dev": true, + "dependencies": { + "@tootallnate/once": "2", + "agent-base": "6", + "debug": "4" + }, + "engines": { + "node": ">= 6" + } + }, + "node_modules/https-proxy-agent": { + "version": "5.0.1", + "resolved": "https://registry.npmjs.org/https-proxy-agent/-/https-proxy-agent-5.0.1.tgz", + "integrity": "sha512-dFcAjpTQFgoLMzC2VwU+C/CbS7uRL0lWmxDITmqm7C+7F0Odmj6s9l6alZc6AELXhrnggM2CeWSXHGOdX2YtwA==", + "dev": true, + "dependencies": { + "agent-base": "6", + "debug": "4" + }, + "engines": { + "node": ">= 6" + } + }, + "node_modules/human-signals": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/human-signals/-/human-signals-2.1.0.tgz", + "integrity": "sha512-B4FFZ6q/T2jhhksgkbEW3HBvWIfDW85snkQgawt07S7J5QXTk6BkNV+0yAeZrM5QpMAdYlocGoljn0sJ/WQkFw==", + "dev": true, + "engines": { + "node": ">=10.17.0" + } + }, + "node_modules/iconv-lite": { + "version": "0.6.3", + "resolved": "https://registry.npmjs.org/iconv-lite/-/iconv-lite-0.6.3.tgz", + "integrity": "sha512-4fCk79wshMdzMp2rH06qWrJE4iolqLhCUH+OiuIgU++RB0+94NlDL81atO7GX55uUKueo0txHNtvEyI6D7WdMw==", + "dev": true, + "dependencies": { + "safer-buffer": ">= 2.1.2 < 3.0.0" + }, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/import-local": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/import-local/-/import-local-3.1.0.tgz", + "integrity": "sha512-ASB07uLtnDs1o6EHjKpX34BKYDSqnFerfTOJL2HvMqF70LnxpjkzDB8J44oT9pu4AMPkQwf8jl6szgvNd2tRIg==", + "dev": true, + "dependencies": { + "pkg-dir": "^4.2.0", + "resolve-cwd": "^3.0.0" + }, + "bin": { + "import-local-fixture": "fixtures/cli.js" + }, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/imurmurhash": { + "version": "0.1.4", + "resolved": "https://registry.npmjs.org/imurmurhash/-/imurmurhash-0.1.4.tgz", + "integrity": "sha512-JmXMZ6wuvDmLiHEml9ykzqO6lwFbof0GG4IkcGaENdCRDDmMVnny7s5HsIgHCbaq0w2MyPhDqkhTUgS2LU2PHA==", + "dev": true, + "engines": { + "node": ">=0.8.19" + } + }, + "node_modules/inflight": { + "version": "1.0.6", + "resolved": "https://registry.npmjs.org/inflight/-/inflight-1.0.6.tgz", + "integrity": "sha512-k92I/b08q4wvFscXCLvqfsHCrjrF7yiXsQuIVvVE7N82W3+aqpzuUdBbfhWcy/FZR3/4IgflMgKLOsvPDrGCJA==", + "dev": true, + "dependencies": { + "once": "^1.3.0", + "wrappy": "1" + } + }, + "node_modules/inherits": { + "version": "2.0.4", + "resolved": "https://registry.npmjs.org/inherits/-/inherits-2.0.4.tgz", + "integrity": "sha512-k/vGaX4/Yla3WzyMCvTQOXYeIHvqOKtnqBduzTHpzpQZzAskKMhZ2K+EnBiSM9zGSoIFeMpXKxa4dYeZIQqewQ==", + "dev": true + }, + "node_modules/is-arrayish": { + "version": "0.2.1", + "resolved": "https://registry.npmjs.org/is-arrayish/-/is-arrayish-0.2.1.tgz", + "integrity": "sha512-zz06S8t0ozoDXMG+ube26zeCTNXcKIPJZJi8hBrF4idCLms4CG9QtK7qBl1boi5ODzFpjswb5JPmHCbMpjaYzg==", + "dev": true + }, + "node_modules/is-core-module": { + "version": "2.13.0", + "resolved": "https://registry.npmjs.org/is-core-module/-/is-core-module-2.13.0.tgz", + "integrity": "sha512-Z7dk6Qo8pOCp3l4tsX2C5ZVas4V+UxwQodwZhLopL91TX8UyyHEXafPcyoeeWuLrwzHcr3igO78wNLwHJHsMCQ==", + "dev": true, + "dependencies": { + "has": "^1.0.3" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/is-fullwidth-code-point": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/is-fullwidth-code-point/-/is-fullwidth-code-point-3.0.0.tgz", + "integrity": "sha512-zymm5+u+sCsSWyD9qNaejV3DFvhCKclKdizYaJUuHA83RLjb7nSuGnddCHGv0hk+KY7BMAlsWeK4Ueg6EV6XQg==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/is-generator-fn": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/is-generator-fn/-/is-generator-fn-2.1.0.tgz", + "integrity": "sha512-cTIB4yPYL/Grw0EaSzASzg6bBy9gqCofvWN8okThAYIxKJZC+udlRAmGbM0XLeniEJSs8uEgHPGuHSe1XsOLSQ==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/is-number": { + "version": "7.0.0", + "resolved": "https://registry.npmjs.org/is-number/-/is-number-7.0.0.tgz", + "integrity": "sha512-41Cifkg6e8TylSpdtTpeLVMqvSBEVzTttHvERD741+pnZ8ANv0004MRL43QKPDlK9cGvNp6NZWZUBlbGXYxxng==", + "dev": true, + "engines": { + "node": ">=0.12.0" + } + }, + "node_modules/is-potential-custom-element-name": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/is-potential-custom-element-name/-/is-potential-custom-element-name-1.0.1.tgz", + "integrity": "sha512-bCYeRA2rVibKZd+s2625gGnGF/t7DSqDs4dP7CrLA1m7jKWz6pps0LpYLJN8Q64HtmPKJ1hrN3nzPNKFEKOUiQ==", + "dev": true + }, + "node_modules/is-stream": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/is-stream/-/is-stream-2.0.1.tgz", + "integrity": "sha512-hFoiJiTl63nn+kstHGBtewWSKnQLpyb155KHheA1l39uvtO9nWIop1p3udqPcUd/xbF1VLMO4n7OI6p7RbngDg==", + "dev": true, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/isexe": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/isexe/-/isexe-2.0.0.tgz", + "integrity": "sha512-RHxMLp9lnKHGHRng9QFhRCMbYAcVpn69smSGcq3f36xjgVVWThj4qqLbTLlq7Ssj8B+fIQ1EuCEGI2lKsyQeIw==", + "dev": true + }, + "node_modules/istanbul-lib-coverage": { + "version": "3.2.0", + "resolved": "https://registry.npmjs.org/istanbul-lib-coverage/-/istanbul-lib-coverage-3.2.0.tgz", + "integrity": "sha512-eOeJ5BHCmHYvQK7xt9GkdHuzuCGS1Y6g9Gvnx3Ym33fz/HpLRYxiS0wHNr+m/MBC8B647Xt608vCDEvhl9c6Mw==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/istanbul-lib-instrument": { + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/istanbul-lib-instrument/-/istanbul-lib-instrument-6.0.1.tgz", + "integrity": "sha512-EAMEJBsYuyyztxMxW3g7ugGPkrZsV57v0Hmv3mm1uQsmB+QnZuepg731CRaIgeUVSdmsTngOkSnauNF8p7FIhA==", + "dev": true, + "dependencies": { + "@babel/core": "^7.12.3", + "@babel/parser": "^7.14.7", + "@istanbuljs/schema": "^0.1.2", + "istanbul-lib-coverage": "^3.2.0", + "semver": "^7.5.4" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/istanbul-lib-instrument/node_modules/lru-cache": { + "version": "6.0.0", + "resolved": "https://registry.npmjs.org/lru-cache/-/lru-cache-6.0.0.tgz", + "integrity": "sha512-Jo6dJ04CmSjuznwJSS3pUeWmd/H0ffTlkXXgwZi+eq1UCmqQwCh+eLsYOYCwY991i2Fah4h1BEMCx4qThGbsiA==", + "dev": true, + "dependencies": { + "yallist": "^4.0.0" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/istanbul-lib-instrument/node_modules/semver": { + "version": "7.5.4", + "resolved": "https://registry.npmjs.org/semver/-/semver-7.5.4.tgz", + "integrity": "sha512-1bCSESV6Pv+i21Hvpxp3Dx+pSD8lIPt8uVjRrxAUt/nbswYc+tK6Y2btiULjd4+fnq15PX+nqQDC7Oft7WkwcA==", + "dev": true, + "dependencies": { + "lru-cache": "^6.0.0" + }, + "bin": { + "semver": "bin/semver.js" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/istanbul-lib-instrument/node_modules/yallist": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/yallist/-/yallist-4.0.0.tgz", + "integrity": "sha512-3wdGidZyq5PB084XLES5TpOSRA3wjXAlIWMhum2kRcv/41Sn2emQ0dycQW4uZXLejwKvg6EsvbdlVL+FYEct7A==", + "dev": true + }, + "node_modules/istanbul-lib-report": { + "version": "3.0.1", + "resolved": "https://registry.npmjs.org/istanbul-lib-report/-/istanbul-lib-report-3.0.1.tgz", + "integrity": "sha512-GCfE1mtsHGOELCU8e/Z7YWzpmybrx/+dSTfLrvY8qRmaY6zXTKWn6WQIjaAFw069icm6GVMNkgu0NzI4iPZUNw==", + "dev": true, + "dependencies": { + "istanbul-lib-coverage": "^3.0.0", + "make-dir": "^4.0.0", + "supports-color": "^7.1.0" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/istanbul-lib-source-maps": { + "version": "4.0.1", + "resolved": "https://registry.npmjs.org/istanbul-lib-source-maps/-/istanbul-lib-source-maps-4.0.1.tgz", + "integrity": "sha512-n3s8EwkdFIJCG3BPKBYvskgXGoy88ARzvegkitk60NxRdwltLOTaH7CUiMRXvwYorl0Q712iEjcWB+fK/MrWVw==", + "dev": true, + "dependencies": { + "debug": "^4.1.1", + "istanbul-lib-coverage": "^3.0.0", + "source-map": "^0.6.1" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/istanbul-reports": { + "version": "3.1.6", + "resolved": "https://registry.npmjs.org/istanbul-reports/-/istanbul-reports-3.1.6.tgz", + "integrity": "sha512-TLgnMkKg3iTDsQ9PbPTdpfAK2DzjF9mqUG7RMgcQl8oFjad8ob4laGxv5XV5U9MAfx8D6tSJiUyuAwzLicaxlg==", + "dev": true, + "dependencies": { + "html-escaper": "^2.0.0", + "istanbul-lib-report": "^3.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/jest": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest/-/jest-29.7.0.tgz", + "integrity": "sha512-NIy3oAFp9shda19hy4HK0HRTWKtPJmGdnvywu01nOqNC2vZg+Z+fvJDxpMQA88eb2I9EcafcdjYgsDthnYTvGw==", + "dev": true, + "dependencies": { + "@jest/core": "^29.7.0", + "@jest/types": "^29.6.3", + "import-local": "^3.0.2", + "jest-cli": "^29.7.0" + }, + "bin": { + "jest": "bin/jest.js" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" + }, + "peerDependenciesMeta": { + "node-notifier": { + "optional": true + } + } + }, + "node_modules/jest-changed-files": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-changed-files/-/jest-changed-files-29.7.0.tgz", + "integrity": "sha512-fEArFiwf1BpQ+4bXSprcDc3/x4HSzL4al2tozwVpDFpsxALjLYdyiIK4e5Vz66GQJIbXJ82+35PtysofptNX2w==", + "dev": true, + "dependencies": { + "execa": "^5.0.0", + "jest-util": "^29.7.0", + "p-limit": "^3.1.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-circus": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-circus/-/jest-circus-29.7.0.tgz", + "integrity": "sha512-3E1nCMgipcTkCocFwM90XXQab9bS+GMsjdpmPrlelaxwD93Ad8iVEjX/vvHPdLPnFf+L40u+5+iutRdA1N9myw==", + "dev": true, + "dependencies": { + "@jest/environment": "^29.7.0", + "@jest/expect": "^29.7.0", + "@jest/test-result": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "chalk": "^4.0.0", + "co": "^4.6.0", + "dedent": "^1.0.0", + "is-generator-fn": "^2.0.0", + "jest-each": "^29.7.0", + "jest-matcher-utils": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-runtime": "^29.7.0", + "jest-snapshot": "^29.7.0", + "jest-util": "^29.7.0", + "p-limit": "^3.1.0", + "pretty-format": "^29.7.0", + "pure-rand": "^6.0.0", + "slash": "^3.0.0", + "stack-utils": "^2.0.3" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-cli": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-cli/-/jest-cli-29.7.0.tgz", + "integrity": "sha512-OVVobw2IubN/GSYsxETi+gOe7Ka59EFMR/twOU3Jb2GnKKeMGJB5SGUUrEz3SFVmJASUdZUzy83sLNNQ2gZslg==", + "dev": true, + "dependencies": { + "@jest/core": "^29.7.0", + "@jest/test-result": "^29.7.0", + "@jest/types": "^29.6.3", + "chalk": "^4.0.0", + "create-jest": "^29.7.0", + "exit": "^0.1.2", + "import-local": "^3.0.2", + "jest-config": "^29.7.0", + "jest-util": "^29.7.0", + "jest-validate": "^29.7.0", + "yargs": "^17.3.1" + }, + "bin": { + "jest": "bin/jest.js" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" + }, + "peerDependenciesMeta": { + "node-notifier": { + "optional": true + } + } + }, + "node_modules/jest-config": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-config/-/jest-config-29.7.0.tgz", + "integrity": "sha512-uXbpfeQ7R6TZBqI3/TxCU4q4ttk3u0PJeC+E0zbfSoSjq6bJ7buBPxzQPL0ifrkY4DNu4JUdk0ImlBUYi840eQ==", + "dev": true, + "dependencies": { + "@babel/core": "^7.11.6", + "@jest/test-sequencer": "^29.7.0", + "@jest/types": "^29.6.3", + "babel-jest": "^29.7.0", + "chalk": "^4.0.0", + "ci-info": "^3.2.0", + "deepmerge": "^4.2.2", + "glob": "^7.1.3", + "graceful-fs": "^4.2.9", + "jest-circus": "^29.7.0", + "jest-environment-node": "^29.7.0", + "jest-get-type": "^29.6.3", + "jest-regex-util": "^29.6.3", + "jest-resolve": "^29.7.0", + "jest-runner": "^29.7.0", + "jest-util": "^29.7.0", + "jest-validate": "^29.7.0", + "micromatch": "^4.0.4", + "parse-json": "^5.2.0", + "pretty-format": "^29.7.0", + "slash": "^3.0.0", + "strip-json-comments": "^3.1.1" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "@types/node": "*", + "ts-node": ">=9.0.0" + }, + "peerDependenciesMeta": { + "@types/node": { + "optional": true + }, + "ts-node": { + "optional": true + } + } + }, + "node_modules/jest-diff": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-diff/-/jest-diff-29.7.0.tgz", + "integrity": "sha512-LMIgiIrhigmPrs03JHpxUh2yISK3vLFPkAodPeo0+BuF7wA2FoQbkEg1u8gBYBThncu7e1oEDUfIXVuTqLRUjw==", + "dev": true, + "dependencies": { + "chalk": "^4.0.0", + "diff-sequences": "^29.6.3", + "jest-get-type": "^29.6.3", + "pretty-format": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-docblock": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-docblock/-/jest-docblock-29.7.0.tgz", + "integrity": "sha512-q617Auw3A612guyaFgsbFeYpNP5t2aoUNLwBUbc/0kD1R4t9ixDbyFTHd1nok4epoVFpr7PmeWHrhvuV3XaJ4g==", + "dev": true, + "dependencies": { + "detect-newline": "^3.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-each": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-each/-/jest-each-29.7.0.tgz", + "integrity": "sha512-gns+Er14+ZrEoC5fhOfYCY1LOHHr0TI+rQUHZS8Ttw2l7gl+80eHc/gFf2Ktkw0+SIACDTeWvpFcv3B04VembQ==", + "dev": true, + "dependencies": { + "@jest/types": "^29.6.3", + "chalk": "^4.0.0", + "jest-get-type": "^29.6.3", + "jest-util": "^29.7.0", + "pretty-format": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-environment-jsdom": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-environment-jsdom/-/jest-environment-jsdom-29.7.0.tgz", + "integrity": "sha512-k9iQbsf9OyOfdzWH8HDmrRT0gSIcX+FLNW7IQq94tFX0gynPwqDTW0Ho6iMVNjGz/nb+l/vW3dWM2bbLLpkbXA==", + "dev": true, + "dependencies": { + "@jest/environment": "^29.7.0", + "@jest/fake-timers": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/jsdom": "^20.0.0", + "@types/node": "*", + "jest-mock": "^29.7.0", + "jest-util": "^29.7.0", + "jsdom": "^20.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "canvas": "^2.5.0" + }, + "peerDependenciesMeta": { + "canvas": { + "optional": true + } + } + }, + "node_modules/jest-environment-node": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-environment-node/-/jest-environment-node-29.7.0.tgz", + "integrity": "sha512-DOSwCRqXirTOyheM+4d5YZOrWcdu0LNZ87ewUoywbcb2XR4wKgqiG8vNeYwhjFMbEkfju7wx2GYH0P2gevGvFw==", + "dev": true, + "dependencies": { + "@jest/environment": "^29.7.0", + "@jest/fake-timers": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "jest-mock": "^29.7.0", + "jest-util": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-get-type": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/jest-get-type/-/jest-get-type-29.6.3.tgz", + "integrity": "sha512-zrteXnqYxfQh7l5FHyL38jL39di8H8rHoecLH3JNxH3BwOrBsNeabdap5e0I23lD4HHI8W5VFBZqG4Eaq5LNcw==", + "dev": true, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-haste-map": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-haste-map/-/jest-haste-map-29.7.0.tgz", + "integrity": "sha512-fP8u2pyfqx0K1rGn1R9pyE0/KTn+G7PxktWidOBTqFPLYX0b9ksaMFkhK5vrS3DVun09pckLdlx90QthlW7AmA==", + "dev": true, + "dependencies": { + "@jest/types": "^29.6.3", + "@types/graceful-fs": "^4.1.3", + "@types/node": "*", + "anymatch": "^3.0.3", + "fb-watchman": "^2.0.0", + "graceful-fs": "^4.2.9", + "jest-regex-util": "^29.6.3", + "jest-util": "^29.7.0", + "jest-worker": "^29.7.0", + "micromatch": "^4.0.4", + "walker": "^1.0.8" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "optionalDependencies": { + "fsevents": "^2.3.2" + } + }, + "node_modules/jest-leak-detector": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-leak-detector/-/jest-leak-detector-29.7.0.tgz", + "integrity": "sha512-kYA8IJcSYtST2BY9I+SMC32nDpBT3J2NvWJx8+JCuCdl/CR1I4EKUJROiP8XtCcxqgTTBGJNdbB1A8XRKbTetw==", + "dev": true, + "dependencies": { + "jest-get-type": "^29.6.3", + "pretty-format": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-matcher-utils": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-matcher-utils/-/jest-matcher-utils-29.7.0.tgz", + "integrity": "sha512-sBkD+Xi9DtcChsI3L3u0+N0opgPYnCRPtGcQYrgXmR+hmt/fYfWAL0xRXYU8eWOdfuLgBe0YCW3AFtnRLagq/g==", + "dev": true, + "dependencies": { + "chalk": "^4.0.0", + "jest-diff": "^29.7.0", + "jest-get-type": "^29.6.3", + "pretty-format": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-message-util": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-message-util/-/jest-message-util-29.7.0.tgz", + "integrity": "sha512-GBEV4GRADeP+qtB2+6u61stea8mGcOT4mCtrYISZwfu9/ISHFJ/5zOMXYbpBE9RsS5+Gb63DW4FgmnKJ79Kf6w==", + "dev": true, + "dependencies": { + "@babel/code-frame": "^7.12.13", + "@jest/types": "^29.6.3", + "@types/stack-utils": "^2.0.0", + "chalk": "^4.0.0", + "graceful-fs": "^4.2.9", + "micromatch": "^4.0.4", + "pretty-format": "^29.7.0", + "slash": "^3.0.0", + "stack-utils": "^2.0.3" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-mock": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-mock/-/jest-mock-29.7.0.tgz", + "integrity": "sha512-ITOMZn+UkYS4ZFh83xYAOzWStloNzJFO2s8DWrE4lhtGD+AorgnbkiKERe4wQVBydIGPx059g6riW5Btp6Llnw==", + "dev": true, + "dependencies": { + "@jest/types": "^29.6.3", + "@types/node": "*", + "jest-util": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-pnp-resolver": { + "version": "1.2.3", + "resolved": "https://registry.npmjs.org/jest-pnp-resolver/-/jest-pnp-resolver-1.2.3.tgz", + "integrity": "sha512-+3NpwQEnRoIBtx4fyhblQDPgJI0H1IEIkX7ShLUjPGA7TtUTvI1oiKi3SR4oBR0hQhQR80l4WAe5RrXBwWMA8w==", + "dev": true, + "engines": { + "node": ">=6" + }, + "peerDependencies": { + "jest-resolve": "*" + }, + "peerDependenciesMeta": { + "jest-resolve": { + "optional": true + } + } + }, + "node_modules/jest-regex-util": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/jest-regex-util/-/jest-regex-util-29.6.3.tgz", + "integrity": "sha512-KJJBsRCyyLNWCNBOvZyRDnAIfUiRJ8v+hOBQYGn8gDyF3UegwiP4gwRR3/SDa42g1YbVycTidUF3rKjyLFDWbg==", + "dev": true, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-resolve": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-resolve/-/jest-resolve-29.7.0.tgz", + "integrity": "sha512-IOVhZSrg+UvVAshDSDtHyFCCBUl/Q3AAJv8iZ6ZjnZ74xzvwuzLXid9IIIPgTnY62SJjfuupMKZsZQRsCvxEgA==", + "dev": true, + "dependencies": { + "chalk": "^4.0.0", + "graceful-fs": "^4.2.9", + "jest-haste-map": "^29.7.0", + "jest-pnp-resolver": "^1.2.2", + "jest-util": "^29.7.0", + "jest-validate": "^29.7.0", + "resolve": "^1.20.0", + "resolve.exports": "^2.0.0", + "slash": "^3.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-resolve-dependencies": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-resolve-dependencies/-/jest-resolve-dependencies-29.7.0.tgz", + "integrity": "sha512-un0zD/6qxJ+S0et7WxeI3H5XSe9lTBBR7bOHCHXkKR6luG5mwDDlIzVQ0V5cZCuoTgEdcdwzTghYkTWfubi+nA==", + "dev": true, + "dependencies": { + "jest-regex-util": "^29.6.3", + "jest-snapshot": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-runner": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-runner/-/jest-runner-29.7.0.tgz", + "integrity": "sha512-fsc4N6cPCAahybGBfTRcq5wFR6fpLznMg47sY5aDpsoejOcVYFb07AHuSnR0liMcPTgBsA3ZJL6kFOjPdoNipQ==", + "dev": true, + "dependencies": { + "@jest/console": "^29.7.0", + "@jest/environment": "^29.7.0", + "@jest/test-result": "^29.7.0", + "@jest/transform": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "chalk": "^4.0.0", + "emittery": "^0.13.1", + "graceful-fs": "^4.2.9", + "jest-docblock": "^29.7.0", + "jest-environment-node": "^29.7.0", + "jest-haste-map": "^29.7.0", + "jest-leak-detector": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-resolve": "^29.7.0", + "jest-runtime": "^29.7.0", + "jest-util": "^29.7.0", + "jest-watcher": "^29.7.0", + "jest-worker": "^29.7.0", + "p-limit": "^3.1.0", + "source-map-support": "0.5.13" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-runtime": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-runtime/-/jest-runtime-29.7.0.tgz", + "integrity": "sha512-gUnLjgwdGqW7B4LvOIkbKs9WGbn+QLqRQQ9juC6HndeDiezIwhDP+mhMwHWCEcfQ5RUXa6OPnFF8BJh5xegwwQ==", + "dev": true, + "dependencies": { + "@jest/environment": "^29.7.0", + "@jest/fake-timers": "^29.7.0", + "@jest/globals": "^29.7.0", + "@jest/source-map": "^29.6.3", + "@jest/test-result": "^29.7.0", + "@jest/transform": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "chalk": "^4.0.0", + "cjs-module-lexer": "^1.0.0", + "collect-v8-coverage": "^1.0.0", + "glob": "^7.1.3", + "graceful-fs": "^4.2.9", + "jest-haste-map": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-mock": "^29.7.0", + "jest-regex-util": "^29.6.3", + "jest-resolve": "^29.7.0", + "jest-snapshot": "^29.7.0", + "jest-util": "^29.7.0", + "slash": "^3.0.0", + "strip-bom": "^4.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-snapshot": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-snapshot/-/jest-snapshot-29.7.0.tgz", + "integrity": "sha512-Rm0BMWtxBcioHr1/OX5YCP8Uov4riHvKPknOGs804Zg9JGZgmIBkbtlxJC/7Z4msKYVbIJtfU+tKb8xlYNfdkw==", + "dev": true, + "dependencies": { + "@babel/core": "^7.11.6", + "@babel/generator": "^7.7.2", + "@babel/plugin-syntax-jsx": "^7.7.2", + "@babel/plugin-syntax-typescript": "^7.7.2", + "@babel/types": "^7.3.3", + "@jest/expect-utils": "^29.7.0", + "@jest/transform": "^29.7.0", + "@jest/types": "^29.6.3", + "babel-preset-current-node-syntax": "^1.0.0", + "chalk": "^4.0.0", + "expect": "^29.7.0", + "graceful-fs": "^4.2.9", + "jest-diff": "^29.7.0", + "jest-get-type": "^29.6.3", + "jest-matcher-utils": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-util": "^29.7.0", + "natural-compare": "^1.4.0", + "pretty-format": "^29.7.0", + "semver": "^7.5.3" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-snapshot/node_modules/lru-cache": { + "version": "6.0.0", + "resolved": "https://registry.npmjs.org/lru-cache/-/lru-cache-6.0.0.tgz", + "integrity": "sha512-Jo6dJ04CmSjuznwJSS3pUeWmd/H0ffTlkXXgwZi+eq1UCmqQwCh+eLsYOYCwY991i2Fah4h1BEMCx4qThGbsiA==", + "dev": true, + "dependencies": { + "yallist": "^4.0.0" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/jest-snapshot/node_modules/semver": { + "version": "7.5.4", + "resolved": "https://registry.npmjs.org/semver/-/semver-7.5.4.tgz", + "integrity": "sha512-1bCSESV6Pv+i21Hvpxp3Dx+pSD8lIPt8uVjRrxAUt/nbswYc+tK6Y2btiULjd4+fnq15PX+nqQDC7Oft7WkwcA==", + "dev": true, + "dependencies": { + "lru-cache": "^6.0.0" + }, + "bin": { + "semver": "bin/semver.js" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/jest-snapshot/node_modules/yallist": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/yallist/-/yallist-4.0.0.tgz", + "integrity": "sha512-3wdGidZyq5PB084XLES5TpOSRA3wjXAlIWMhum2kRcv/41Sn2emQ0dycQW4uZXLejwKvg6EsvbdlVL+FYEct7A==", + "dev": true + }, + "node_modules/jest-util": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-util/-/jest-util-29.7.0.tgz", + "integrity": "sha512-z6EbKajIpqGKU56y5KBUgy1dt1ihhQJgWzUlZHArA/+X2ad7Cb5iF+AK1EWVL/Bo7Rz9uurpqw6SiBCefUbCGA==", + "dev": true, + "dependencies": { + "@jest/types": "^29.6.3", + "@types/node": "*", + "chalk": "^4.0.0", + "ci-info": "^3.2.0", + "graceful-fs": "^4.2.9", + "picomatch": "^2.2.3" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-validate": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-validate/-/jest-validate-29.7.0.tgz", + "integrity": "sha512-ZB7wHqaRGVw/9hST/OuFUReG7M8vKeq0/J2egIGLdvjHCmYqGARhzXmtgi+gVeZ5uXFF219aOc3Ls2yLg27tkw==", + "dev": true, + "dependencies": { + "@jest/types": "^29.6.3", + "camelcase": "^6.2.0", + "chalk": "^4.0.0", + "jest-get-type": "^29.6.3", + "leven": "^3.1.0", + "pretty-format": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-validate/node_modules/camelcase": { + "version": "6.3.0", + "resolved": "https://registry.npmjs.org/camelcase/-/camelcase-6.3.0.tgz", + "integrity": "sha512-Gmy6FhYlCY7uOElZUSbxo2UCDH8owEk996gkbrpsgGtrJLM3J7jGxl9Ic7Qwwj4ivOE5AWZWRMecDdF7hqGjFA==", + "dev": true, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/jest-watcher": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-watcher/-/jest-watcher-29.7.0.tgz", + "integrity": "sha512-49Fg7WXkU3Vl2h6LbLtMQ/HyB6rXSIX7SqvBLQmssRBGN9I0PNvPmAmCWSOY6SOvrjhI/F7/bGAv9RtnsPA03g==", + "dev": true, + "dependencies": { + "@jest/test-result": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "ansi-escapes": "^4.2.1", + "chalk": "^4.0.0", + "emittery": "^0.13.1", + "jest-util": "^29.7.0", + "string-length": "^4.0.1" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-worker": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-worker/-/jest-worker-29.7.0.tgz", + "integrity": "sha512-eIz2msL/EzL9UFTFFx7jBTkeZfku0yUAyZZZmJ93H2TYEiroIx2PQjEXcwYtYl8zXCxb+PAmA2hLIt/6ZEkPHw==", + "dev": true, + "dependencies": { + "@types/node": "*", + "jest-util": "^29.7.0", + "merge-stream": "^2.0.0", + "supports-color": "^8.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-worker/node_modules/supports-color": { + "version": "8.1.1", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-8.1.1.tgz", + "integrity": "sha512-MpUEN2OodtUzxvKQl72cUF7RQ5EiHsGvSsVG0ia9c5RbWGL2CI4C7EpPS8UTBIplnlzZiNuV56w+FuNxy3ty2Q==", + "dev": true, + "dependencies": { + "has-flag": "^4.0.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/supports-color?sponsor=1" + } + }, + "node_modules/js-tokens": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/js-tokens/-/js-tokens-4.0.0.tgz", + "integrity": "sha512-RdJUflcE3cUzKiMqQgsCu06FPu9UdIJO0beYbPhHN4k6apgJtifcoCtT9bcxOpYBtpD2kCM6Sbzg4CausW/PKQ==", + "dev": true + }, + "node_modules/js-yaml": { + "version": "3.14.1", + "resolved": "https://registry.npmjs.org/js-yaml/-/js-yaml-3.14.1.tgz", + "integrity": "sha512-okMH7OXXJ7YrN9Ok3/SXrnu4iX9yOk+25nqX4imS2npuvTYDmo/QEZoqwZkYaIDk3jVvBOTOIEgEhaLOynBS9g==", + "dev": true, + "dependencies": { + "argparse": "^1.0.7", + "esprima": "^4.0.0" + }, + "bin": { + "js-yaml": "bin/js-yaml.js" + } + }, + "node_modules/jsdom": { + "version": "20.0.3", + "resolved": "https://registry.npmjs.org/jsdom/-/jsdom-20.0.3.tgz", + "integrity": "sha512-SYhBvTh89tTfCD/CRdSOm13mOBa42iTaTyfyEWBdKcGdPxPtLFBXuHR8XHb33YNYaP+lLbmSvBTsnoesCNJEsQ==", + "dev": true, + "dependencies": { + "abab": "^2.0.6", + "acorn": "^8.8.1", + "acorn-globals": "^7.0.0", + "cssom": "^0.5.0", + "cssstyle": "^2.3.0", + "data-urls": "^3.0.2", + "decimal.js": "^10.4.2", + "domexception": "^4.0.0", + "escodegen": "^2.0.0", + "form-data": "^4.0.0", + "html-encoding-sniffer": "^3.0.0", + "http-proxy-agent": "^5.0.0", + "https-proxy-agent": "^5.0.1", + "is-potential-custom-element-name": "^1.0.1", + "nwsapi": "^2.2.2", + "parse5": "^7.1.1", + "saxes": "^6.0.0", + "symbol-tree": "^3.2.4", + "tough-cookie": "^4.1.2", + "w3c-xmlserializer": "^4.0.0", + "webidl-conversions": "^7.0.0", + "whatwg-encoding": "^2.0.0", + "whatwg-mimetype": "^3.0.0", + "whatwg-url": "^11.0.0", + "ws": "^8.11.0", + "xml-name-validator": "^4.0.0" + }, + "engines": { + "node": ">=14" + }, + "peerDependencies": { + "canvas": "^2.5.0" + }, + "peerDependenciesMeta": { + "canvas": { + "optional": true + } + } + }, + "node_modules/jsesc": { + "version": "2.5.2", + "resolved": "https://registry.npmjs.org/jsesc/-/jsesc-2.5.2.tgz", + "integrity": "sha512-OYu7XEzjkCQ3C5Ps3QIZsQfNpqoJyZZA99wd9aWd05NCtC5pWOkShK2mkL6HXQR6/Cy2lbNdPlZBpuQHXE63gA==", + "dev": true, + "bin": { + "jsesc": "bin/jsesc" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/json-parse-even-better-errors": { + "version": "2.3.1", + "resolved": "https://registry.npmjs.org/json-parse-even-better-errors/-/json-parse-even-better-errors-2.3.1.tgz", + "integrity": "sha512-xyFwyhro/JEof6Ghe2iz2NcXoj2sloNsWr/XsERDK/oiPCfaNhl5ONfp+jQdAZRQQ0IJWNzH9zIZF7li91kh2w==", + "dev": true + }, + "node_modules/json5": { + "version": "2.2.3", + "resolved": "https://registry.npmjs.org/json5/-/json5-2.2.3.tgz", + "integrity": "sha512-XmOWe7eyHYH14cLdVPoyg+GOH3rYX++KpzrylJwSW98t3Nk+U8XOl8FWKOgwtzdb8lXGf6zYwDUzeHMWfxasyg==", + "dev": true, + "bin": { + "json5": "lib/cli.js" + }, + "engines": { + "node": ">=6" + } + }, + "node_modules/kleur": { + "version": "3.0.3", + "resolved": "https://registry.npmjs.org/kleur/-/kleur-3.0.3.tgz", + "integrity": "sha512-eTIzlVOSUR+JxdDFepEYcBMtZ9Qqdef+rnzWdRZuMbOywu5tO2w2N7rqjoANZ5k9vywhL6Br1VRjUIgTQx4E8w==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/leven": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/leven/-/leven-3.1.0.tgz", + "integrity": "sha512-qsda+H8jTaUaN/x5vzW2rzc+8Rw4TAQ/4KjB46IwK5VH+IlVeeeje/EoZRpiXvIqjFgK84QffqPztGI3VBLG1A==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/lines-and-columns": { + "version": "1.2.4", + "resolved": "https://registry.npmjs.org/lines-and-columns/-/lines-and-columns-1.2.4.tgz", + "integrity": "sha512-7ylylesZQ/PV29jhEDl3Ufjo6ZX7gCqJr5F7PKrqc93v7fzSymt1BpwEU8nAUXs8qzzvqhbjhK5QZg6Mt/HkBg==", + "dev": true + }, + "node_modules/locate-path": { + "version": "5.0.0", + "resolved": "https://registry.npmjs.org/locate-path/-/locate-path-5.0.0.tgz", + "integrity": "sha512-t7hw9pI+WvuwNJXwk5zVHpyhIqzg2qTlklJOf0mVxGSbe3Fp2VieZcduNYjaLDoy6p9uGpQEGWG87WpMKlNq8g==", + "dev": true, + "dependencies": { + "p-locate": "^4.1.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/lodash.debounce": { + "version": "4.0.8", + "resolved": "https://registry.npmjs.org/lodash.debounce/-/lodash.debounce-4.0.8.tgz", + "integrity": "sha512-FT1yDzDYEoYWhnSGnpE/4Kj1fLZkDFyqRb7fNt6FdYOSxlUWAtp42Eh6Wb0rGIv/m9Bgo7x4GhQbm5Ys4SG5ow==", + "dev": true + }, + "node_modules/lru-cache": { + "version": "5.1.1", + "resolved": "https://registry.npmjs.org/lru-cache/-/lru-cache-5.1.1.tgz", + "integrity": "sha512-KpNARQA3Iwv+jTA0utUVVbrh+Jlrr1Fv0e56GGzAFOXN7dk/FviaDW8LHmK52DlcH4WP2n6gI8vN1aesBFgo9w==", + "dev": true, + "dependencies": { + "yallist": "^3.0.2" + } + }, + "node_modules/make-dir": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/make-dir/-/make-dir-4.0.0.tgz", + "integrity": "sha512-hXdUTZYIVOt1Ex//jAQi+wTZZpUpwBj/0QsOzqegb3rGMMeJiSEu5xLHnYfBrRV4RH2+OCSOO95Is/7x1WJ4bw==", + "dev": true, + "dependencies": { + "semver": "^7.5.3" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/make-dir/node_modules/lru-cache": { + "version": "6.0.0", + "resolved": "https://registry.npmjs.org/lru-cache/-/lru-cache-6.0.0.tgz", + "integrity": "sha512-Jo6dJ04CmSjuznwJSS3pUeWmd/H0ffTlkXXgwZi+eq1UCmqQwCh+eLsYOYCwY991i2Fah4h1BEMCx4qThGbsiA==", + "dev": true, + "dependencies": { + "yallist": "^4.0.0" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/make-dir/node_modules/semver": { + "version": "7.5.4", + "resolved": "https://registry.npmjs.org/semver/-/semver-7.5.4.tgz", + "integrity": "sha512-1bCSESV6Pv+i21Hvpxp3Dx+pSD8lIPt8uVjRrxAUt/nbswYc+tK6Y2btiULjd4+fnq15PX+nqQDC7Oft7WkwcA==", + "dev": true, + "dependencies": { + "lru-cache": "^6.0.0" + }, + "bin": { + "semver": "bin/semver.js" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/make-dir/node_modules/yallist": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/yallist/-/yallist-4.0.0.tgz", + "integrity": "sha512-3wdGidZyq5PB084XLES5TpOSRA3wjXAlIWMhum2kRcv/41Sn2emQ0dycQW4uZXLejwKvg6EsvbdlVL+FYEct7A==", + "dev": true + }, + "node_modules/makeerror": { + "version": "1.0.12", + "resolved": "https://registry.npmjs.org/makeerror/-/makeerror-1.0.12.tgz", + "integrity": "sha512-JmqCvUhmt43madlpFzG4BQzG2Z3m6tvQDNKdClZnO3VbIudJYmxsT0FNJMeiB2+JTSlTQTSbU8QdesVmwJcmLg==", + "dev": true, + "dependencies": { + "tmpl": "1.0.5" + } + }, + "node_modules/merge-stream": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/merge-stream/-/merge-stream-2.0.0.tgz", + "integrity": "sha512-abv/qOcuPfk3URPfDzmZU1LKmuw8kT+0nIHvKrKgFrwifol/doWcdA4ZqsWQ8ENrFKkd67Mfpo/LovbIUsbt3w==", + "dev": true + }, + "node_modules/micromatch": { + "version": "4.0.5", + "resolved": "https://registry.npmjs.org/micromatch/-/micromatch-4.0.5.tgz", + "integrity": "sha512-DMy+ERcEW2q8Z2Po+WNXuw3c5YaUSFjAO5GsJqfEl7UjvtIuFKO6ZrKvcItdy98dwFI2N1tg3zNIdKaQT+aNdA==", + "dev": true, + "dependencies": { + "braces": "^3.0.2", + "picomatch": "^2.3.1" + }, + "engines": { + "node": ">=8.6" + } + }, + "node_modules/mime-db": { + "version": "1.52.0", + "resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz", + "integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==", + "dev": true, + "engines": { + "node": ">= 0.6" + } + }, + "node_modules/mime-types": { + "version": "2.1.35", + "resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz", + "integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==", + "dev": true, + "dependencies": { + "mime-db": "1.52.0" + }, + "engines": { + "node": ">= 0.6" + } + }, + "node_modules/mimic-fn": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/mimic-fn/-/mimic-fn-2.1.0.tgz", + "integrity": "sha512-OqbOk5oEQeAZ8WXWydlu9HJjz9WVdEIvamMCcXmuqUYjTknH/sqsWvhQ3vgwKFRR1HpjvNBKQ37nbJgYzGqGcg==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/minimatch": { + "version": "3.1.2", + "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.1.2.tgz", + "integrity": "sha512-J7p63hRiAjw1NDEww1W7i37+ByIrOWO5XQQAzZ3VOcL0PNybwpfmV/N05zFAzwQ9USyEcX6t3UO+K5aqBQOIHw==", + "dev": true, + "dependencies": { + "brace-expansion": "^1.1.7" + }, + "engines": { + "node": "*" + } + }, + "node_modules/ms": { + "version": "2.1.2", + "resolved": "https://registry.npmjs.org/ms/-/ms-2.1.2.tgz", + "integrity": "sha512-sGkPx+VjMtmA6MX27oA4FBFELFCZZ4S4XqeGOXCv68tT+jb3vk/RyaKWP0PTKyWtmLSM0b+adUTEvbs1PEaH2w==", + "dev": true + }, + "node_modules/natural-compare": { + "version": "1.4.0", + "resolved": "https://registry.npmjs.org/natural-compare/-/natural-compare-1.4.0.tgz", + "integrity": "sha512-OWND8ei3VtNC9h7V60qff3SVobHr996CTwgxubgyQYEpg290h9J0buyECNNJexkFm5sOajh5G116RYA1c8ZMSw==", + "dev": true + }, + "node_modules/node-int64": { + "version": "0.4.0", + "resolved": "https://registry.npmjs.org/node-int64/-/node-int64-0.4.0.tgz", + "integrity": "sha512-O5lz91xSOeoXP6DulyHfllpq+Eg00MWitZIbtPfoSEvqIHdl5gfcY6hYzDWnj0qD5tz52PI08u9qUvSVeUBeHw==", + "dev": true + }, + "node_modules/node-releases": { + "version": "2.0.13", + "resolved": "https://registry.npmjs.org/node-releases/-/node-releases-2.0.13.tgz", + "integrity": "sha512-uYr7J37ae/ORWdZeQ1xxMJe3NtdmqMC/JZK+geofDrkLUApKRHPd18/TxtBOJ4A0/+uUIliorNrfYV6s1b02eQ==", + "dev": true + }, + "node_modules/normalize-path": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/normalize-path/-/normalize-path-3.0.0.tgz", + "integrity": "sha512-6eZs5Ls3WtCisHWp9S2GUy8dqkpGi4BVSz3GaqiE6ezub0512ESztXUwUB6C6IKbQkY2Pnb/mD4WYojCRwcwLA==", + "dev": true, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/npm-run-path": { + "version": "4.0.1", + "resolved": "https://registry.npmjs.org/npm-run-path/-/npm-run-path-4.0.1.tgz", + "integrity": "sha512-S48WzZW777zhNIrn7gxOlISNAqi9ZC/uQFnRdbeIHhZhCA6UqpkOT8T1G7BvfdgP4Er8gF4sUbaS0i7QvIfCWw==", + "dev": true, + "dependencies": { + "path-key": "^3.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/nwsapi": { + "version": "2.2.7", + "resolved": "https://registry.npmjs.org/nwsapi/-/nwsapi-2.2.7.tgz", + "integrity": "sha512-ub5E4+FBPKwAZx0UwIQOjYWGHTEq5sPqHQNRN8Z9e4A7u3Tj1weLJsL59yH9vmvqEtBHaOmT6cYQKIZOxp35FQ==", + "dev": true + }, + "node_modules/once": { + "version": "1.4.0", + "resolved": "https://registry.npmjs.org/once/-/once-1.4.0.tgz", + "integrity": "sha512-lNaJgI+2Q5URQBkccEKHTQOPaXdUxnZZElQTZY0MFUAuaEqe1E+Nyvgdz/aIyNi6Z9MzO5dv1H8n58/GELp3+w==", + "dev": true, + "dependencies": { + "wrappy": "1" + } + }, + "node_modules/onetime": { + "version": "5.1.2", + "resolved": "https://registry.npmjs.org/onetime/-/onetime-5.1.2.tgz", + "integrity": "sha512-kbpaSSGJTWdAY5KPVeMOKXSrPtr8C8C7wodJbcsd51jRnmD+GZu8Y0VoU6Dm5Z4vWr0Ig/1NKuWRKf7j5aaYSg==", + "dev": true, + "dependencies": { + "mimic-fn": "^2.1.0" + }, + "engines": { + "node": ">=6" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/p-limit": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/p-limit/-/p-limit-3.1.0.tgz", + "integrity": "sha512-TYOanM3wGwNGsZN2cVTYPArw454xnXj5qmWF1bEoAc4+cU/ol7GVh7odevjp1FNHduHc3KZMcFduxU5Xc6uJRQ==", + "dev": true, + "dependencies": { + "yocto-queue": "^0.1.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/p-locate": { + "version": "4.1.0", + "resolved": "https://registry.npmjs.org/p-locate/-/p-locate-4.1.0.tgz", + "integrity": "sha512-R79ZZ/0wAxKGu3oYMlz8jy/kbhsNrS7SKZ7PxEHBgJ5+F2mtFW2fK2cOtBh1cHYkQsbzFV7I+EoRKe6Yt0oK7A==", + "dev": true, + "dependencies": { + "p-limit": "^2.2.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/p-locate/node_modules/p-limit": { + "version": "2.3.0", + "resolved": "https://registry.npmjs.org/p-limit/-/p-limit-2.3.0.tgz", + "integrity": "sha512-//88mFWSJx8lxCzwdAABTJL2MyWB12+eIY7MDL2SqLmAkeKU9qxRvWuSyTjm3FUmpBEMuFfckAIqEaVGUDxb6w==", + "dev": true, + "dependencies": { + "p-try": "^2.0.0" + }, + "engines": { + "node": ">=6" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/p-try": { + "version": "2.2.0", + "resolved": "https://registry.npmjs.org/p-try/-/p-try-2.2.0.tgz", + "integrity": "sha512-R4nPAVTAU0B9D35/Gk3uJf/7XYbQcyohSKdvAxIRSNghFl4e71hVoGnBNQz9cWaXxO2I10KTC+3jMdvvoKw6dQ==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/parse-json": { + "version": "5.2.0", + "resolved": "https://registry.npmjs.org/parse-json/-/parse-json-5.2.0.tgz", + "integrity": "sha512-ayCKvm/phCGxOkYRSCM82iDwct8/EonSEgCSxWxD7ve6jHggsFl4fZVQBPRNgQoKiuV/odhFrGzQXZwbifC8Rg==", + "dev": true, + "dependencies": { + "@babel/code-frame": "^7.0.0", + "error-ex": "^1.3.1", + "json-parse-even-better-errors": "^2.3.0", + "lines-and-columns": "^1.1.6" + }, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/parse5": { + "version": "7.1.2", + "resolved": "https://registry.npmjs.org/parse5/-/parse5-7.1.2.tgz", + "integrity": "sha512-Czj1WaSVpaoj0wbhMzLmWD69anp2WH7FXMB9n1Sy8/ZFF9jolSQVMu1Ij5WIyGmcBmhk7EOndpO4mIpihVqAXw==", + "dev": true, + "dependencies": { + "entities": "^4.4.0" + }, + "funding": { + "url": "https://github.com/inikulin/parse5?sponsor=1" + } + }, + "node_modules/path-exists": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/path-exists/-/path-exists-4.0.0.tgz", + "integrity": "sha512-ak9Qy5Q7jYb2Wwcey5Fpvg2KoAc/ZIhLSLOSBmRmygPsGwkVVt0fZa0qrtMz+m6tJTAHfZQ8FnmB4MG4LWy7/w==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/path-is-absolute": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/path-is-absolute/-/path-is-absolute-1.0.1.tgz", + "integrity": "sha512-AVbw3UJ2e9bq64vSaS9Am0fje1Pa8pbGqTTsmXfaIiMpnr5DlDhfJOuLj9Sf95ZPVDAUerDfEk88MPmPe7UCQg==", + "dev": true, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/path-key": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/path-key/-/path-key-3.1.1.tgz", + "integrity": "sha512-ojmeN0qd+y0jszEtoY48r0Peq5dwMEkIlCOu6Q5f41lfkswXuKtYrhgoTpLnyIcHm24Uhqx+5Tqm2InSwLhE6Q==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/path-parse": { + "version": "1.0.7", + "resolved": "https://registry.npmjs.org/path-parse/-/path-parse-1.0.7.tgz", + "integrity": "sha512-LDJzPVEEEPR+y48z93A0Ed0yXb8pAByGWo/k5YYdYgpY2/2EsOsksJrq7lOHxryrVOn1ejG6oAp8ahvOIQD8sw==", + "dev": true + }, + "node_modules/picocolors": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/picocolors/-/picocolors-1.0.0.tgz", + "integrity": "sha512-1fygroTLlHu66zi26VoTDv8yRgm0Fccecssto+MhsZ0D/DGW2sm8E8AjW7NU5VVTRt5GxbeZ5qBuJr+HyLYkjQ==", + "dev": true + }, + "node_modules/picomatch": { + "version": "2.3.1", + "resolved": "https://registry.npmjs.org/picomatch/-/picomatch-2.3.1.tgz", + "integrity": "sha512-JU3teHTNjmE2VCGFzuY8EXzCDVwEqB2a8fsIvwaStHhAWJEeVd1o1QD80CU6+ZdEXXSLbSsuLwJjkCBWqRQUVA==", + "dev": true, + "engines": { + "node": ">=8.6" + }, + "funding": { + "url": "https://github.com/sponsors/jonschlinkert" + } + }, + "node_modules/pirates": { + "version": "4.0.6", + "resolved": "https://registry.npmjs.org/pirates/-/pirates-4.0.6.tgz", + "integrity": "sha512-saLsH7WeYYPiD25LDuLRRY/i+6HaPYr6G1OUlN39otzkSTxKnubR9RTxS3/Kk50s1g2JTgFwWQDQyplC5/SHZg==", + "dev": true, + "engines": { + "node": ">= 6" + } + }, + "node_modules/pkg-dir": { + "version": "4.2.0", + "resolved": "https://registry.npmjs.org/pkg-dir/-/pkg-dir-4.2.0.tgz", + "integrity": "sha512-HRDzbaKjC+AOWVXxAU/x54COGeIv9eb+6CkDSQoNTt4XyWoIJvuPsXizxu/Fr23EiekbtZwmh1IcIG/l/a10GQ==", + "dev": true, + "dependencies": { + "find-up": "^4.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/pretty-format": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-29.7.0.tgz", + "integrity": "sha512-Pdlw/oPxN+aXdmM9R00JVC9WVFoCLTKJvDVLgmJ+qAffBMxsV85l/Lu7sNx4zSzPyoL2euImuEwHhOXdEgNFZQ==", + "dev": true, + "dependencies": { + "@jest/schemas": "^29.6.3", + "ansi-styles": "^5.0.0", + "react-is": "^18.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/pretty-format/node_modules/ansi-styles": { + "version": "5.2.0", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-5.2.0.tgz", + "integrity": "sha512-Cxwpt2SfTzTtXcfOlzGEee8O+c+MmUgGrNiBcXnuWxuFJHe6a5Hz7qwhwe5OgaSYI0IJvkLqWX1ASG+cJOkEiA==", + "dev": true, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/ansi-styles?sponsor=1" + } + }, + "node_modules/prompts": { + "version": "2.4.2", + "resolved": "https://registry.npmjs.org/prompts/-/prompts-2.4.2.tgz", + "integrity": "sha512-NxNv/kLguCA7p3jE8oL2aEBsrJWgAakBpgmgK6lpPWV+WuOmY6r2/zbAVnP+T8bQlA0nzHXSJSJW0Hq7ylaD2Q==", + "dev": true, + "dependencies": { + "kleur": "^3.0.3", + "sisteransi": "^1.0.5" + }, + "engines": { + "node": ">= 6" + } + }, + "node_modules/psl": { + "version": "1.9.0", + "resolved": "https://registry.npmjs.org/psl/-/psl-1.9.0.tgz", + "integrity": "sha512-E/ZsdU4HLs/68gYzgGTkMicWTLPdAftJLfJFlLUAAKZGkStNU72sZjT66SnMDVOfOWY/YAoiD7Jxa9iHvngcag==", + "dev": true + }, + "node_modules/punycode": { + "version": "2.3.0", + "resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz", + "integrity": "sha512-rRV+zQD8tVFys26lAGR9WUuS4iUAngJScM+ZRSKtvl5tKeZ2t5bvdNFdNHBW9FWR4guGHlgmsZ1G7BSm2wTbuA==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/pure-rand": { + "version": "6.0.4", + "resolved": "https://registry.npmjs.org/pure-rand/-/pure-rand-6.0.4.tgz", + "integrity": "sha512-LA0Y9kxMYv47GIPJy6MI84fqTd2HmYZI83W/kM/SkKfDlajnZYfmXFTxkbY+xSBPkLJxltMa9hIkmdc29eguMA==", + "dev": true, + "funding": [ + { + "type": "individual", + "url": "https://github.com/sponsors/dubzzz" + }, + { + "type": "opencollective", + "url": "https://opencollective.com/fast-check" + } + ] + }, + "node_modules/querystringify": { + "version": "2.2.0", + "resolved": "https://registry.npmjs.org/querystringify/-/querystringify-2.2.0.tgz", + "integrity": "sha512-FIqgj2EUvTa7R50u0rGsyTftzjYmv/a3hO345bZNrqabNqjtgiDMgmo4mkUjd+nzU5oF3dClKqFIPUKybUyqoQ==", + "dev": true + }, + "node_modules/react-is": { + "version": "18.2.0", + "resolved": "https://registry.npmjs.org/react-is/-/react-is-18.2.0.tgz", + "integrity": "sha512-xWGDIW6x921xtzPkhiULtthJHoJvBbF3q26fzloPCK0hsvxtPVelvftw3zjbHWSkR2km9Z+4uxbDDK/6Zw9B8w==", + "dev": true + }, + "node_modules/regenerate": { + "version": "1.4.2", + "resolved": "https://registry.npmjs.org/regenerate/-/regenerate-1.4.2.tgz", + "integrity": "sha512-zrceR/XhGYU/d/opr2EKO7aRHUeiBI8qjtfHqADTwZd6Szfy16la6kqD0MIUs5z5hx6AaKa+PixpPrR289+I0A==", + "dev": true + }, + "node_modules/regenerate-unicode-properties": { + "version": "10.1.1", + "resolved": "https://registry.npmjs.org/regenerate-unicode-properties/-/regenerate-unicode-properties-10.1.1.tgz", + "integrity": "sha512-X007RyZLsCJVVrjgEFVpLUTZwyOZk3oiL75ZcuYjlIWd6rNJtOjkBwQc5AsRrpbKVkxN6sklw/k/9m2jJYOf8Q==", + "dev": true, + "dependencies": { + "regenerate": "^1.4.2" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/regenerator-runtime": { + "version": "0.14.0", + "resolved": "https://registry.npmjs.org/regenerator-runtime/-/regenerator-runtime-0.14.0.tgz", + "integrity": "sha512-srw17NI0TUWHuGa5CFGGmhfNIeja30WMBfbslPNhf6JrqQlLN5gcrvig1oqPxiVaXb0oW0XRKtH6Nngs5lKCIA==", + "dev": true + }, + "node_modules/regenerator-transform": { + "version": "0.15.2", + "resolved": "https://registry.npmjs.org/regenerator-transform/-/regenerator-transform-0.15.2.tgz", + "integrity": "sha512-hfMp2BoF0qOk3uc5V20ALGDS2ddjQaLrdl7xrGXvAIow7qeWRM2VA2HuCHkUKk9slq3VwEwLNK3DFBqDfPGYtg==", + "dev": true, + "dependencies": { + "@babel/runtime": "^7.8.4" + } + }, + "node_modules/regexpu-core": { + "version": "5.3.2", + "resolved": "https://registry.npmjs.org/regexpu-core/-/regexpu-core-5.3.2.tgz", + "integrity": "sha512-RAM5FlZz+Lhmo7db9L298p2vHP5ZywrVXmVXpmAD9GuL5MPH6t9ROw1iA/wfHkQ76Qe7AaPF0nGuim96/IrQMQ==", + "dev": true, + "dependencies": { + "@babel/regjsgen": "^0.8.0", + "regenerate": "^1.4.2", + "regenerate-unicode-properties": "^10.1.0", + "regjsparser": "^0.9.1", + "unicode-match-property-ecmascript": "^2.0.0", + "unicode-match-property-value-ecmascript": "^2.1.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/regjsparser": { + "version": "0.9.1", + "resolved": "https://registry.npmjs.org/regjsparser/-/regjsparser-0.9.1.tgz", + "integrity": "sha512-dQUtn90WanSNl+7mQKcXAgZxvUe7Z0SqXlgzv0za4LwiUhyzBC58yQO3liFoUgu8GiJVInAhJjkj1N0EtQ5nkQ==", + "dev": true, + "dependencies": { + "jsesc": "~0.5.0" + }, + "bin": { + "regjsparser": "bin/parser" + } + }, + "node_modules/regjsparser/node_modules/jsesc": { + "version": "0.5.0", + "resolved": "https://registry.npmjs.org/jsesc/-/jsesc-0.5.0.tgz", + "integrity": "sha512-uZz5UnB7u4T9LvwmFqXii7pZSouaRPorGs5who1Ip7VO0wxanFvBL7GkM6dTHlgX+jhBApRetaWpnDabOeTcnA==", + "dev": true, + "bin": { + "jsesc": "bin/jsesc" + } + }, + "node_modules/require-directory": { + "version": "2.1.1", + "resolved": "https://registry.npmjs.org/require-directory/-/require-directory-2.1.1.tgz", + "integrity": "sha512-fGxEI7+wsG9xrvdjsrlmL22OMTTiHRwAMroiEeMgq8gzoLC/PQr7RsRDSTLUg/bZAZtF+TVIkHc6/4RIKrui+Q==", + "dev": true, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/requires-port": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/requires-port/-/requires-port-1.0.0.tgz", + "integrity": "sha512-KigOCHcocU3XODJxsu8i/j8T9tzT4adHiecwORRQ0ZZFcp7ahwXuRU1m+yuO90C5ZUyGeGfocHDI14M3L3yDAQ==", + "dev": true + }, + "node_modules/resolve": { + "version": "1.22.6", + "resolved": "https://registry.npmjs.org/resolve/-/resolve-1.22.6.tgz", + "integrity": "sha512-njhxM7mV12JfufShqGy3Rz8j11RPdLy4xi15UurGJeoHLfJpVXKdh3ueuOqbYUcDZnffr6X739JBo5LzyahEsw==", + "dev": true, + "dependencies": { + "is-core-module": "^2.13.0", + "path-parse": "^1.0.7", + "supports-preserve-symlinks-flag": "^1.0.0" + }, + "bin": { + "resolve": "bin/resolve" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/resolve-cwd": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/resolve-cwd/-/resolve-cwd-3.0.0.tgz", + "integrity": "sha512-OrZaX2Mb+rJCpH/6CpSqt9xFVpN++x01XnN2ie9g6P5/3xelLAkXWVADpdz1IHD/KFfEXyE6V0U01OQ3UO2rEg==", + "dev": true, + "dependencies": { + "resolve-from": "^5.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/resolve-from": { + "version": "5.0.0", + "resolved": "https://registry.npmjs.org/resolve-from/-/resolve-from-5.0.0.tgz", + "integrity": "sha512-qYg9KP24dD5qka9J47d0aVky0N+b4fTU89LN9iDnjB5waksiC49rvMB0PrUJQGoTmH50XPiqOvAjDfaijGxYZw==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/resolve.exports": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/resolve.exports/-/resolve.exports-2.0.2.tgz", + "integrity": "sha512-X2UW6Nw3n/aMgDVy+0rSqgHlv39WZAlZrXCdnbyEiKm17DSqHX4MmQMaST3FbeWR5FTuRcUwYAziZajji0Y7mg==", + "dev": true, + "engines": { + "node": ">=10" + } + }, + "node_modules/safer-buffer": { + "version": "2.1.2", + "resolved": "https://registry.npmjs.org/safer-buffer/-/safer-buffer-2.1.2.tgz", + "integrity": "sha512-YZo3K82SD7Riyi0E1EQPojLz7kpepnSQI9IyPbHHg1XXXevb5dJI7tpyN2ADxGcQbHG7vcyRHk0cbwqcQriUtg==", + "dev": true + }, + "node_modules/saxes": { + "version": "6.0.0", + "resolved": "https://registry.npmjs.org/saxes/-/saxes-6.0.0.tgz", + "integrity": "sha512-xAg7SOnEhrm5zI3puOOKyy1OMcMlIJZYNJY7xLBwSze0UjhPLnWfj2GF2EpT0jmzaJKIWKHLsaSSajf35bcYnA==", + "dev": true, + "dependencies": { + "xmlchars": "^2.2.0" + }, + "engines": { + "node": ">=v12.22.7" + } + }, + "node_modules/semver": { + "version": "6.3.1", + "resolved": "https://registry.npmjs.org/semver/-/semver-6.3.1.tgz", + "integrity": "sha512-BR7VvDCVHO+q2xBEWskxS6DJE1qRnb7DxzUrogb71CWoSficBxYsiAGd+Kl0mmq/MprG9yArRkyrQxTO6XjMzA==", + "dev": true, + "bin": { + "semver": "bin/semver.js" + } + }, + "node_modules/shebang-command": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/shebang-command/-/shebang-command-2.0.0.tgz", + "integrity": "sha512-kHxr2zZpYtdmrN1qDjrrX/Z1rR1kG8Dx+gkpK1G4eXmvXswmcE1hTWBWYUzlraYw1/yZp6YuDY77YtvbN0dmDA==", + "dev": true, + "dependencies": { + "shebang-regex": "^3.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/shebang-regex": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/shebang-regex/-/shebang-regex-3.0.0.tgz", + "integrity": "sha512-7++dFhtcx3353uBaq8DDR4NuxBetBzC7ZQOhmTQInHEd6bSrXdiEyzCvG07Z44UYdLShWUyXt5M/yhz8ekcb1A==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/signal-exit": { + "version": "3.0.7", + "resolved": "https://registry.npmjs.org/signal-exit/-/signal-exit-3.0.7.tgz", + "integrity": "sha512-wnD2ZE+l+SPC/uoS0vXeE9L1+0wuaMqKlfz9AMUo38JsyLSBWSFcHR1Rri62LZc12vLr1gb3jl7iwQhgwpAbGQ==", + "dev": true + }, + "node_modules/sisteransi": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/sisteransi/-/sisteransi-1.0.5.tgz", + "integrity": "sha512-bLGGlR1QxBcynn2d5YmDX4MGjlZvy2MRBDRNHLJ8VI6l6+9FUiyTFNJ0IveOSP0bcXgVDPRcfGqA0pjaqUpfVg==", + "dev": true + }, + "node_modules/slash": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/slash/-/slash-3.0.0.tgz", + "integrity": "sha512-g9Q1haeby36OSStwb4ntCGGGaKsaVSjQ68fBxoQcutl5fS1vuY18H3wSt3jFyFtrkx+Kz0V1G85A4MyAdDMi2Q==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/source-map": { + "version": "0.6.1", + "resolved": "https://registry.npmjs.org/source-map/-/source-map-0.6.1.tgz", + "integrity": "sha512-UjgapumWlbMhkBgzT7Ykc5YXUT46F0iKu8SGXq0bcwP5dz/h0Plj6enJqjz1Zbq2l5WaqYnrVbwWOWMyF3F47g==", + "dev": true, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/source-map-support": { + "version": "0.5.13", + "resolved": "https://registry.npmjs.org/source-map-support/-/source-map-support-0.5.13.tgz", + "integrity": "sha512-SHSKFHadjVA5oR4PPqhtAVdcBWwRYVd6g6cAXnIbRiIwc2EhPrTuKUBdSLvlEKyIP3GCf89fltvcZiP9MMFA1w==", + "dev": true, + "dependencies": { + "buffer-from": "^1.0.0", + "source-map": "^0.6.0" + } + }, + "node_modules/sprintf-js": { + "version": "1.0.3", + "resolved": "https://registry.npmjs.org/sprintf-js/-/sprintf-js-1.0.3.tgz", + "integrity": "sha512-D9cPgkvLlV3t3IzL0D0YLvGA9Ahk4PcvVwUbN0dSGr1aP0Nrt4AEnTUbuGvquEC0mA64Gqt1fzirlRs5ibXx8g==", + "dev": true + }, + "node_modules/stack-utils": { + "version": "2.0.6", + "resolved": "https://registry.npmjs.org/stack-utils/-/stack-utils-2.0.6.tgz", + "integrity": "sha512-XlkWvfIm6RmsWtNJx+uqtKLS8eqFbxUg0ZzLXqY0caEy9l7hruX8IpiDnjsLavoBgqCCR71TqWO8MaXYheJ3RQ==", + "dev": true, + "dependencies": { + "escape-string-regexp": "^2.0.0" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/string-length": { + "version": "4.0.2", + "resolved": "https://registry.npmjs.org/string-length/-/string-length-4.0.2.tgz", + "integrity": "sha512-+l6rNN5fYHNhZZy41RXsYptCjA2Igmq4EG7kZAYFQI1E1VTXarr6ZPXBg6eq7Y6eK4FEhY6AJlyuFIb/v/S0VQ==", + "dev": true, + "dependencies": { + "char-regex": "^1.0.2", + "strip-ansi": "^6.0.0" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/string-width": { + "version": "4.2.3", + "resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz", + "integrity": "sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==", + "dev": true, + "dependencies": { + "emoji-regex": "^8.0.0", + "is-fullwidth-code-point": "^3.0.0", + "strip-ansi": "^6.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/strip-ansi": { + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz", + "integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==", + "dev": true, + "dependencies": { + "ansi-regex": "^5.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/strip-bom": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/strip-bom/-/strip-bom-4.0.0.tgz", + "integrity": "sha512-3xurFv5tEgii33Zi8Jtp55wEIILR9eh34FAW00PZf+JnSsTmV/ioewSgQl97JHvgjoRGwPShsWm+IdrxB35d0w==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/strip-final-newline": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/strip-final-newline/-/strip-final-newline-2.0.0.tgz", + "integrity": "sha512-BrpvfNAE3dcvq7ll3xVumzjKjZQ5tI1sEUIKr3Uoks0XUl45St3FlatVqef9prk4jRDzhW6WZg+3bk93y6pLjA==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/strip-json-comments": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/strip-json-comments/-/strip-json-comments-3.1.1.tgz", + "integrity": "sha512-6fPc+R4ihwqP6N/aIv2f1gMH8lOVtWQHoqC4yK6oSDVVocumAsfCqjkXnqiYMhmMwS/mEHLp7Vehlt3ql6lEig==", + "dev": true, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/supports-color": { + "version": "7.2.0", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz", + "integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==", + "dev": true, + "dependencies": { + "has-flag": "^4.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/supports-preserve-symlinks-flag": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/supports-preserve-symlinks-flag/-/supports-preserve-symlinks-flag-1.0.0.tgz", + "integrity": "sha512-ot0WnXS9fgdkgIcePe6RHNk1WA8+muPa6cSjeR3V8K27q9BB1rTE3R1p7Hv0z1ZyAc8s6Vvv8DIyWf681MAt0w==", + "dev": true, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/symbol-tree": { + "version": "3.2.4", + "resolved": "https://registry.npmjs.org/symbol-tree/-/symbol-tree-3.2.4.tgz", + "integrity": "sha512-9QNk5KwDF+Bvz+PyObkmSYjI5ksVUYtjW7AU22r2NKcfLJcXp96hkDWU3+XndOsUb+AQ9QhfzfCT2O+CNWT5Tw==", + "dev": true + }, + "node_modules/test-exclude": { + "version": "6.0.0", + "resolved": "https://registry.npmjs.org/test-exclude/-/test-exclude-6.0.0.tgz", + "integrity": "sha512-cAGWPIyOHU6zlmg88jwm7VRyXnMN7iV68OGAbYDk/Mh/xC/pzVPlQtY6ngoIH/5/tciuhGfvESU8GrHrcxD56w==", + "dev": true, + "dependencies": { + "@istanbuljs/schema": "^0.1.2", + "glob": "^7.1.4", + "minimatch": "^3.0.4" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/tmpl": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/tmpl/-/tmpl-1.0.5.tgz", + "integrity": "sha512-3f0uOEAQwIqGuWW2MVzYg8fV/QNnc/IpuJNG837rLuczAaLVHslWHZQj4IGiEl5Hs3kkbhwL9Ab7Hrsmuj+Smw==", + "dev": true + }, + "node_modules/to-fast-properties": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/to-fast-properties/-/to-fast-properties-2.0.0.tgz", + "integrity": "sha512-/OaKK0xYrs3DmxRYqL/yDc+FxFUVYhDlXMhRmv3z915w2HF1tnN1omB354j8VUGO/hbRzyD6Y3sA7v7GS/ceog==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/to-regex-range": { + "version": "5.0.1", + "resolved": "https://registry.npmjs.org/to-regex-range/-/to-regex-range-5.0.1.tgz", + "integrity": "sha512-65P7iz6X5yEr1cwcgvQxbbIw7Uk3gOy5dIdtZ4rDveLqhrdJP+Li/Hx6tyK0NEb+2GCyneCMJiGqrADCSNk8sQ==", + "dev": true, + "dependencies": { + "is-number": "^7.0.0" + }, + "engines": { + "node": ">=8.0" + } + }, + "node_modules/tough-cookie": { + "version": "4.1.3", + "resolved": "https://registry.npmjs.org/tough-cookie/-/tough-cookie-4.1.3.tgz", + "integrity": "sha512-aX/y5pVRkfRnfmuX+OdbSdXvPe6ieKX/G2s7e98f4poJHnqH3281gDPm/metm6E/WRamfx7WC4HUqkWHfQHprw==", + "dev": true, + "dependencies": { + "psl": "^1.1.33", + "punycode": "^2.1.1", + "universalify": "^0.2.0", + "url-parse": "^1.5.3" + }, + "engines": { + "node": ">=6" + } + }, + "node_modules/tr46": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/tr46/-/tr46-3.0.0.tgz", + "integrity": "sha512-l7FvfAHlcmulp8kr+flpQZmVwtu7nfRV7NZujtN0OqES8EL4O4e0qqzL0DC5gAvx/ZC/9lk6rhcUwYvkBnBnYA==", + "dev": true, + "dependencies": { + "punycode": "^2.1.1" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/type-detect": { + "version": "4.0.8", + "resolved": "https://registry.npmjs.org/type-detect/-/type-detect-4.0.8.tgz", + "integrity": "sha512-0fr/mIH1dlO+x7TlcMy+bIDqKPsw/70tVyeHW787goQjhmqaZe10uwLujubK9q9Lg6Fiho1KUKDYz0Z7k7g5/g==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/type-fest": { + "version": "0.21.3", + "resolved": "https://registry.npmjs.org/type-fest/-/type-fest-0.21.3.tgz", + "integrity": "sha512-t0rzBq87m3fVcduHDUFhKmyyX+9eo6WQjZvf51Ea/M0Q7+T374Jp1aUiyUl0GKxp8M/OETVHSDvmkyPgvX+X2w==", + "dev": true, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/unicode-canonical-property-names-ecmascript": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/unicode-canonical-property-names-ecmascript/-/unicode-canonical-property-names-ecmascript-2.0.0.tgz", + "integrity": "sha512-yY5PpDlfVIU5+y/BSCxAJRBIS1Zc2dDG3Ujq+sR0U+JjUevW2JhocOF+soROYDSaAezOzOKuyyixhD6mBknSmQ==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/unicode-match-property-ecmascript": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/unicode-match-property-ecmascript/-/unicode-match-property-ecmascript-2.0.0.tgz", + "integrity": "sha512-5kaZCrbp5mmbz5ulBkDkbY0SsPOjKqVS35VpL9ulMPfSl0J0Xsm+9Evphv9CoIZFwre7aJoa94AY6seMKGVN5Q==", + "dev": true, + "dependencies": { + "unicode-canonical-property-names-ecmascript": "^2.0.0", + "unicode-property-aliases-ecmascript": "^2.0.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/unicode-match-property-value-ecmascript": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/unicode-match-property-value-ecmascript/-/unicode-match-property-value-ecmascript-2.1.0.tgz", + "integrity": "sha512-qxkjQt6qjg/mYscYMC0XKRn3Rh0wFPlfxB0xkt9CfyTvpX1Ra0+rAmdX2QyAobptSEvuy4RtpPRui6XkV+8wjA==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/unicode-property-aliases-ecmascript": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/unicode-property-aliases-ecmascript/-/unicode-property-aliases-ecmascript-2.1.0.tgz", + "integrity": "sha512-6t3foTQI9qne+OZoVQB/8x8rk2k1eVy1gRXhV3oFQ5T6R1dqQ1xtin3XqSlx3+ATBkliTaR/hHyJBm+LVPNM8w==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/universalify": { + "version": "0.2.0", + "resolved": "https://registry.npmjs.org/universalify/-/universalify-0.2.0.tgz", + "integrity": "sha512-CJ1QgKmNg3CwvAv/kOFmtnEN05f0D/cn9QntgNOQlQF9dgvVTHj3t+8JPdjqawCHk7V/KA+fbUqzZ9XWhcqPUg==", + "dev": true, + "engines": { + "node": ">= 4.0.0" + } + }, + "node_modules/update-browserslist-db": { + "version": "1.0.13", + "resolved": "https://registry.npmjs.org/update-browserslist-db/-/update-browserslist-db-1.0.13.tgz", + "integrity": "sha512-xebP81SNcPuNpPP3uzeW1NYXxI3rxyJzF3pD6sH4jE7o/IX+WtSpwnVU+qIsDPyk0d3hmFQ7mjqc6AtV604hbg==", + "dev": true, + "funding": [ + { + "type": "opencollective", + "url": "https://opencollective.com/browserslist" + }, + { + "type": "tidelift", + "url": "https://tidelift.com/funding/github/npm/browserslist" + }, + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ], + "dependencies": { + "escalade": "^3.1.1", + "picocolors": "^1.0.0" + }, + "bin": { + "update-browserslist-db": "cli.js" + }, + "peerDependencies": { + "browserslist": ">= 4.21.0" + } + }, + "node_modules/url-parse": { + "version": "1.5.10", + "resolved": "https://registry.npmjs.org/url-parse/-/url-parse-1.5.10.tgz", + "integrity": "sha512-WypcfiRhfeUP9vvF0j6rw0J3hrWrw6iZv3+22h6iRMJ/8z1Tj6XfLP4DsUix5MhMPnXpiHDoKyoZ/bdCkwBCiQ==", + "dev": true, + "dependencies": { + "querystringify": "^2.1.1", + "requires-port": "^1.0.0" + } + }, + "node_modules/v8-to-istanbul": { + "version": "9.1.3", + "resolved": "https://registry.npmjs.org/v8-to-istanbul/-/v8-to-istanbul-9.1.3.tgz", + "integrity": "sha512-9lDD+EVI2fjFsMWXc6dy5JJzBsVTcQ2fVkfBvncZ6xJWG9wtBhOldG+mHkSL0+V1K/xgZz0JDO5UT5hFwHUghg==", + "dev": true, + "dependencies": { + "@jridgewell/trace-mapping": "^0.3.12", + "@types/istanbul-lib-coverage": "^2.0.1", + "convert-source-map": "^2.0.0" + }, + "engines": { + "node": ">=10.12.0" + } + }, + "node_modules/w3c-xmlserializer": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/w3c-xmlserializer/-/w3c-xmlserializer-4.0.0.tgz", + "integrity": "sha512-d+BFHzbiCx6zGfz0HyQ6Rg69w9k19nviJspaj4yNscGjrHu94sVP+aRm75yEbCh+r2/yR+7q6hux9LVtbuTGBw==", + "dev": true, + "dependencies": { + "xml-name-validator": "^4.0.0" + }, + "engines": { + "node": ">=14" + } + }, + "node_modules/walker": { + "version": "1.0.8", + "resolved": "https://registry.npmjs.org/walker/-/walker-1.0.8.tgz", + "integrity": "sha512-ts/8E8l5b7kY0vlWLewOkDXMmPdLcVV4GmOQLyxuSswIJsweeFZtAsMF7k1Nszz+TYBQrlYRmzOnr398y1JemQ==", + "dev": true, + "dependencies": { + "makeerror": "1.0.12" + } + }, + "node_modules/webidl-conversions": { + "version": "7.0.0", + "resolved": "https://registry.npmjs.org/webidl-conversions/-/webidl-conversions-7.0.0.tgz", + "integrity": "sha512-VwddBukDzu71offAQR975unBIGqfKZpM+8ZX6ySk8nYhVoo5CYaZyzt3YBvYtRtO+aoGlqxPg/B87NGVZ/fu6g==", + "dev": true, + "engines": { + "node": ">=12" + } + }, + "node_modules/whatwg-encoding": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/whatwg-encoding/-/whatwg-encoding-2.0.0.tgz", + "integrity": "sha512-p41ogyeMUrw3jWclHWTQg1k05DSVXPLcVxRTYsXUk+ZooOCZLcoYgPZ/HL/D/N+uQPOtcp1me1WhBEaX02mhWg==", + "dev": true, + "dependencies": { + "iconv-lite": "0.6.3" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/whatwg-mimetype": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/whatwg-mimetype/-/whatwg-mimetype-3.0.0.tgz", + "integrity": "sha512-nt+N2dzIutVRxARx1nghPKGv1xHikU7HKdfafKkLNLindmPU/ch3U31NOCGGA/dmPcmb1VlofO0vnKAcsm0o/Q==", + "dev": true, + "engines": { + "node": ">=12" + } + }, + "node_modules/whatwg-url": { + "version": "11.0.0", + "resolved": "https://registry.npmjs.org/whatwg-url/-/whatwg-url-11.0.0.tgz", + "integrity": "sha512-RKT8HExMpoYx4igMiVMY83lN6UeITKJlBQ+vR/8ZJ8OCdSiN3RwCq+9gH0+Xzj0+5IrM6i4j/6LuvzbZIQgEcQ==", + "dev": true, + "dependencies": { + "tr46": "^3.0.0", + "webidl-conversions": "^7.0.0" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/which": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/which/-/which-2.0.2.tgz", + "integrity": "sha512-BLI3Tl1TW3Pvl70l3yq3Y64i+awpwXqsGBYWkkqMtnbXgrMD+yj7rhW0kuEDxzJaYXGjEW5ogapKNMEKNMjibA==", + "dev": true, + "dependencies": { + "isexe": "^2.0.0" + }, + "bin": { + "node-which": "bin/node-which" + }, + "engines": { + "node": ">= 8" + } + }, + "node_modules/wrap-ansi": { + "version": "7.0.0", + "resolved": "https://registry.npmjs.org/wrap-ansi/-/wrap-ansi-7.0.0.tgz", + "integrity": "sha512-YVGIj2kamLSTxw6NsZjoBxfSwsn0ycdesmc4p+Q21c5zPuZ1pl+NfxVdxPtdHvmNVOQ6XSYG4AUtyt/Fi7D16Q==", + "dev": true, + "dependencies": { + "ansi-styles": "^4.0.0", + "string-width": "^4.1.0", + "strip-ansi": "^6.0.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/wrap-ansi?sponsor=1" + } + }, + "node_modules/wrappy": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/wrappy/-/wrappy-1.0.2.tgz", + "integrity": "sha512-l4Sp/DRseor9wL6EvV2+TuQn63dMkPjZ/sp9XkghTEbV9KlPS1xUsZ3u7/IQO4wxtcFB4bgpQPRcR3QCvezPcQ==", + "dev": true + }, + "node_modules/write-file-atomic": { + "version": "4.0.2", + "resolved": "https://registry.npmjs.org/write-file-atomic/-/write-file-atomic-4.0.2.tgz", + "integrity": "sha512-7KxauUdBmSdWnmpaGFg+ppNjKF8uNLry8LyzjauQDOVONfFLNKrKvQOxZ/VuTIcS/gge/YNahf5RIIQWTSarlg==", + "dev": true, + "dependencies": { + "imurmurhash": "^0.1.4", + "signal-exit": "^3.0.7" + }, + "engines": { + "node": "^12.13.0 || ^14.15.0 || >=16.0.0" + } + }, + "node_modules/ws": { + "version": "8.14.2", + "resolved": "https://registry.npmjs.org/ws/-/ws-8.14.2.tgz", + "integrity": "sha512-wEBG1ftX4jcglPxgFCMJmZ2PLtSbJ2Peg6TmpJFTbe9GZYOQCDPdMYu/Tm0/bGZkw8paZnJY45J4K2PZrLYq8g==", + "dev": true, + "engines": { + "node": ">=10.0.0" + }, + "peerDependencies": { + "bufferutil": "^4.0.1", + "utf-8-validate": ">=5.0.2" + }, + "peerDependenciesMeta": { + "bufferutil": { + "optional": true + }, + "utf-8-validate": { + "optional": true + } + } + }, + "node_modules/xml-name-validator": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/xml-name-validator/-/xml-name-validator-4.0.0.tgz", + "integrity": "sha512-ICP2e+jsHvAj2E2lIHxa5tjXRlKDJo4IdvPvCXbXQGdzSfmSpNVyIKMvoZHjDY9DP0zV17iI85o90vRFXNccRw==", + "dev": true, + "engines": { + "node": ">=12" + } + }, + "node_modules/xmlchars": { + "version": "2.2.0", + "resolved": "https://registry.npmjs.org/xmlchars/-/xmlchars-2.2.0.tgz", + "integrity": "sha512-JZnDKK8B0RCDw84FNdDAIpZK+JuJw+s7Lz8nksI7SIuU3UXJJslUthsi+uWBUYOwPFwW7W7PRLRfUKpxjtjFCw==", + "dev": true + }, + "node_modules/y18n": { + "version": "5.0.8", + "resolved": "https://registry.npmjs.org/y18n/-/y18n-5.0.8.tgz", + "integrity": "sha512-0pfFzegeDWJHJIAmTLRP2DwHjdF5s7jo9tuztdQxAhINCdvS+3nGINqPd00AphqJR/0LhANUS6/+7SCb98YOfA==", + "dev": true, + "engines": { + "node": ">=10" + } + }, + "node_modules/yallist": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/yallist/-/yallist-3.1.1.tgz", + "integrity": "sha512-a4UGQaWPH59mOXUYnAG2ewncQS4i4F43Tv3JoAM+s2VDAmS9NsK8GpDMLrCHPksFT7h3K6TOoUNn2pb7RoXx4g==", + "dev": true + }, + "node_modules/yargs": { + "version": "17.7.2", + "resolved": "https://registry.npmjs.org/yargs/-/yargs-17.7.2.tgz", + "integrity": "sha512-7dSzzRQ++CKnNI/krKnYRV7JKKPUXMEh61soaHKg9mrWEhzFWhFnxPxGl+69cD1Ou63C13NUPCnmIcrvqCuM6w==", + "dev": true, + "dependencies": { + "cliui": "^8.0.1", + "escalade": "^3.1.1", + "get-caller-file": "^2.0.5", + "require-directory": "^2.1.1", + "string-width": "^4.2.3", + "y18n": "^5.0.5", + "yargs-parser": "^21.1.1" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/yargs-parser": { + "version": "21.1.1", + "resolved": "https://registry.npmjs.org/yargs-parser/-/yargs-parser-21.1.1.tgz", + "integrity": "sha512-tVpsJW7DdjecAiFpbIB1e3qxIQsE6NoPc5/eTdrbbIC4h0LVsWhnoa3g+m2HclBIujHzsxZ4VJVA+GUuc2/LBw==", + "dev": true, + "engines": { + "node": ">=12" + } + }, + "node_modules/yocto-queue": { + "version": "0.1.0", + "resolved": "https://registry.npmjs.org/yocto-queue/-/yocto-queue-0.1.0.tgz", + "integrity": "sha512-rVksvsnNCdJ/ohGc6xgPwyN8eheCxsiLM8mxuE/t/mOVqJewPuO1miLpTHQiRgTKCLexL4MeAFVagts7HmNZ2Q==", + "dev": true, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + } + } +} diff --git a/tests-ui/package.json b/tests-ui/package.json new file mode 100644 index 00000000000..e7b60ad8e75 --- /dev/null +++ b/tests-ui/package.json @@ -0,0 +1,30 @@ +{ + "name": "comfui-tests", + "version": "1.0.0", + "description": "UI tests", + "main": "index.js", + "scripts": { + "test": "jest", + "test:generate": "node setup.js" + }, + "repository": { + "type": "git", + "url": "git+https://github.com/comfyanonymous/ComfyUI.git" + }, + "keywords": [ + "comfyui", + "test" + ], + "author": "comfyanonymous", + "license": "GPL-3.0", + "bugs": { + "url": "https://github.com/comfyanonymous/ComfyUI/issues" + }, + "homepage": "https://github.com/comfyanonymous/ComfyUI#readme", + "devDependencies": { + "@babel/preset-env": "^7.22.20", + "@types/jest": "^29.5.5", + "jest": "^29.7.0", + "jest-environment-jsdom": "^29.7.0" + } +} diff --git a/tests-ui/setup.js b/tests-ui/setup.js new file mode 100644 index 00000000000..8bbd9dcdf20 --- /dev/null +++ b/tests-ui/setup.js @@ -0,0 +1,88 @@ +const { spawn } = require("child_process"); +const { resolve } = require("path"); +const { existsSync, mkdirSync, writeFileSync } = require("fs"); +const http = require("http"); + +async function setup() { + // Wait up to 30s for it to start + let success = false; + let child; + for (let i = 0; i < 30; i++) { + try { + await new Promise((res, rej) => { + http + .get("http://127.0.0.1:8188/object_info", (resp) => { + let data = ""; + resp.on("data", (chunk) => { + data += chunk; + }); + resp.on("end", () => { + // Modify the response data to add some checkpoints + const objectInfo = JSON.parse(data); + objectInfo.CheckpointLoaderSimple.input.required.ckpt_name[0] = ["model1.safetensors", "model2.ckpt"]; + objectInfo.VAELoader.input.required.vae_name[0] = ["vae1.safetensors", "vae2.ckpt"]; + + data = JSON.stringify(objectInfo, undefined, "\t"); + + const outDir = resolve("./data"); + if (!existsSync(outDir)) { + mkdirSync(outDir); + } + + const outPath = resolve(outDir, "object_info.json"); + console.log(`Writing ${Object.keys(objectInfo).length} nodes to ${outPath}`); + writeFileSync(outPath, data, { + encoding: "utf8", + }); + res(); + }); + }) + .on("error", rej); + }); + success = true; + break; + } catch (error) { + console.log(i + "/30", error); + if (i === 0) { + // Start the server on first iteration if it fails to connect + console.log("Starting ComfyUI server..."); + + let python = resolve("../../python_embeded/python.exe"); + let args; + let cwd; + if (existsSync(python)) { + args = ["-s", "ComfyUI/main.py"]; + cwd = "../.."; + } else { + python = "python"; + args = ["main.py"]; + cwd = ".."; + } + args.push("--cpu"); + console.log(python, ...args); + child = spawn(python, args, { cwd }); + child.on("error", (err) => { + console.log(`Server error (${err})`); + i = 30; + }); + child.on("exit", (code) => { + if (!success) { + console.log(`Server exited (${code})`); + i = 30; + } + }); + } + await new Promise((r) => { + setTimeout(r, 1000); + }); + } + } + + child?.kill(); + + if (!success) { + throw new Error("Waiting for server failed..."); + } +} + + setup(); \ No newline at end of file diff --git a/tests-ui/tests/groupNode.test.js b/tests-ui/tests/groupNode.test.js new file mode 100644 index 00000000000..ce54c11542c --- /dev/null +++ b/tests-ui/tests/groupNode.test.js @@ -0,0 +1,818 @@ +// @ts-check +/// + +const { start, createDefaultWorkflow } = require("../utils"); +const lg = require("../utils/litegraph"); + +describe("group node", () => { + beforeEach(() => { + lg.setup(global); + }); + + afterEach(() => { + lg.teardown(global); + }); + + /** + * + * @param {*} app + * @param {*} graph + * @param {*} name + * @param {*} nodes + * @returns { Promise> } + */ + async function convertToGroup(app, graph, name, nodes) { + // Select the nodes we are converting + for (const n of nodes) { + n.select(true); + } + + expect(Object.keys(app.canvas.selected_nodes).sort((a, b) => +a - +b)).toEqual( + nodes.map((n) => n.id + "").sort((a, b) => +a - +b) + ); + + global.prompt = jest.fn().mockImplementation(() => name); + const groupNode = await nodes[0].menu["Convert to Group Node"].call(false); + + // Check group name was requested + expect(window.prompt).toHaveBeenCalled(); + + // Ensure old nodes are removed + for (const n of nodes) { + expect(n.isRemoved).toBeTruthy(); + } + + expect(groupNode.type).toEqual("workflow/" + name); + + return graph.find(groupNode); + } + + /** + * @param { Record | number[] } idMap + * @param { Record> } valueMap + */ + function getOutput(idMap = {}, valueMap = {}) { + if (idMap instanceof Array) { + idMap = idMap.reduce((p, n) => { + p[n] = n + ""; + return p; + }, {}); + } + const expected = { + 1: { inputs: { ckpt_name: "model1.safetensors", ...valueMap?.[1] }, class_type: "CheckpointLoaderSimple" }, + 2: { inputs: { text: "positive", clip: ["1", 1], ...valueMap?.[2] }, class_type: "CLIPTextEncode" }, + 3: { inputs: { text: "negative", clip: ["1", 1], ...valueMap?.[3] }, class_type: "CLIPTextEncode" }, + 4: { inputs: { width: 512, height: 512, batch_size: 1, ...valueMap?.[4] }, class_type: "EmptyLatentImage" }, + 5: { + inputs: { + seed: 0, + steps: 20, + cfg: 8, + sampler_name: "euler", + scheduler: "normal", + denoise: 1, + model: ["1", 0], + positive: ["2", 0], + negative: ["3", 0], + latent_image: ["4", 0], + ...valueMap?.[5], + }, + class_type: "KSampler", + }, + 6: { inputs: { samples: ["5", 0], vae: ["1", 2], ...valueMap?.[6] }, class_type: "VAEDecode" }, + 7: { inputs: { filename_prefix: "ComfyUI", images: ["6", 0], ...valueMap?.[7] }, class_type: "SaveImage" }, + }; + + // Map old IDs to new at the top level + const mapped = {}; + for (const oldId in idMap) { + mapped[idMap[oldId]] = expected[oldId]; + delete expected[oldId]; + } + Object.assign(mapped, expected); + + // Map old IDs to new inside links + for (const k in mapped) { + for (const input in mapped[k].inputs) { + const v = mapped[k].inputs[input]; + if (v instanceof Array) { + if (v[0] in idMap) { + v[0] = idMap[v[0]] + ""; + } + } + } + } + + return mapped; + } + + test("can be created from selected nodes", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + const group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg, nodes.empty]); + + // Ensure links are now to the group node + expect(group.inputs).toHaveLength(2); + expect(group.outputs).toHaveLength(3); + + expect(group.inputs.map((i) => i.input.name)).toEqual(["clip", "CLIPTextEncode clip"]); + expect(group.outputs.map((i) => i.output.name)).toEqual(["LATENT", "CONDITIONING", "CLIPTextEncode CONDITIONING"]); + + // ckpt clip to both clip inputs on the group + expect(nodes.ckpt.outputs.CLIP.connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([ + [group.id, 0], + [group.id, 1], + ]); + + // group conditioning to sampler + expect(group.outputs["CONDITIONING"].connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([ + [nodes.sampler.id, 1], + ]); + // group conditioning 2 to sampler + expect( + group.outputs["CLIPTextEncode CONDITIONING"].connections.map((t) => [t.targetNode.id, t.targetInput.index]) + ).toEqual([[nodes.sampler.id, 2]]); + // group latent to sampler + expect(group.outputs["LATENT"].connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([ + [nodes.sampler.id, 3], + ]); + }); + + test("maintains all output links on conversion", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + const save2 = ez.SaveImage(...nodes.decode.outputs); + const save3 = ez.SaveImage(...nodes.decode.outputs); + // Ensure an output with multiple links maintains them on convert to group + const group = await convertToGroup(app, graph, "test", [nodes.sampler, nodes.decode]); + expect(group.outputs[0].connections.length).toBe(3); + expect(group.outputs[0].connections[0].targetNode.id).toBe(nodes.save.id); + expect(group.outputs[0].connections[1].targetNode.id).toBe(save2.id); + expect(group.outputs[0].connections[2].targetNode.id).toBe(save3.id); + + // and they're still linked when converting back to nodes + const newNodes = group.menu["Convert to nodes"].call(); + const decode = graph.find(newNodes.find((n) => n.type === "VAEDecode")); + expect(decode.outputs[0].connections.length).toBe(3); + expect(decode.outputs[0].connections[0].targetNode.id).toBe(nodes.save.id); + expect(decode.outputs[0].connections[1].targetNode.id).toBe(save2.id); + expect(decode.outputs[0].connections[2].targetNode.id).toBe(save3.id); + }); + test("can be be converted back to nodes", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + const toConvert = [nodes.pos, nodes.neg, nodes.empty, nodes.sampler]; + const group = await convertToGroup(app, graph, "test", toConvert); + + // Edit some values to ensure they are set back onto the converted nodes + expect(group.widgets["text"].value).toBe("positive"); + group.widgets["text"].value = "pos"; + expect(group.widgets["CLIPTextEncode text"].value).toBe("negative"); + group.widgets["CLIPTextEncode text"].value = "neg"; + expect(group.widgets["width"].value).toBe(512); + group.widgets["width"].value = 1024; + expect(group.widgets["sampler_name"].value).toBe("euler"); + group.widgets["sampler_name"].value = "ddim"; + expect(group.widgets["control_after_generate"].value).toBe("randomize"); + group.widgets["control_after_generate"].value = "fixed"; + + /** @type { Array } */ + group.menu["Convert to nodes"].call(); + + // ensure widget values are set + const pos = graph.find(nodes.pos.id); + expect(pos.node.type).toBe("CLIPTextEncode"); + expect(pos.widgets["text"].value).toBe("pos"); + const neg = graph.find(nodes.neg.id); + expect(neg.node.type).toBe("CLIPTextEncode"); + expect(neg.widgets["text"].value).toBe("neg"); + const empty = graph.find(nodes.empty.id); + expect(empty.node.type).toBe("EmptyLatentImage"); + expect(empty.widgets["width"].value).toBe(1024); + const sampler = graph.find(nodes.sampler.id); + expect(sampler.node.type).toBe("KSampler"); + expect(sampler.widgets["sampler_name"].value).toBe("ddim"); + expect(sampler.widgets["control_after_generate"].value).toBe("fixed"); + + // validate links + expect(nodes.ckpt.outputs.CLIP.connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([ + [pos.id, 0], + [neg.id, 0], + ]); + + expect(pos.outputs["CONDITIONING"].connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([ + [nodes.sampler.id, 1], + ]); + + expect(neg.outputs["CONDITIONING"].connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([ + [nodes.sampler.id, 2], + ]); + + expect(empty.outputs["LATENT"].connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([ + [nodes.sampler.id, 3], + ]); + }); + test("it can embed reroutes as inputs", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + + // Add and connect a reroute to the clip text encodes + const reroute = ez.Reroute(); + nodes.ckpt.outputs.CLIP.connectTo(reroute.inputs[0]); + reroute.outputs[0].connectTo(nodes.pos.inputs[0]); + reroute.outputs[0].connectTo(nodes.neg.inputs[0]); + + // Convert to group and ensure we only have 1 input of the correct type + const group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg, nodes.empty, reroute]); + expect(group.inputs).toHaveLength(1); + expect(group.inputs[0].input.type).toEqual("CLIP"); + + expect((await graph.toPrompt()).output).toEqual(getOutput()); + }); + test("it can embed reroutes as outputs", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + + // Add a reroute with no output so we output IMAGE even though its used internally + const reroute = ez.Reroute(); + nodes.decode.outputs.IMAGE.connectTo(reroute.inputs[0]); + + // Convert to group and ensure there is an IMAGE output + const group = await convertToGroup(app, graph, "test", [nodes.decode, nodes.save, reroute]); + expect(group.outputs).toHaveLength(1); + expect(group.outputs[0].output.type).toEqual("IMAGE"); + expect((await graph.toPrompt()).output).toEqual(getOutput([nodes.decode.id, nodes.save.id])); + }); + test("it can embed reroutes as pipes", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + + // Use reroutes as a pipe + const rerouteModel = ez.Reroute(); + const rerouteClip = ez.Reroute(); + const rerouteVae = ez.Reroute(); + nodes.ckpt.outputs.MODEL.connectTo(rerouteModel.inputs[0]); + nodes.ckpt.outputs.CLIP.connectTo(rerouteClip.inputs[0]); + nodes.ckpt.outputs.VAE.connectTo(rerouteVae.inputs[0]); + + const group = await convertToGroup(app, graph, "test", [rerouteModel, rerouteClip, rerouteVae]); + + expect(group.outputs).toHaveLength(3); + expect(group.outputs.map((o) => o.output.type)).toEqual(["MODEL", "CLIP", "VAE"]); + + expect(group.outputs).toHaveLength(3); + expect(group.outputs.map((o) => o.output.type)).toEqual(["MODEL", "CLIP", "VAE"]); + + group.outputs[0].connectTo(nodes.sampler.inputs.model); + group.outputs[1].connectTo(nodes.pos.inputs.clip); + group.outputs[1].connectTo(nodes.neg.inputs.clip); + }); + test("can handle reroutes used internally", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + + let reroutes = []; + let prevNode = nodes.ckpt; + for(let i = 0; i < 5; i++) { + const reroute = ez.Reroute(); + prevNode.outputs[0].connectTo(reroute.inputs[0]); + prevNode = reroute; + reroutes.push(reroute); + } + prevNode.outputs[0].connectTo(nodes.sampler.inputs.model); + + const group = await convertToGroup(app, graph, "test", [...reroutes, ...Object.values(nodes)]); + expect((await graph.toPrompt()).output).toEqual(getOutput()); + + group.menu["Convert to nodes"].call(); + expect((await graph.toPrompt()).output).toEqual(getOutput()); + }); + test("creates with widget values from inner nodes", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + + nodes.ckpt.widgets.ckpt_name.value = "model2.ckpt"; + nodes.pos.widgets.text.value = "hello"; + nodes.neg.widgets.text.value = "world"; + nodes.empty.widgets.width.value = 256; + nodes.empty.widgets.height.value = 1024; + nodes.sampler.widgets.seed.value = 1; + nodes.sampler.widgets.control_after_generate.value = "increment"; + nodes.sampler.widgets.steps.value = 8; + nodes.sampler.widgets.cfg.value = 4.5; + nodes.sampler.widgets.sampler_name.value = "uni_pc"; + nodes.sampler.widgets.scheduler.value = "karras"; + nodes.sampler.widgets.denoise.value = 0.9; + + const group = await convertToGroup(app, graph, "test", [ + nodes.ckpt, + nodes.pos, + nodes.neg, + nodes.empty, + nodes.sampler, + ]); + + expect(group.widgets["ckpt_name"].value).toEqual("model2.ckpt"); + expect(group.widgets["text"].value).toEqual("hello"); + expect(group.widgets["CLIPTextEncode text"].value).toEqual("world"); + expect(group.widgets["width"].value).toEqual(256); + expect(group.widgets["height"].value).toEqual(1024); + expect(group.widgets["seed"].value).toEqual(1); + expect(group.widgets["control_after_generate"].value).toEqual("increment"); + expect(group.widgets["steps"].value).toEqual(8); + expect(group.widgets["cfg"].value).toEqual(4.5); + expect(group.widgets["sampler_name"].value).toEqual("uni_pc"); + expect(group.widgets["scheduler"].value).toEqual("karras"); + expect(group.widgets["denoise"].value).toEqual(0.9); + + expect((await graph.toPrompt()).output).toEqual( + getOutput([nodes.ckpt.id, nodes.pos.id, nodes.neg.id, nodes.empty.id, nodes.sampler.id], { + [nodes.ckpt.id]: { ckpt_name: "model2.ckpt" }, + [nodes.pos.id]: { text: "hello" }, + [nodes.neg.id]: { text: "world" }, + [nodes.empty.id]: { width: 256, height: 1024 }, + [nodes.sampler.id]: { + seed: 1, + steps: 8, + cfg: 4.5, + sampler_name: "uni_pc", + scheduler: "karras", + denoise: 0.9, + }, + }) + ); + }); + test("group inputs can be reroutes", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + const group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg]); + + const reroute = ez.Reroute(); + nodes.ckpt.outputs.CLIP.connectTo(reroute.inputs[0]); + + reroute.outputs[0].connectTo(group.inputs[0]); + reroute.outputs[0].connectTo(group.inputs[1]); + + expect((await graph.toPrompt()).output).toEqual(getOutput([nodes.pos.id, nodes.neg.id])); + }); + test("group outputs can be reroutes", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + const group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg]); + + const reroute1 = ez.Reroute(); + const reroute2 = ez.Reroute(); + group.outputs[0].connectTo(reroute1.inputs[0]); + group.outputs[1].connectTo(reroute2.inputs[0]); + + reroute1.outputs[0].connectTo(nodes.sampler.inputs.positive); + reroute2.outputs[0].connectTo(nodes.sampler.inputs.negative); + + expect((await graph.toPrompt()).output).toEqual(getOutput([nodes.pos.id, nodes.neg.id])); + }); + test("groups can connect to each other", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + const group1 = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg]); + const group2 = await convertToGroup(app, graph, "test2", [nodes.empty, nodes.sampler]); + + group1.outputs[0].connectTo(group2.inputs["positive"]); + group1.outputs[1].connectTo(group2.inputs["negative"]); + + expect((await graph.toPrompt()).output).toEqual( + getOutput([nodes.pos.id, nodes.neg.id, nodes.empty.id, nodes.sampler.id]) + ); + }); + test("displays generated image on group node", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + let group = await convertToGroup(app, graph, "test", [ + nodes.pos, + nodes.neg, + nodes.empty, + nodes.sampler, + nodes.decode, + nodes.save, + ]); + + const { api } = require("../../web/scripts/api"); + + api.dispatchEvent(new CustomEvent("execution_start", {})); + api.dispatchEvent(new CustomEvent("executing", { detail: `${nodes.save.id}` })); + // Event should be forwarded to group node id + expect(+app.runningNodeId).toEqual(group.id); + expect(group.node["imgs"]).toBeFalsy(); + api.dispatchEvent( + new CustomEvent("executed", { + detail: { + node: `${nodes.save.id}`, + output: { + images: [ + { + filename: "test.png", + type: "output", + }, + ], + }, + }, + }) + ); + + // Trigger paint + group.node.onDrawBackground?.(app.canvas.ctx, app.canvas.canvas); + + expect(group.node["images"]).toEqual([ + { + filename: "test.png", + type: "output", + }, + ]); + + // Reload + const workflow = JSON.stringify((await graph.toPrompt()).workflow); + await app.loadGraphData(JSON.parse(workflow)); + group = graph.find(group); + + // Trigger inner nodes to get created + group.node["getInnerNodes"](); + + // Check it works for internal node ids + api.dispatchEvent(new CustomEvent("execution_start", {})); + api.dispatchEvent(new CustomEvent("executing", { detail: `${group.id}:5` })); + // Event should be forwarded to group node id + expect(+app.runningNodeId).toEqual(group.id); + expect(group.node["imgs"]).toBeFalsy(); + api.dispatchEvent( + new CustomEvent("executed", { + detail: { + node: `${group.id}:5`, + output: { + images: [ + { + filename: "test2.png", + type: "output", + }, + ], + }, + }, + }) + ); + + // Trigger paint + group.node.onDrawBackground?.(app.canvas.ctx, app.canvas.canvas); + + expect(group.node["images"]).toEqual([ + { + filename: "test2.png", + type: "output", + }, + ]); + }); + test("allows widgets to be converted to inputs", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + const group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg]); + group.widgets[0].convertToInput(); + + const primitive = ez.PrimitiveNode(); + primitive.outputs[0].connectTo(group.inputs["text"]); + primitive.widgets[0].value = "hello"; + + expect((await graph.toPrompt()).output).toEqual( + getOutput([nodes.pos.id, nodes.neg.id], { + [nodes.pos.id]: { text: "hello" }, + }) + ); + }); + test("can be copied", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + + const group1 = await convertToGroup(app, graph, "test", [ + nodes.pos, + nodes.neg, + nodes.empty, + nodes.sampler, + nodes.decode, + nodes.save, + ]); + + group1.widgets["text"].value = "hello"; + group1.widgets["width"].value = 256; + group1.widgets["seed"].value = 1; + + // Clone the node + group1.menu.Clone.call(); + expect(app.graph._nodes).toHaveLength(3); + const group2 = graph.find(app.graph._nodes[2]); + expect(group2.node.type).toEqual("workflow/test"); + expect(group2.id).not.toEqual(group1.id); + + // Reconnect ckpt + nodes.ckpt.outputs.MODEL.connectTo(group2.inputs["model"]); + nodes.ckpt.outputs.CLIP.connectTo(group2.inputs["clip"]); + nodes.ckpt.outputs.CLIP.connectTo(group2.inputs["CLIPTextEncode clip"]); + nodes.ckpt.outputs.VAE.connectTo(group2.inputs["vae"]); + + group2.widgets["text"].value = "world"; + group2.widgets["width"].value = 1024; + group2.widgets["seed"].value = 100; + + let i = 0; + expect((await graph.toPrompt()).output).toEqual({ + ...getOutput([nodes.empty.id, nodes.pos.id, nodes.neg.id, nodes.sampler.id, nodes.decode.id, nodes.save.id], { + [nodes.empty.id]: { width: 256 }, + [nodes.pos.id]: { text: "hello" }, + [nodes.sampler.id]: { seed: 1 }, + }), + ...getOutput( + { + [nodes.empty.id]: `${group2.id}:${i++}`, + [nodes.pos.id]: `${group2.id}:${i++}`, + [nodes.neg.id]: `${group2.id}:${i++}`, + [nodes.sampler.id]: `${group2.id}:${i++}`, + [nodes.decode.id]: `${group2.id}:${i++}`, + [nodes.save.id]: `${group2.id}:${i++}`, + }, + { + [nodes.empty.id]: { width: 1024 }, + [nodes.pos.id]: { text: "world" }, + [nodes.sampler.id]: { seed: 100 }, + } + ), + }); + + graph.arrange(); + }); + test("is embedded in workflow", async () => { + let { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + let group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg]); + const workflow = JSON.stringify((await graph.toPrompt()).workflow); + + // Clear the environment + ({ ez, graph, app } = await start({ + resetEnv: true, + })); + // Ensure the node isnt registered + expect(() => ez["workflow/test"]).toThrow(); + + // Reload the workflow + await app.loadGraphData(JSON.parse(workflow)); + + // Ensure the node is found + group = graph.find(group); + + // Generate prompt and ensure it is as expected + expect((await graph.toPrompt()).output).toEqual( + getOutput({ + [nodes.pos.id]: `${group.id}:0`, + [nodes.neg.id]: `${group.id}:1`, + }) + ); + }); + test("shows missing node error on missing internal node when loading graph data", async () => { + const { graph } = await start(); + + const dialogShow = jest.spyOn(graph.app.ui.dialog, "show"); + await graph.app.loadGraphData({ + last_node_id: 3, + last_link_id: 1, + nodes: [ + { + id: 3, + type: "workflow/testerror", + }, + ], + links: [], + groups: [], + config: {}, + extra: { + groupNodes: { + testerror: { + nodes: [ + { + type: "NotKSampler", + }, + { + type: "NotVAEDecode", + }, + ], + }, + }, + }, + }); + + expect(dialogShow).toBeCalledTimes(1); + const call = dialogShow.mock.calls[0][0].innerHTML; + expect(call).toContain("the following node types were not found"); + expect(call).toContain("NotKSampler"); + expect(call).toContain("NotVAEDecode"); + expect(call).toContain("workflow/testerror"); + }); + test("maintains widget inputs on conversion back to nodes", async () => { + const { ez, graph, app } = await start(); + let pos = ez.CLIPTextEncode({ text: "positive" }); + pos.node.title = "Positive"; + let neg = ez.CLIPTextEncode({ text: "negative" }); + neg.node.title = "Negative"; + pos.widgets.text.convertToInput(); + neg.widgets.text.convertToInput(); + + let primitive = ez.PrimitiveNode(); + primitive.outputs[0].connectTo(pos.inputs.text); + primitive.outputs[0].connectTo(neg.inputs.text); + + const group = await convertToGroup(app, graph, "test", [pos, neg, primitive]); + // This will use a primitive widget named 'value' + expect(group.widgets.length).toBe(1); + expect(group.widgets["value"].value).toBe("positive"); + + const newNodes = group.menu["Convert to nodes"].call(); + pos = graph.find(newNodes.find((n) => n.title === "Positive")); + neg = graph.find(newNodes.find((n) => n.title === "Negative")); + primitive = graph.find(newNodes.find((n) => n.type === "PrimitiveNode")); + + expect(pos.inputs).toHaveLength(2); + expect(neg.inputs).toHaveLength(2); + expect(primitive.outputs[0].connections).toHaveLength(2); + + expect((await graph.toPrompt()).output).toEqual({ + 1: { inputs: { text: "positive" }, class_type: "CLIPTextEncode" }, + 2: { inputs: { text: "positive" }, class_type: "CLIPTextEncode" }, + }); + }); + test("adds widgets in node execution order", async () => { + const { ez, graph, app } = await start(); + const scale = ez.LatentUpscale(); + const save = ez.SaveImage(); + const empty = ez.EmptyLatentImage(); + const decode = ez.VAEDecode(); + + scale.outputs.LATENT.connectTo(decode.inputs.samples); + decode.outputs.IMAGE.connectTo(save.inputs.images); + empty.outputs.LATENT.connectTo(scale.inputs.samples); + + const group = await convertToGroup(app, graph, "test", [scale, save, empty, decode]); + const widgets = group.widgets.map((w) => w.widget.name); + expect(widgets).toStrictEqual([ + "width", + "height", + "batch_size", + "upscale_method", + "LatentUpscale width", + "LatentUpscale height", + "crop", + "filename_prefix", + ]); + }); + test("adds output for external links when converting to group", async () => { + const { ez, graph, app } = await start(); + const img = ez.EmptyLatentImage(); + let decode = ez.VAEDecode(...img.outputs); + const preview1 = ez.PreviewImage(...decode.outputs); + const preview2 = ez.PreviewImage(...decode.outputs); + + const group = await convertToGroup(app, graph, "test", [img, decode, preview1]); + + // Ensure we have an output connected to the 2nd preview node + expect(group.outputs.length).toBe(1); + expect(group.outputs[0].connections.length).toBe(1); + expect(group.outputs[0].connections[0].targetNode.id).toBe(preview2.id); + + // Convert back and ensure bothe previews are still connected + group.menu["Convert to nodes"].call(); + decode = graph.find(decode); + expect(decode.outputs[0].connections.length).toBe(2); + expect(decode.outputs[0].connections[0].targetNode.id).toBe(preview1.id); + expect(decode.outputs[0].connections[1].targetNode.id).toBe(preview2.id); + }); + test("adds output for external links when converting to group when nodes are not in execution order", async () => { + const { ez, graph, app } = await start(); + const sampler = ez.KSampler(); + const ckpt = ez.CheckpointLoaderSimple(); + const empty = ez.EmptyLatentImage(); + const pos = ez.CLIPTextEncode(ckpt.outputs.CLIP, { text: "positive" }); + const neg = ez.CLIPTextEncode(ckpt.outputs.CLIP, { text: "negative" }); + const decode1 = ez.VAEDecode(sampler.outputs.LATENT, ckpt.outputs.VAE); + const save = ez.SaveImage(decode1.outputs.IMAGE); + ckpt.outputs.MODEL.connectTo(sampler.inputs.model); + pos.outputs.CONDITIONING.connectTo(sampler.inputs.positive); + neg.outputs.CONDITIONING.connectTo(sampler.inputs.negative); + empty.outputs.LATENT.connectTo(sampler.inputs.latent_image); + + const encode = ez.VAEEncode(decode1.outputs.IMAGE); + const vae = ez.VAELoader(); + const decode2 = ez.VAEDecode(encode.outputs.LATENT, vae.outputs.VAE); + const preview = ez.PreviewImage(decode2.outputs.IMAGE); + vae.outputs.VAE.connectTo(encode.inputs.vae); + + const group = await convertToGroup(app, graph, "test", [vae, decode1, encode, sampler]); + + expect(group.outputs.length).toBe(3); + expect(group.outputs[0].output.name).toBe("VAE"); + expect(group.outputs[0].output.type).toBe("VAE"); + expect(group.outputs[1].output.name).toBe("IMAGE"); + expect(group.outputs[1].output.type).toBe("IMAGE"); + expect(group.outputs[2].output.name).toBe("LATENT"); + expect(group.outputs[2].output.type).toBe("LATENT"); + + expect(group.outputs[0].connections.length).toBe(1); + expect(group.outputs[0].connections[0].targetNode.id).toBe(decode2.id); + expect(group.outputs[0].connections[0].targetInput.index).toBe(1); + + expect(group.outputs[1].connections.length).toBe(1); + expect(group.outputs[1].connections[0].targetNode.id).toBe(save.id); + expect(group.outputs[1].connections[0].targetInput.index).toBe(0); + + expect(group.outputs[2].connections.length).toBe(1); + expect(group.outputs[2].connections[0].targetNode.id).toBe(decode2.id); + expect(group.outputs[2].connections[0].targetInput.index).toBe(0); + + expect((await graph.toPrompt()).output).toEqual({ + ...getOutput({ 1: ckpt.id, 2: pos.id, 3: neg.id, 4: empty.id, 5: sampler.id, 6: decode1.id, 7: save.id }), + [vae.id]: { inputs: { vae_name: "vae1.safetensors" }, class_type: vae.node.type }, + [encode.id]: { inputs: { pixels: ["6", 0], vae: [vae.id + "", 0] }, class_type: encode.node.type }, + [decode2.id]: { inputs: { samples: [encode.id + "", 0], vae: [vae.id + "", 0] }, class_type: decode2.node.type }, + [preview.id]: { inputs: { images: [decode2.id + "", 0] }, class_type: preview.node.type }, + }); + }); + test("works with IMAGEUPLOAD widget", async () => { + const { ez, graph, app } = await start(); + const img = ez.LoadImage(); + const preview1 = ez.PreviewImage(img.outputs[0]); + + const group = await convertToGroup(app, graph, "test", [img, preview1]); + const widget = group.widgets["upload"]; + expect(widget).toBeTruthy(); + expect(widget.widget.type).toBe("button"); + }); + test("internal primitive populates widgets for all linked inputs", async () => { + const { ez, graph, app } = await start(); + const img = ez.LoadImage(); + const scale1 = ez.ImageScale(img.outputs[0]); + const scale2 = ez.ImageScale(img.outputs[0]); + ez.PreviewImage(scale1.outputs[0]); + ez.PreviewImage(scale2.outputs[0]); + + scale1.widgets.width.convertToInput(); + scale2.widgets.height.convertToInput(); + + const primitive = ez.PrimitiveNode(); + primitive.outputs[0].connectTo(scale1.inputs.width); + primitive.outputs[0].connectTo(scale2.inputs.height); + + const group = await convertToGroup(app, graph, "test", [img, primitive, scale1, scale2]); + group.widgets.value.value = 100; + expect((await graph.toPrompt()).output).toEqual({ + 1: { + inputs: { image: img.widgets.image.value, upload: "image" }, + class_type: "LoadImage", + }, + 2: { + inputs: { upscale_method: "nearest-exact", width: 100, height: 512, crop: "disabled", image: ["1", 0] }, + class_type: "ImageScale", + }, + 3: { + inputs: { upscale_method: "nearest-exact", width: 512, height: 100, crop: "disabled", image: ["1", 0] }, + class_type: "ImageScale", + }, + 4: { inputs: { images: ["2", 0] }, class_type: "PreviewImage" }, + 5: { inputs: { images: ["3", 0] }, class_type: "PreviewImage" }, + }); + }); + test("primitive control widgets values are copied on convert", async () => { + const { ez, graph, app } = await start(); + const sampler = ez.KSampler(); + sampler.widgets.seed.convertToInput(); + sampler.widgets.sampler_name.convertToInput(); + + let p1 = ez.PrimitiveNode(); + let p2 = ez.PrimitiveNode(); + p1.outputs[0].connectTo(sampler.inputs.seed); + p2.outputs[0].connectTo(sampler.inputs.sampler_name); + + p1.widgets.control_after_generate.value = "increment"; + p2.widgets.control_after_generate.value = "decrement"; + p2.widgets.control_filter_list.value = "/.*/"; + + p2.node.title = "p2"; + + const group = await convertToGroup(app, graph, "test", [sampler, p1, p2]); + expect(group.widgets.control_after_generate.value).toBe("increment"); + expect(group.widgets["p2 control_after_generate"].value).toBe("decrement"); + expect(group.widgets["p2 control_filter_list"].value).toBe("/.*/"); + + group.widgets.control_after_generate.value = "fixed"; + group.widgets["p2 control_after_generate"].value = "randomize"; + group.widgets["p2 control_filter_list"].value = "/.+/"; + + group.menu["Convert to nodes"].call(); + p1 = graph.find(p1); + p2 = graph.find(p2); + + expect(p1.widgets.control_after_generate.value).toBe("fixed"); + expect(p2.widgets.control_after_generate.value).toBe("randomize"); + expect(p2.widgets.control_filter_list.value).toBe("/.+/"); + }); +}); diff --git a/tests-ui/tests/widgetInputs.test.js b/tests-ui/tests/widgetInputs.test.js new file mode 100644 index 00000000000..8e191adf043 --- /dev/null +++ b/tests-ui/tests/widgetInputs.test.js @@ -0,0 +1,395 @@ +// @ts-check +/// + +const { start, makeNodeDef, checkBeforeAndAfterReload, assertNotNullOrUndefined } = require("../utils"); +const lg = require("../utils/litegraph"); + +/** + * @typedef { import("../utils/ezgraph") } Ez + * @typedef { ReturnType["ez"] } EzNodeFactory + */ + +/** + * @param { EzNodeFactory } ez + * @param { InstanceType } graph + * @param { InstanceType } input + * @param { string } widgetType + * @param { number } controlWidgetCount + * @returns + */ +async function connectPrimitiveAndReload(ez, graph, input, widgetType, controlWidgetCount = 0) { + // Connect to primitive and ensure its still connected after + let primitive = ez.PrimitiveNode(); + primitive.outputs[0].connectTo(input); + + await checkBeforeAndAfterReload(graph, async () => { + primitive = graph.find(primitive); + let { connections } = primitive.outputs[0]; + expect(connections).toHaveLength(1); + expect(connections[0].targetNode.id).toBe(input.node.node.id); + + // Ensure widget is correct type + const valueWidget = primitive.widgets.value; + expect(valueWidget.widget.type).toBe(widgetType); + + // Check if control_after_generate should be added + if (controlWidgetCount) { + const controlWidget = primitive.widgets.control_after_generate; + expect(controlWidget.widget.type).toBe("combo"); + if(widgetType === "combo") { + const filterWidget = primitive.widgets.control_filter_list; + expect(filterWidget.widget.type).toBe("string"); + } + } + + // Ensure we dont have other widgets + expect(primitive.node.widgets).toHaveLength(1 + controlWidgetCount); + }); + + return primitive; +} + +describe("widget inputs", () => { + beforeEach(() => { + lg.setup(global); + }); + + afterEach(() => { + lg.teardown(global); + }); + + [ + { name: "int", type: "INT", widget: "number", control: 1 }, + { name: "float", type: "FLOAT", widget: "number", control: 1 }, + { name: "text", type: "STRING" }, + { + name: "customtext", + type: "STRING", + opt: { multiline: true }, + }, + { name: "toggle", type: "BOOLEAN" }, + { name: "combo", type: ["a", "b", "c"], control: 2 }, + ].forEach((c) => { + test(`widget conversion + primitive works on ${c.name}`, async () => { + const { ez, graph } = await start({ + mockNodeDefs: makeNodeDef("TestNode", { [c.name]: [c.type, c.opt ?? {}] }), + }); + + // Create test node and convert to input + const n = ez.TestNode(); + const w = n.widgets[c.name]; + w.convertToInput(); + expect(w.isConvertedToInput).toBeTruthy(); + const input = w.getConvertedInput(); + expect(input).toBeTruthy(); + + // @ts-ignore : input is valid here + await connectPrimitiveAndReload(ez, graph, input, c.widget ?? c.name, c.control); + }); + }); + + test("converted widget works after reload", async () => { + const { ez, graph } = await start(); + let n = ez.CheckpointLoaderSimple(); + + const inputCount = n.inputs.length; + + // Convert ckpt name to an input + n.widgets.ckpt_name.convertToInput(); + expect(n.widgets.ckpt_name.isConvertedToInput).toBeTruthy(); + expect(n.inputs.ckpt_name).toBeTruthy(); + expect(n.inputs.length).toEqual(inputCount + 1); + + // Convert back to widget and ensure input is removed + n.widgets.ckpt_name.convertToWidget(); + expect(n.widgets.ckpt_name.isConvertedToInput).toBeFalsy(); + expect(n.inputs.ckpt_name).toBeFalsy(); + expect(n.inputs.length).toEqual(inputCount); + + // Convert again and reload the graph to ensure it maintains state + n.widgets.ckpt_name.convertToInput(); + expect(n.inputs.length).toEqual(inputCount + 1); + + const primitive = await connectPrimitiveAndReload(ez, graph, n.inputs.ckpt_name, "combo", 2); + + // Disconnect & reconnect + primitive.outputs[0].connections[0].disconnect(); + let { connections } = primitive.outputs[0]; + expect(connections).toHaveLength(0); + + primitive.outputs[0].connectTo(n.inputs.ckpt_name); + ({ connections } = primitive.outputs[0]); + expect(connections).toHaveLength(1); + expect(connections[0].targetNode.id).toBe(n.node.id); + + // Convert back to widget and ensure input is removed + n.widgets.ckpt_name.convertToWidget(); + expect(n.widgets.ckpt_name.isConvertedToInput).toBeFalsy(); + expect(n.inputs.ckpt_name).toBeFalsy(); + expect(n.inputs.length).toEqual(inputCount); + }); + + test("converted widget works on clone", async () => { + const { graph, ez } = await start(); + let n = ez.CheckpointLoaderSimple(); + + // Convert the widget to an input + n.widgets.ckpt_name.convertToInput(); + expect(n.widgets.ckpt_name.isConvertedToInput).toBeTruthy(); + + // Clone the node + n.menu["Clone"].call(); + expect(graph.nodes).toHaveLength(2); + const clone = graph.nodes[1]; + expect(clone.id).not.toEqual(n.id); + + // Ensure the clone has an input + expect(clone.widgets.ckpt_name.isConvertedToInput).toBeTruthy(); + expect(clone.inputs.ckpt_name).toBeTruthy(); + + // Ensure primitive connects to both nodes + let primitive = ez.PrimitiveNode(); + primitive.outputs[0].connectTo(n.inputs.ckpt_name); + primitive.outputs[0].connectTo(clone.inputs.ckpt_name); + expect(primitive.outputs[0].connections).toHaveLength(2); + + // Convert back to widget and ensure input is removed + clone.widgets.ckpt_name.convertToWidget(); + expect(clone.widgets.ckpt_name.isConvertedToInput).toBeFalsy(); + expect(clone.inputs.ckpt_name).toBeFalsy(); + }); + + test("shows missing node error on custom node with converted input", async () => { + const { graph } = await start(); + + const dialogShow = jest.spyOn(graph.app.ui.dialog, "show"); + + await graph.app.loadGraphData({ + last_node_id: 3, + last_link_id: 4, + nodes: [ + { + id: 1, + type: "TestNode", + pos: [41.87329101561909, 389.7381480823742], + size: { 0: 220, 1: 374 }, + flags: {}, + order: 1, + mode: 0, + inputs: [{ name: "test", type: "FLOAT", link: 4, widget: { name: "test" }, slot_index: 0 }], + outputs: [], + properties: { "Node name for S&R": "TestNode" }, + widgets_values: [1], + }, + { + id: 3, + type: "PrimitiveNode", + pos: [-312, 433], + size: { 0: 210, 1: 82 }, + flags: {}, + order: 0, + mode: 0, + outputs: [{ links: [4], widget: { name: "test" } }], + title: "test", + properties: {}, + }, + ], + links: [[4, 3, 0, 1, 6, "FLOAT"]], + groups: [], + config: {}, + extra: {}, + version: 0.4, + }); + + expect(dialogShow).toBeCalledTimes(1); + expect(dialogShow.mock.calls[0][0].innerHTML).toContain("the following node types were not found"); + expect(dialogShow.mock.calls[0][0].innerHTML).toContain("TestNode"); + }); + + test("defaultInput widgets can be converted back to inputs", async () => { + const { graph, ez } = await start({ + mockNodeDefs: makeNodeDef("TestNode", { example: ["INT", { defaultInput: true }] }), + }); + + // Create test node and ensure it starts as an input + let n = ez.TestNode(); + let w = n.widgets.example; + expect(w.isConvertedToInput).toBeTruthy(); + let input = w.getConvertedInput(); + expect(input).toBeTruthy(); + + // Ensure it can be converted to + w.convertToWidget(); + expect(w.isConvertedToInput).toBeFalsy(); + expect(n.inputs.length).toEqual(0); + // and from + w.convertToInput(); + expect(w.isConvertedToInput).toBeTruthy(); + input = w.getConvertedInput(); + + // Reload and ensure it still only has 1 converted widget + if (!assertNotNullOrUndefined(input)) return; + + await connectPrimitiveAndReload(ez, graph, input, "number", 1); + n = graph.find(n); + expect(n.widgets).toHaveLength(1); + w = n.widgets.example; + expect(w.isConvertedToInput).toBeTruthy(); + + // Convert back to widget and ensure it is still a widget after reload + w.convertToWidget(); + await graph.reload(); + n = graph.find(n); + expect(n.widgets).toHaveLength(1); + expect(n.widgets[0].isConvertedToInput).toBeFalsy(); + expect(n.inputs.length).toEqual(0); + }); + + test("forceInput widgets can not be converted back to inputs", async () => { + const { graph, ez } = await start({ + mockNodeDefs: makeNodeDef("TestNode", { example: ["INT", { forceInput: true }] }), + }); + + // Create test node and ensure it starts as an input + let n = ez.TestNode(); + let w = n.widgets.example; + expect(w.isConvertedToInput).toBeTruthy(); + const input = w.getConvertedInput(); + expect(input).toBeTruthy(); + + // Convert to widget should error + expect(() => w.convertToWidget()).toThrow(); + + // Reload and ensure it still only has 1 converted widget + if (assertNotNullOrUndefined(input)) { + await connectPrimitiveAndReload(ez, graph, input, "number", 1); + n = graph.find(n); + expect(n.widgets).toHaveLength(1); + expect(n.widgets.example.isConvertedToInput).toBeTruthy(); + } + }); + + test("primitive can connect to matching combos on converted widgets", async () => { + const { ez } = await start({ + mockNodeDefs: { + ...makeNodeDef("TestNode1", { example: [["A", "B", "C"], { forceInput: true }] }), + ...makeNodeDef("TestNode2", { example: [["A", "B", "C"], { forceInput: true }] }), + }, + }); + + const n1 = ez.TestNode1(); + const n2 = ez.TestNode2(); + const p = ez.PrimitiveNode(); + p.outputs[0].connectTo(n1.inputs[0]); + p.outputs[0].connectTo(n2.inputs[0]); + expect(p.outputs[0].connections).toHaveLength(2); + const valueWidget = p.widgets.value; + expect(valueWidget.widget.type).toBe("combo"); + expect(valueWidget.widget.options.values).toEqual(["A", "B", "C"]); + }); + + test("primitive can not connect to non matching combos on converted widgets", async () => { + const { ez } = await start({ + mockNodeDefs: { + ...makeNodeDef("TestNode1", { example: [["A", "B", "C"], { forceInput: true }] }), + ...makeNodeDef("TestNode2", { example: [["A", "B"], { forceInput: true }] }), + }, + }); + + const n1 = ez.TestNode1(); + const n2 = ez.TestNode2(); + const p = ez.PrimitiveNode(); + p.outputs[0].connectTo(n1.inputs[0]); + expect(() => p.outputs[0].connectTo(n2.inputs[0])).toThrow(); + expect(p.outputs[0].connections).toHaveLength(1); + }); + + test("combo output can not connect to non matching combos list input", async () => { + const { ez } = await start({ + mockNodeDefs: { + ...makeNodeDef("TestNode1", {}, [["A", "B"]]), + ...makeNodeDef("TestNode2", { example: [["A", "B"], { forceInput: true}] }), + ...makeNodeDef("TestNode3", { example: [["A", "B", "C"], { forceInput: true}] }), + }, + }); + + const n1 = ez.TestNode1(); + const n2 = ez.TestNode2(); + const n3 = ez.TestNode3(); + + n1.outputs[0].connectTo(n2.inputs[0]); + expect(() => n1.outputs[0].connectTo(n3.inputs[0])).toThrow(); + }); + + test("combo primitive can filter list when control_after_generate called", async () => { + const { ez } = await start({ + mockNodeDefs: { + ...makeNodeDef("TestNode1", { example: [["A", "B", "C", "D", "AA", "BB", "CC", "DD", "AAA", "BBB"], {}] }), + }, + }); + + const n1 = ez.TestNode1(); + n1.widgets.example.convertToInput(); + const p = ez.PrimitiveNode() + p.outputs[0].connectTo(n1.inputs[0]); + + const value = p.widgets.value; + const control = p.widgets.control_after_generate.widget; + const filter = p.widgets.control_filter_list; + + expect(p.widgets.length).toBe(3); + control.value = "increment"; + expect(value.value).toBe("A"); + + // Manually trigger after queue when set to increment + control["afterQueued"](); + expect(value.value).toBe("B"); + + // Filter to items containing D + filter.value = "D"; + control["afterQueued"](); + expect(value.value).toBe("D"); + control["afterQueued"](); + expect(value.value).toBe("DD"); + + // Check decrement + value.value = "BBB"; + control.value = "decrement"; + filter.value = "B"; + control["afterQueued"](); + expect(value.value).toBe("BB"); + control["afterQueued"](); + expect(value.value).toBe("B"); + + // Check regex works + value.value = "BBB"; + filter.value = "/[AB]|^C$/"; + control["afterQueued"](); + expect(value.value).toBe("AAA"); + control["afterQueued"](); + expect(value.value).toBe("BB"); + control["afterQueued"](); + expect(value.value).toBe("AA"); + control["afterQueued"](); + expect(value.value).toBe("C"); + control["afterQueued"](); + expect(value.value).toBe("B"); + control["afterQueued"](); + expect(value.value).toBe("A"); + + // Check random + control.value = "randomize"; + filter.value = "/D/"; + for(let i = 0; i < 100; i++) { + control["afterQueued"](); + expect(value.value === "D" || value.value === "DD").toBeTruthy(); + } + + // Ensure it doesnt apply when fixed + control.value = "fixed"; + value.value = "B"; + filter.value = "C"; + control["afterQueued"](); + expect(value.value).toBe("B"); + }); +}); diff --git a/tests-ui/utils/ezgraph.js b/tests-ui/utils/ezgraph.js new file mode 100644 index 00000000000..898b82db051 --- /dev/null +++ b/tests-ui/utils/ezgraph.js @@ -0,0 +1,439 @@ +// @ts-check +/// + +/** + * @typedef { import("../../web/scripts/app")["app"] } app + * @typedef { import("../../web/types/litegraph") } LG + * @typedef { import("../../web/types/litegraph").IWidget } IWidget + * @typedef { import("../../web/types/litegraph").ContextMenuItem } ContextMenuItem + * @typedef { import("../../web/types/litegraph").INodeInputSlot } INodeInputSlot + * @typedef { import("../../web/types/litegraph").INodeOutputSlot } INodeOutputSlot + * @typedef { InstanceType & { widgets?: Array } } LGNode + * @typedef { (...args: EzOutput[] | [...EzOutput[], Record]) => EzNode } EzNodeFactory + */ + +export class EzConnection { + /** @type { app } */ + app; + /** @type { InstanceType } */ + link; + + get originNode() { + return new EzNode(this.app, this.app.graph.getNodeById(this.link.origin_id)); + } + + get originOutput() { + return this.originNode.outputs[this.link.origin_slot]; + } + + get targetNode() { + return new EzNode(this.app, this.app.graph.getNodeById(this.link.target_id)); + } + + get targetInput() { + return this.targetNode.inputs[this.link.target_slot]; + } + + /** + * @param { app } app + * @param { InstanceType } link + */ + constructor(app, link) { + this.app = app; + this.link = link; + } + + disconnect() { + this.targetInput.disconnect(); + } +} + +export class EzSlot { + /** @type { EzNode } */ + node; + /** @type { number } */ + index; + + /** + * @param { EzNode } node + * @param { number } index + */ + constructor(node, index) { + this.node = node; + this.index = index; + } +} + +export class EzInput extends EzSlot { + /** @type { INodeInputSlot } */ + input; + + /** + * @param { EzNode } node + * @param { number } index + * @param { INodeInputSlot } input + */ + constructor(node, index, input) { + super(node, index); + this.input = input; + } + + disconnect() { + this.node.node.disconnectInput(this.index); + } +} + +export class EzOutput extends EzSlot { + /** @type { INodeOutputSlot } */ + output; + + /** + * @param { EzNode } node + * @param { number } index + * @param { INodeOutputSlot } output + */ + constructor(node, index, output) { + super(node, index); + this.output = output; + } + + get connections() { + return (this.node.node.outputs?.[this.index]?.links ?? []).map( + (l) => new EzConnection(this.node.app, this.node.app.graph.links[l]) + ); + } + + /** + * @param { EzInput } input + */ + connectTo(input) { + if (!input) throw new Error("Invalid input"); + + /** + * @type { LG["LLink"] | null } + */ + const link = this.node.node.connect(this.index, input.node.node, input.index); + if (!link) { + const inp = input.input; + const inName = inp.name || inp.label || inp.type; + throw new Error( + `Connecting from ${input.node.node.type}[${inName}#${input.index}] -> ${this.node.node.type}[${ + this.output.name ?? this.output.type + }#${this.index}] failed.` + ); + } + return link; + } +} + +export class EzNodeMenuItem { + /** @type { EzNode } */ + node; + /** @type { number } */ + index; + /** @type { ContextMenuItem } */ + item; + + /** + * @param { EzNode } node + * @param { number } index + * @param { ContextMenuItem } item + */ + constructor(node, index, item) { + this.node = node; + this.index = index; + this.item = item; + } + + call(selectNode = true) { + if (!this.item?.callback) throw new Error(`Menu Item ${this.item?.content ?? "[null]"} has no callback.`); + if (selectNode) { + this.node.select(); + } + return this.item.callback.call(this.node.node, undefined, undefined, undefined, undefined, this.node.node); + } +} + +export class EzWidget { + /** @type { EzNode } */ + node; + /** @type { number } */ + index; + /** @type { IWidget } */ + widget; + + /** + * @param { EzNode } node + * @param { number } index + * @param { IWidget } widget + */ + constructor(node, index, widget) { + this.node = node; + this.index = index; + this.widget = widget; + } + + get value() { + return this.widget.value; + } + + set value(v) { + this.widget.value = v; + } + + get isConvertedToInput() { + // @ts-ignore : this type is valid for converted widgets + return this.widget.type === "converted-widget"; + } + + getConvertedInput() { + if (!this.isConvertedToInput) throw new Error(`Widget ${this.widget.name} is not converted to input.`); + + return this.node.inputs.find((inp) => inp.input["widget"]?.name === this.widget.name); + } + + convertToWidget() { + if (!this.isConvertedToInput) + throw new Error(`Widget ${this.widget.name} cannot be converted as it is already a widget.`); + this.node.menu[`Convert ${this.widget.name} to widget`].call(); + } + + convertToInput() { + if (this.isConvertedToInput) + throw new Error(`Widget ${this.widget.name} cannot be converted as it is already an input.`); + this.node.menu[`Convert ${this.widget.name} to input`].call(); + } +} + +export class EzNode { + /** @type { app } */ + app; + /** @type { LGNode } */ + node; + + /** + * @param { app } app + * @param { LGNode } node + */ + constructor(app, node) { + this.app = app; + this.node = node; + } + + get id() { + return this.node.id; + } + + get inputs() { + return this.#makeLookupArray("inputs", "name", EzInput); + } + + get outputs() { + return this.#makeLookupArray("outputs", "name", EzOutput); + } + + get widgets() { + return this.#makeLookupArray("widgets", "name", EzWidget); + } + + get menu() { + return this.#makeLookupArray(() => this.app.canvas.getNodeMenuOptions(this.node), "content", EzNodeMenuItem); + } + + get isRemoved() { + return !this.app.graph.getNodeById(this.id); + } + + select(addToSelection = false) { + this.app.canvas.selectNode(this.node, addToSelection); + } + + // /** + // * @template { "inputs" | "outputs" } T + // * @param { T } type + // * @returns { Record & (type extends "inputs" ? EzInput [] : EzOutput[]) } + // */ + // #getSlotItems(type) { + // // @ts-ignore : these items are correct + // return (this.node[type] ?? []).reduce((p, s, i) => { + // if (s.name in p) { + // throw new Error(`Unable to store input ${s.name} on array as name conflicts.`); + // } + // // @ts-ignore + // p.push((p[s.name] = new (type === "inputs" ? EzInput : EzOutput)(this, i, s))); + // return p; + // }, Object.assign([], { $: this })); + // } + + /** + * @template { { new(node: EzNode, index: number, obj: any): any } } T + * @param { "inputs" | "outputs" | "widgets" | (() => Array) } nodeProperty + * @param { string } nameProperty + * @param { T } ctor + * @returns { Record> & Array> } + */ + #makeLookupArray(nodeProperty, nameProperty, ctor) { + const items = typeof nodeProperty === "function" ? nodeProperty() : this.node[nodeProperty]; + // @ts-ignore + return (items ?? []).reduce((p, s, i) => { + if (!s) return p; + + const name = s[nameProperty]; + const item = new ctor(this, i, s); + // @ts-ignore + p.push(item); + if (name) { + // @ts-ignore + if (name in p) { + throw new Error(`Unable to store ${nodeProperty} ${name} on array as name conflicts.`); + } + } + // @ts-ignore + p[name] = item; + return p; + }, Object.assign([], { $: this })); + } +} + +export class EzGraph { + /** @type { app } */ + app; + + /** + * @param { app } app + */ + constructor(app) { + this.app = app; + } + + get nodes() { + return this.app.graph._nodes.map((n) => new EzNode(this.app, n)); + } + + clear() { + this.app.graph.clear(); + } + + arrange() { + this.app.graph.arrange(); + } + + stringify() { + return JSON.stringify(this.app.graph.serialize(), undefined, "\t"); + } + + /** + * @param { number | LGNode | EzNode } obj + * @returns { EzNode } + */ + find(obj) { + let match; + let id; + if (typeof obj === "number") { + id = obj; + } else { + id = obj.id; + } + + match = this.app.graph.getNodeById(id); + + if (!match) { + throw new Error(`Unable to find node with ID ${id}.`); + } + + return new EzNode(this.app, match); + } + + /** + * @returns { Promise } + */ + reload() { + const graph = JSON.parse(JSON.stringify(this.app.graph.serialize())); + return new Promise((r) => { + this.app.graph.clear(); + setTimeout(async () => { + await this.app.loadGraphData(graph); + r(); + }, 10); + }); + } + + /** + * @returns { Promise<{ + * workflow: {}, + * output: Record + * }>}> } + */ + toPrompt() { + // @ts-ignore + return this.app.graphToPrompt(); + } +} + +export const Ez = { + /** + * Quickly build and interact with a ComfyUI graph + * @example + * const { ez, graph } = Ez.graph(app); + * graph.clear(); + * const [model, clip, vae] = ez.CheckpointLoaderSimple().outputs; + * const [pos] = ez.CLIPTextEncode(clip, { text: "positive" }).outputs; + * const [neg] = ez.CLIPTextEncode(clip, { text: "negative" }).outputs; + * const [latent] = ez.KSampler(model, pos, neg, ...ez.EmptyLatentImage().outputs).outputs; + * const [image] = ez.VAEDecode(latent, vae).outputs; + * const saveNode = ez.SaveImage(image); + * console.log(saveNode); + * graph.arrange(); + * @param { app } app + * @param { LG["LiteGraph"] } LiteGraph + * @param { LG["LGraphCanvas"] } LGraphCanvas + * @param { boolean } clearGraph + * @returns { { graph: EzGraph, ez: Record } } + */ + graph(app, LiteGraph = window["LiteGraph"], LGraphCanvas = window["LGraphCanvas"], clearGraph = true) { + // Always set the active canvas so things work + LGraphCanvas.active_canvas = app.canvas; + + if (clearGraph) { + app.graph.clear(); + } + + // @ts-ignore : this proxy handles utility methods & node creation + const factory = new Proxy( + {}, + { + get(_, p) { + if (typeof p !== "string") throw new Error("Invalid node"); + const node = LiteGraph.createNode(p); + if (!node) throw new Error(`Unknown node "${p}"`); + app.graph.add(node); + + /** + * @param {Parameters} args + */ + return function (...args) { + const ezNode = new EzNode(app, node); + const inputs = ezNode.inputs; + + let slot = 0; + for (const arg of args) { + if (arg instanceof EzOutput) { + arg.connectTo(inputs[slot++]); + } else { + for (const k in arg) { + ezNode.widgets[k].value = arg[k]; + } + } + } + + return ezNode; + }; + }, + } + ); + + return { graph: new EzGraph(app), ez: factory }; + }, +}; diff --git a/tests-ui/utils/index.js b/tests-ui/utils/index.js new file mode 100644 index 00000000000..eeccdb3d921 --- /dev/null +++ b/tests-ui/utils/index.js @@ -0,0 +1,105 @@ +const { mockApi } = require("./setup"); +const { Ez } = require("./ezgraph"); +const lg = require("./litegraph"); + +/** + * + * @param { Parameters[0] & { resetEnv?: boolean } } config + * @returns + */ +export async function start(config = undefined) { + if(config?.resetEnv) { + jest.resetModules(); + jest.resetAllMocks(); + lg.setup(global); + } + + mockApi(config); + const { app } = require("../../web/scripts/app"); + await app.setup(); + return { ...Ez.graph(app, global["LiteGraph"], global["LGraphCanvas"]), app }; +} + +/** + * @param { ReturnType["graph"] } graph + * @param { (hasReloaded: boolean) => (Promise | void) } cb + */ +export async function checkBeforeAndAfterReload(graph, cb) { + await cb(false); + await graph.reload(); + await cb(true); +} + +/** + * @param { string } name + * @param { Record } input + * @param { (string | string[])[] | Record } output + * @returns { Record } + */ +export function makeNodeDef(name, input, output = {}) { + const nodeDef = { + name, + category: "test", + output: [], + output_name: [], + output_is_list: [], + input: { + required: {}, + }, + }; + for (const k in input) { + nodeDef.input.required[k] = typeof input[k] === "string" ? [input[k], {}] : [...input[k]]; + } + if (output instanceof Array) { + output = output.reduce((p, c) => { + p[c] = c; + return p; + }, {}); + } + for (const k in output) { + nodeDef.output.push(output[k]); + nodeDef.output_name.push(k); + nodeDef.output_is_list.push(false); + } + + return { [name]: nodeDef }; +} + +/** +/** + * @template { any } T + * @param { T } x + * @returns { x is Exclude } + */ +export function assertNotNullOrUndefined(x) { + expect(x).not.toEqual(null); + expect(x).not.toEqual(undefined); + return true; +} + +/** + * + * @param { ReturnType["ez"] } ez + * @param { ReturnType["graph"] } graph + */ +export function createDefaultWorkflow(ez, graph) { + graph.clear(); + const ckpt = ez.CheckpointLoaderSimple(); + + const pos = ez.CLIPTextEncode(ckpt.outputs.CLIP, { text: "positive" }); + const neg = ez.CLIPTextEncode(ckpt.outputs.CLIP, { text: "negative" }); + + const empty = ez.EmptyLatentImage(); + const sampler = ez.KSampler( + ckpt.outputs.MODEL, + pos.outputs.CONDITIONING, + neg.outputs.CONDITIONING, + empty.outputs.LATENT + ); + + const decode = ez.VAEDecode(sampler.outputs.LATENT, ckpt.outputs.VAE); + const save = ez.SaveImage(decode.outputs.IMAGE); + graph.arrange(); + + return { ckpt, pos, neg, empty, sampler, decode, save }; +} diff --git a/tests-ui/utils/litegraph.js b/tests-ui/utils/litegraph.js new file mode 100644 index 00000000000..777f8c3ba13 --- /dev/null +++ b/tests-ui/utils/litegraph.js @@ -0,0 +1,36 @@ +const fs = require("fs"); +const path = require("path"); +const { nop } = require("../utils/nopProxy"); + +function forEachKey(cb) { + for (const k of [ + "LiteGraph", + "LGraph", + "LLink", + "LGraphNode", + "LGraphGroup", + "DragAndScale", + "LGraphCanvas", + "ContextMenu", + ]) { + cb(k); + } +} + +export function setup(ctx) { + const lg = fs.readFileSync(path.resolve("../web/lib/litegraph.core.js"), "utf-8"); + const globalTemp = {}; + (function (console) { + eval(lg); + }).call(globalTemp, nop); + + forEachKey((k) => (ctx[k] = globalTemp[k])); + require(path.resolve("../web/lib/litegraph.extensions.js")); +} + +export function teardown(ctx) { + forEachKey((k) => delete ctx[k]); + + // Clear document after each run + document.getElementsByTagName("html")[0].innerHTML = ""; +} diff --git a/tests-ui/utils/nopProxy.js b/tests-ui/utils/nopProxy.js new file mode 100644 index 00000000000..2502d9d03d6 --- /dev/null +++ b/tests-ui/utils/nopProxy.js @@ -0,0 +1,6 @@ +export const nop = new Proxy(function () {}, { + get: () => nop, + set: () => true, + apply: () => nop, + construct: () => nop, +}); diff --git a/tests-ui/utils/setup.js b/tests-ui/utils/setup.js new file mode 100644 index 00000000000..dd150214a34 --- /dev/null +++ b/tests-ui/utils/setup.js @@ -0,0 +1,49 @@ +require("../../web/scripts/api"); + +const fs = require("fs"); +const path = require("path"); +function* walkSync(dir) { + const files = fs.readdirSync(dir, { withFileTypes: true }); + for (const file of files) { + if (file.isDirectory()) { + yield* walkSync(path.join(dir, file.name)); + } else { + yield path.join(dir, file.name); + } + } +} + +/** + * @typedef { import("../../web/types/comfy").ComfyObjectInfo } ComfyObjectInfo + */ + +/** + * @param { { mockExtensions?: string[], mockNodeDefs?: Record } } config + */ +export function mockApi({ mockExtensions, mockNodeDefs } = {}) { + if (!mockExtensions) { + mockExtensions = Array.from(walkSync(path.resolve("../web/extensions/core"))) + .filter((x) => x.endsWith(".js")) + .map((x) => path.relative(path.resolve("../web"), x)); + } + if (!mockNodeDefs) { + mockNodeDefs = JSON.parse(fs.readFileSync(path.resolve("./data/object_info.json"))); + } + + const events = new EventTarget(); + const mockApi = { + addEventListener: events.addEventListener.bind(events), + removeEventListener: events.removeEventListener.bind(events), + dispatchEvent: events.dispatchEvent.bind(events), + getSystemStats: jest.fn(), + getExtensions: jest.fn(() => mockExtensions), + getNodeDefs: jest.fn(() => mockNodeDefs), + init: jest.fn(), + apiURL: jest.fn((x) => "../../web/" + x), + }; + jest.mock("../../web/scripts/api", () => ({ + get api() { + return mockApi; + }, + })); +} diff --git a/web/extensions/core/colorPalette.js b/web/extensions/core/colorPalette.js index 3695b08e27f..b8d83613d4b 100644 --- a/web/extensions/core/colorPalette.js +++ b/web/extensions/core/colorPalette.js @@ -174,6 +174,213 @@ const colorPalettes = { "tr-odd-bg-color": "#073642", } }, + }, + "arc": { + "id": "arc", + "name": "Arc", + "colors": { + "node_slot": { + "BOOLEAN": "", + "CLIP": "#eacb8b", + "CLIP_VISION": "#A8DADC", + "CLIP_VISION_OUTPUT": "#ad7452", + "CONDITIONING": "#cf876f", + "CONTROL_NET": "#00d78d", + "CONTROL_NET_WEIGHTS": "", + "FLOAT": "", + "GLIGEN": "", + "IMAGE": "#80a1c0", + "IMAGEUPLOAD": "", + "INT": "", + "LATENT": "#b38ead", + "LATENT_KEYFRAME": "", + "MASK": "#a3bd8d", + "MODEL": "#8978a7", + "SAMPLER": "", + "SIGMAS": "", + "STRING": "", + "STYLE_MODEL": "#C2FFAE", + "T2I_ADAPTER_WEIGHTS": "", + "TAESD": "#DCC274", + "TIMESTEP_KEYFRAME": "", + "UPSCALE_MODEL": "", + "VAE": "#be616b" + }, + "litegraph_base": { + "BACKGROUND_IMAGE": "", + "CLEAR_BACKGROUND_COLOR": "#2b2f38", + "NODE_TITLE_COLOR": "#b2b7bd", + "NODE_SELECTED_TITLE_COLOR": "#FFF", + "NODE_TEXT_SIZE": 14, + "NODE_TEXT_COLOR": "#AAA", + "NODE_SUBTEXT_SIZE": 12, + "NODE_DEFAULT_COLOR": "#2b2f38", + "NODE_DEFAULT_BGCOLOR": "#242730", + "NODE_DEFAULT_BOXCOLOR": "#6e7581", + "NODE_DEFAULT_SHAPE": "box", + "NODE_BOX_OUTLINE_COLOR": "#FFF", + "DEFAULT_SHADOW_COLOR": "rgba(0,0,0,0.5)", + "DEFAULT_GROUP_FONT": 22, + "WIDGET_BGCOLOR": "#2b2f38", + "WIDGET_OUTLINE_COLOR": "#6e7581", + "WIDGET_TEXT_COLOR": "#DDD", + "WIDGET_SECONDARY_TEXT_COLOR": "#b2b7bd", + "LINK_COLOR": "#9A9", + "EVENT_LINK_COLOR": "#A86", + "CONNECTING_LINK_COLOR": "#AFA" + }, + "comfy_base": { + "fg-color": "#fff", + "bg-color": "#2b2f38", + "comfy-menu-bg": "#242730", + "comfy-input-bg": "#2b2f38", + "input-text": "#ddd", + "descrip-text": "#b2b7bd", + "drag-text": "#ccc", + "error-text": "#ff4444", + "border-color": "#6e7581", + "tr-even-bg-color": "#2b2f38", + "tr-odd-bg-color": "#242730" + } + }, + }, + "nord": { + "id": "nord", + "name": "Nord", + "colors": { + "node_slot": { + "BOOLEAN": "", + "CLIP": "#eacb8b", + "CLIP_VISION": "#A8DADC", + "CLIP_VISION_OUTPUT": "#ad7452", + "CONDITIONING": "#cf876f", + "CONTROL_NET": "#00d78d", + "CONTROL_NET_WEIGHTS": "", + "FLOAT": "", + "GLIGEN": "", + "IMAGE": "#80a1c0", + "IMAGEUPLOAD": "", + "INT": "", + "LATENT": "#b38ead", + "LATENT_KEYFRAME": "", + "MASK": "#a3bd8d", + "MODEL": "#8978a7", + "SAMPLER": "", + "SIGMAS": "", + "STRING": "", + "STYLE_MODEL": "#C2FFAE", + "T2I_ADAPTER_WEIGHTS": "", + "TAESD": "#DCC274", + "TIMESTEP_KEYFRAME": "", + "UPSCALE_MODEL": "", + "VAE": "#be616b" + }, + "litegraph_base": { + "BACKGROUND_IMAGE": "", + "CLEAR_BACKGROUND_COLOR": "#212732", + "NODE_TITLE_COLOR": "#999", + "NODE_SELECTED_TITLE_COLOR": "#e5eaf0", + "NODE_TEXT_SIZE": 14, + "NODE_TEXT_COLOR": "#bcc2c8", + "NODE_SUBTEXT_SIZE": 12, + "NODE_DEFAULT_COLOR": "#2e3440", + "NODE_DEFAULT_BGCOLOR": "#161b22", + "NODE_DEFAULT_BOXCOLOR": "#545d70", + "NODE_DEFAULT_SHAPE": "box", + "NODE_BOX_OUTLINE_COLOR": "#e5eaf0", + "DEFAULT_SHADOW_COLOR": "rgba(0,0,0,0.5)", + "DEFAULT_GROUP_FONT": 24, + "WIDGET_BGCOLOR": "#2e3440", + "WIDGET_OUTLINE_COLOR": "#545d70", + "WIDGET_TEXT_COLOR": "#bcc2c8", + "WIDGET_SECONDARY_TEXT_COLOR": "#999", + "LINK_COLOR": "#9A9", + "EVENT_LINK_COLOR": "#A86", + "CONNECTING_LINK_COLOR": "#AFA" + }, + "comfy_base": { + "fg-color": "#e5eaf0", + "bg-color": "#2e3440", + "comfy-menu-bg": "#161b22", + "comfy-input-bg": "#2e3440", + "input-text": "#bcc2c8", + "descrip-text": "#999", + "drag-text": "#ccc", + "error-text": "#ff4444", + "border-color": "#545d70", + "tr-even-bg-color": "#2e3440", + "tr-odd-bg-color": "#161b22" + } + }, + }, + "github": { + "id": "github", + "name": "Github", + "colors": { + "node_slot": { + "BOOLEAN": "", + "CLIP": "#eacb8b", + "CLIP_VISION": "#A8DADC", + "CLIP_VISION_OUTPUT": "#ad7452", + "CONDITIONING": "#cf876f", + "CONTROL_NET": "#00d78d", + "CONTROL_NET_WEIGHTS": "", + "FLOAT": "", + "GLIGEN": "", + "IMAGE": "#80a1c0", + "IMAGEUPLOAD": "", + "INT": "", + "LATENT": "#b38ead", + "LATENT_KEYFRAME": "", + "MASK": "#a3bd8d", + "MODEL": "#8978a7", + "SAMPLER": "", + "SIGMAS": "", + "STRING": "", + "STYLE_MODEL": "#C2FFAE", + "T2I_ADAPTER_WEIGHTS": "", + "TAESD": "#DCC274", + "TIMESTEP_KEYFRAME": "", + "UPSCALE_MODEL": "", + "VAE": "#be616b" + }, + "litegraph_base": { + "BACKGROUND_IMAGE": "", + "CLEAR_BACKGROUND_COLOR": "#040506", + "NODE_TITLE_COLOR": "#999", + "NODE_SELECTED_TITLE_COLOR": "#e5eaf0", + "NODE_TEXT_SIZE": 14, + "NODE_TEXT_COLOR": "#bcc2c8", + "NODE_SUBTEXT_SIZE": 12, + "NODE_DEFAULT_COLOR": "#161b22", + "NODE_DEFAULT_BGCOLOR": "#13171d", + "NODE_DEFAULT_BOXCOLOR": "#30363d", + "NODE_DEFAULT_SHAPE": "box", + "NODE_BOX_OUTLINE_COLOR": "#e5eaf0", + "DEFAULT_SHADOW_COLOR": "rgba(0,0,0,0.5)", + "DEFAULT_GROUP_FONT": 24, + "WIDGET_BGCOLOR": "#161b22", + "WIDGET_OUTLINE_COLOR": "#30363d", + "WIDGET_TEXT_COLOR": "#bcc2c8", + "WIDGET_SECONDARY_TEXT_COLOR": "#999", + "LINK_COLOR": "#9A9", + "EVENT_LINK_COLOR": "#A86", + "CONNECTING_LINK_COLOR": "#AFA" + }, + "comfy_base": { + "fg-color": "#e5eaf0", + "bg-color": "#161b22", + "comfy-menu-bg": "#13171d", + "comfy-input-bg": "#161b22", + "input-text": "#bcc2c8", + "descrip-text": "#999", + "drag-text": "#ccc", + "error-text": "#ff4444", + "border-color": "#30363d", + "tr-even-bg-color": "#161b22", + "tr-odd-bg-color": "#13171d" + } + }, } }; diff --git a/web/extensions/core/contextMenuFilter.js b/web/extensions/core/contextMenuFilter.js index 152cd7043de..0a305391a4e 100644 --- a/web/extensions/core/contextMenuFilter.js +++ b/web/extensions/core/contextMenuFilter.js @@ -25,7 +25,7 @@ const ext = { requestAnimationFrame(() => { const currentNode = LGraphCanvas.active_canvas.current_node; const clickedComboValue = currentNode.widgets - .filter(w => w.type === "combo" && w.options.values.length === values.length) + ?.filter(w => w.type === "combo" && w.options.values.length === values.length) .find(w => w.options.values.every((v, i) => v === values[i])) ?.value; diff --git a/web/extensions/core/groupNode.js b/web/extensions/core/groupNode.js new file mode 100644 index 00000000000..450b4f5f35c --- /dev/null +++ b/web/extensions/core/groupNode.js @@ -0,0 +1,1054 @@ +import { app } from "../../scripts/app.js"; +import { api } from "../../scripts/api.js"; +import { getWidgetType } from "../../scripts/widgets.js"; +import { mergeIfValid } from "./widgetInputs.js"; + +const GROUP = Symbol(); + +const Workflow = { + InUse: { + Free: 0, + Registered: 1, + InWorkflow: 2, + }, + isInUseGroupNode(name) { + const id = `workflow/${name}`; + // Check if lready registered/in use in this workflow + if (app.graph.extra?.groupNodes?.[name]) { + if (app.graph._nodes.find((n) => n.type === id)) { + return Workflow.InUse.InWorkflow; + } else { + return Workflow.InUse.Registered; + } + } + return Workflow.InUse.Free; + }, + storeGroupNode(name, data) { + let extra = app.graph.extra; + if (!extra) app.graph.extra = extra = {}; + let groupNodes = extra.groupNodes; + if (!groupNodes) extra.groupNodes = groupNodes = {}; + groupNodes[name] = data; + }, +}; + +class GroupNodeBuilder { + constructor(nodes) { + this.nodes = nodes; + } + + build() { + const name = this.getName(); + if (!name) return; + + // Sort the nodes so they are in execution order + // this allows for widgets to be in the correct order when reconstructing + this.sortNodes(); + + this.nodeData = this.getNodeData(); + Workflow.storeGroupNode(name, this.nodeData); + + return { name, nodeData: this.nodeData }; + } + + getName() { + const name = prompt("Enter group name"); + if (!name) return; + const used = Workflow.isInUseGroupNode(name); + switch (used) { + case Workflow.InUse.InWorkflow: + alert( + "An in use group node with this name already exists embedded in this workflow, please remove any instances or use a new name." + ); + return; + case Workflow.InUse.Registered: + if ( + !confirm( + "An group node with this name already exists embedded in this workflow, are you sure you want to overwrite it?" + ) + ) { + return; + } + break; + } + return name; + } + + sortNodes() { + // Gets the builders nodes in graph execution order + const nodesInOrder = app.graph.computeExecutionOrder(false); + this.nodes = this.nodes + .map((node) => ({ index: nodesInOrder.indexOf(node), node })) + .sort((a, b) => a.index - b.index || a.node.id - b.node.id) + .map(({ node }) => node); + } + + getNodeData() { + const storeLinkTypes = (config) => { + // Store link types for dynamically typed nodes e.g. reroutes + for (const link of config.links) { + const origin = app.graph.getNodeById(link[4]); + const type = origin.outputs[link[1]].type; + link.push(type); + } + }; + + const storeExternalLinks = (config) => { + // Store any external links to the group in the config so when rebuilding we add extra slots + config.external = []; + for (let i = 0; i < this.nodes.length; i++) { + const node = this.nodes[i]; + if (!node.outputs?.length) continue; + for (let slot = 0; slot < node.outputs.length; slot++) { + let hasExternal = false; + const output = node.outputs[slot]; + let type = output.type; + if (!output.links?.length) continue; + for (const l of output.links) { + const link = app.graph.links[l]; + if (!link) continue; + if (type === "*") type = link.type; + + if (!app.canvas.selected_nodes[link.target_id]) { + hasExternal = true; + break; + } + } + if (hasExternal) { + config.external.push([i, slot, type]); + } + } + } + }; + + // Use the built in copyToClipboard function to generate the node data we need + const backup = localStorage.getItem("litegrapheditor_clipboard"); + try { + app.canvas.copyToClipboard(this.nodes); + const config = JSON.parse(localStorage.getItem("litegrapheditor_clipboard")); + + storeLinkTypes(config); + storeExternalLinks(config); + + return config; + } finally { + localStorage.setItem("litegrapheditor_clipboard", backup); + } + } +} + +export class GroupNodeConfig { + constructor(name, nodeData) { + this.name = name; + this.nodeData = nodeData; + this.getLinks(); + + this.inputCount = 0; + this.oldToNewOutputMap = {}; + this.newToOldOutputMap = {}; + this.oldToNewInputMap = {}; + this.oldToNewWidgetMap = {}; + this.newToOldWidgetMap = {}; + this.primitiveDefs = {}; + this.widgetToPrimitive = {}; + this.primitiveToWidget = {}; + } + + async registerType(source = "workflow") { + this.nodeDef = { + output: [], + output_name: [], + output_is_list: [], + name: source + "/" + this.name, + display_name: this.name, + category: "group nodes" + ("/" + source), + input: { required: {} }, + + [GROUP]: this, + }; + + this.inputs = []; + const seenInputs = {}; + const seenOutputs = {}; + for (let i = 0; i < this.nodeData.nodes.length; i++) { + const node = this.nodeData.nodes[i]; + node.index = i; + this.processNode(node, seenInputs, seenOutputs); + } + await app.registerNodeDef("workflow/" + this.name, this.nodeDef); + } + + getLinks() { + this.linksFrom = {}; + this.linksTo = {}; + this.externalFrom = {}; + + // Extract links for easy lookup + for (const l of this.nodeData.links) { + const [sourceNodeId, sourceNodeSlot, targetNodeId, targetNodeSlot] = l; + + // Skip links outside the copy config + if (sourceNodeId == null) continue; + + if (!this.linksFrom[sourceNodeId]) { + this.linksFrom[sourceNodeId] = {}; + } + this.linksFrom[sourceNodeId][sourceNodeSlot] = l; + + if (!this.linksTo[targetNodeId]) { + this.linksTo[targetNodeId] = {}; + } + this.linksTo[targetNodeId][targetNodeSlot] = l; + } + + if (this.nodeData.external) { + for (const ext of this.nodeData.external) { + if (!this.externalFrom[ext[0]]) { + this.externalFrom[ext[0]] = { [ext[1]]: ext[2] }; + } else { + this.externalFrom[ext[0]][ext[1]] = ext[2]; + } + } + } + } + + processNode(node, seenInputs, seenOutputs) { + const def = this.getNodeDef(node); + if (!def) return; + + const inputs = { ...def.input?.required, ...def.input?.optional }; + + this.inputs.push(this.processNodeInputs(node, seenInputs, inputs)); + if (def.output?.length) this.processNodeOutputs(node, seenOutputs, def); + } + + getNodeDef(node) { + const def = globalDefs[node.type]; + if (def) return def; + + const linksFrom = this.linksFrom[node.index]; + if (node.type === "PrimitiveNode") { + // Skip as its not linked + if (!linksFrom) return; + + let type = linksFrom["0"][5]; + if (type === "COMBO") { + // Use the array items + const source = node.outputs[0].widget.name; + const fromTypeName = this.nodeData.nodes[linksFrom["0"][2]].type; + const fromType = globalDefs[fromTypeName]; + const input = fromType.input.required[source] ?? fromType.input.optional[source]; + type = input[0]; + } + + const def = (this.primitiveDefs[node.index] = { + input: { + required: { + value: [type, {}], + }, + }, + output: [type], + output_name: [], + output_is_list: [], + }); + return def; + } else if (node.type === "Reroute") { + const linksTo = this.linksTo[node.index]; + if (linksTo && linksFrom && !this.externalFrom[node.index]?.[0]) { + // Being used internally + return null; + } + + let rerouteType = "*"; + if (linksFrom) { + const [, , id, slot] = linksFrom["0"]; + rerouteType = this.nodeData.nodes[id].inputs[slot].type; + } else if (linksTo) { + const [id, slot] = linksTo["0"]; + rerouteType = this.nodeData.nodes[id].outputs[slot].type; + } else { + // Reroute used as a pipe + for (const l of this.nodeData.links) { + if (l[2] === node.index) { + rerouteType = l[5]; + break; + } + } + if (rerouteType === "*") { + // Check for an external link + const t = this.externalFrom[node.index]?.[0]; + if (t) { + rerouteType = t; + } + } + } + + return { + input: { + required: { + [rerouteType]: [rerouteType, {}], + }, + }, + output: [rerouteType], + output_name: [], + output_is_list: [], + }; + } + + console.warn("Skipping virtual node " + node.type + " when building group node " + this.name); + } + + getInputConfig(node, inputName, seenInputs, config, extra) { + let name = node.inputs?.find((inp) => inp.name === inputName)?.label ?? inputName; + let prefix = ""; + // Special handling for primitive to include the title if it is set rather than just "value" + if ((node.type === "PrimitiveNode" && node.title) || name in seenInputs) { + prefix = `${node.title ?? node.type} `; + name = `${prefix}${inputName}`; + if (name in seenInputs) { + name = `${prefix}${seenInputs[name]} ${inputName}`; + } + } + seenInputs[name] = (seenInputs[name] ?? 1) + 1; + + if (inputName === "seed" || inputName === "noise_seed") { + if (!extra) extra = {}; + extra.control_after_generate = `${prefix}control_after_generate`; + } + if (config[0] === "IMAGEUPLOAD") { + if (!extra) extra = {}; + extra.widget = `${prefix}${config[1]?.widget ?? "image"}`; + } + + if (extra) { + config = [config[0], { ...config[1], ...extra }]; + } + + return { name, config }; + } + + processWidgetInputs(inputs, node, inputNames, seenInputs) { + const slots = []; + const converted = new Map(); + const widgetMap = (this.oldToNewWidgetMap[node.index] = {}); + for (const inputName of inputNames) { + let widgetType = getWidgetType(inputs[inputName], inputName); + if (widgetType) { + const convertedIndex = node.inputs?.findIndex( + (inp) => inp.name === inputName && inp.widget?.name === inputName + ); + if (convertedIndex > -1) { + // This widget has been converted to a widget + // We need to store this in the correct position so link ids line up + converted.set(convertedIndex, inputName); + widgetMap[inputName] = null; + } else { + // Normal widget + const { name, config } = this.getInputConfig(node, inputName, seenInputs, inputs[inputName]); + this.nodeDef.input.required[name] = config; + widgetMap[inputName] = name; + this.newToOldWidgetMap[name] = { node, inputName }; + } + } else { + // Normal input + slots.push(inputName); + } + } + return { converted, slots }; + } + + checkPrimitiveConnection(link, inputName, inputs) { + const sourceNode = this.nodeData.nodes[link[0]]; + if (sourceNode.type === "PrimitiveNode") { + // Merge link configurations + const [sourceNodeId, _, targetNodeId, __] = link; + const primitiveDef = this.primitiveDefs[sourceNodeId]; + const targetWidget = inputs[inputName]; + const primitiveConfig = primitiveDef.input.required.value; + const output = { widget: primitiveConfig }; + const config = mergeIfValid(output, targetWidget, false, null, primitiveConfig); + primitiveConfig[1] = config?.customConfig ?? inputs[inputName][1] ? { ...inputs[inputName][1] } : {}; + + let name = this.oldToNewWidgetMap[sourceNodeId]["value"]; + name = name.substr(0, name.length - 6); + primitiveConfig[1].control_after_generate = true; + primitiveConfig[1].control_prefix = name; + + let toPrimitive = this.widgetToPrimitive[targetNodeId]; + if (!toPrimitive) { + toPrimitive = this.widgetToPrimitive[targetNodeId] = {}; + } + if (toPrimitive[inputName]) { + toPrimitive[inputName].push(sourceNodeId); + } + toPrimitive[inputName] = sourceNodeId; + + let toWidget = this.primitiveToWidget[sourceNodeId]; + if (!toWidget) { + toWidget = this.primitiveToWidget[sourceNodeId] = []; + } + toWidget.push({ nodeId: targetNodeId, inputName }); + } + } + + processInputSlots(inputs, node, slots, linksTo, inputMap, seenInputs) { + for (let i = 0; i < slots.length; i++) { + const inputName = slots[i]; + if (linksTo[i]) { + this.checkPrimitiveConnection(linksTo[i], inputName, inputs); + // This input is linked so we can skip it + continue; + } + + const { name, config } = this.getInputConfig(node, inputName, seenInputs, inputs[inputName]); + this.nodeDef.input.required[name] = config; + inputMap[i] = this.inputCount++; + } + } + + processConvertedWidgets(inputs, node, slots, converted, linksTo, inputMap, seenInputs) { + // Add converted widgets sorted into their index order (ordered as they were converted) so link ids match up + const convertedSlots = [...converted.keys()].sort().map((k) => converted.get(k)); + for (let i = 0; i < convertedSlots.length; i++) { + const inputName = convertedSlots[i]; + if (linksTo[slots.length + i]) { + this.checkPrimitiveConnection(linksTo[slots.length + i], inputName, inputs); + // This input is linked so we can skip it + continue; + } + + const { name, config } = this.getInputConfig(node, inputName, seenInputs, inputs[inputName], { + defaultInput: true, + }); + this.nodeDef.input.required[name] = config; + inputMap[slots.length + i] = this.inputCount++; + } + } + + processNodeInputs(node, seenInputs, inputs) { + const inputMapping = []; + + const inputNames = Object.keys(inputs); + if (!inputNames.length) return; + + const { converted, slots } = this.processWidgetInputs(inputs, node, inputNames, seenInputs); + const linksTo = this.linksTo[node.index] ?? {}; + const inputMap = (this.oldToNewInputMap[node.index] = {}); + this.processInputSlots(inputs, node, slots, linksTo, inputMap, seenInputs); + this.processConvertedWidgets(inputs, node, slots, converted, linksTo, inputMap, seenInputs); + + return inputMapping; + } + + processNodeOutputs(node, seenOutputs, def) { + const oldToNew = (this.oldToNewOutputMap[node.index] = {}); + + // Add outputs + for (let outputId = 0; outputId < def.output.length; outputId++) { + const linksFrom = this.linksFrom[node.index]; + if (linksFrom?.[outputId] && !this.externalFrom[node.index]?.[outputId]) { + // This output is linked internally so we can skip it + continue; + } + + oldToNew[outputId] = this.nodeDef.output.length; + this.newToOldOutputMap[this.nodeDef.output.length] = { node, slot: outputId }; + this.nodeDef.output.push(def.output[outputId]); + this.nodeDef.output_is_list.push(def.output_is_list[outputId]); + + let label = def.output_name?.[outputId] ?? def.output[outputId]; + const output = node.outputs.find((o) => o.name === label); + if (output?.label) { + label = output.label; + } + let name = label; + if (name in seenOutputs) { + const prefix = `${node.title ?? node.type} `; + name = `${prefix}${label}`; + if (name in seenOutputs) { + name = `${prefix}${node.index} ${label}`; + } + } + seenOutputs[name] = 1; + + this.nodeDef.output_name.push(name); + } + } + + static async registerFromWorkflow(groupNodes, missingNodeTypes) { + for (const g in groupNodes) { + const groupData = groupNodes[g]; + + let hasMissing = false; + for (const n of groupData.nodes) { + // Find missing node types + if (!(n.type in LiteGraph.registered_node_types)) { + missingNodeTypes.push(n.type); + hasMissing = true; + } + } + + if (hasMissing) continue; + + const config = new GroupNodeConfig(g, groupData); + await config.registerType(); + } + } +} + +export class GroupNodeHandler { + node; + groupData; + + constructor(node) { + this.node = node; + this.groupData = node.constructor?.nodeData?.[GROUP]; + + this.node.setInnerNodes = (innerNodes) => { + this.innerNodes = innerNodes; + + for (let innerNodeIndex = 0; innerNodeIndex < this.innerNodes.length; innerNodeIndex++) { + const innerNode = this.innerNodes[innerNodeIndex]; + + for (const w of innerNode.widgets ?? []) { + if (w.type === "converted-widget") { + w.serializeValue = w.origSerializeValue; + } + } + + innerNode.index = innerNodeIndex; + innerNode.getInputNode = (slot) => { + // Check if this input is internal or external + const externalSlot = this.groupData.oldToNewInputMap[innerNode.index]?.[slot]; + if (externalSlot != null) { + return this.node.getInputNode(externalSlot); + } + + // Internal link + const innerLink = this.groupData.linksTo[innerNode.index]?.[slot]; + if (!innerLink) return null; + + const inputNode = innerNodes[innerLink[0]]; + // Primitives will already apply their values + if (inputNode.type === "PrimitiveNode") return null; + + return inputNode; + }; + + innerNode.getInputLink = (slot) => { + const externalSlot = this.groupData.oldToNewInputMap[innerNode.index]?.[slot]; + if (externalSlot != null) { + // The inner node is connected via the group node inputs + const linkId = this.node.inputs[externalSlot].link; + let link = app.graph.links[linkId]; + + // Use the outer link, but update the target to the inner node + link = { + ...link, + target_id: innerNode.id, + target_slot: +slot, + }; + return link; + } + + let link = this.groupData.linksTo[innerNode.index]?.[slot]; + if (!link) return null; + // Use the inner link, but update the origin node to be inner node id + link = { + origin_id: innerNodes[link[0]].id, + origin_slot: link[1], + target_id: innerNode.id, + target_slot: +slot, + }; + return link; + }; + } + }; + + this.node.updateLink = (link) => { + // Replace the group node reference with the internal node + link = { ...link }; + const output = this.groupData.newToOldOutputMap[link.origin_slot]; + let innerNode = this.innerNodes[output.node.index]; + let l; + while (innerNode.type === "Reroute") { + l = innerNode.getInputLink(0); + innerNode = innerNode.getInputNode(0); + } + + link.origin_id = innerNode.id; + link.origin_slot = l?.origin_slot ?? output.slot; + return link; + }; + + this.node.getInnerNodes = () => { + if (!this.innerNodes) { + this.node.setInnerNodes( + this.groupData.nodeData.nodes.map((n, i) => { + const innerNode = LiteGraph.createNode(n.type); + innerNode.configure(n); + innerNode.id = `${this.node.id}:${i}`; + return innerNode; + }) + ); + } + + this.updateInnerWidgets(); + + return this.innerNodes; + }; + + this.node.convertToNodes = () => { + const addInnerNodes = () => { + const backup = localStorage.getItem("litegrapheditor_clipboard"); + // Clone the node data so we dont mutate it for other nodes + const c = { ...this.groupData.nodeData }; + c.nodes = [...c.nodes]; + const innerNodes = this.node.getInnerNodes(); + let ids = []; + for (let i = 0; i < c.nodes.length; i++) { + let id = innerNodes?.[i]?.id; + // Use existing IDs if they are set on the inner nodes + if (id == null || isNaN(id)) { + id = undefined; + } else { + ids.push(id); + } + c.nodes[i] = { ...c.nodes[i], id }; + } + localStorage.setItem("litegrapheditor_clipboard", JSON.stringify(c)); + app.canvas.pasteFromClipboard(); + localStorage.setItem("litegrapheditor_clipboard", backup); + + const [x, y] = this.node.pos; + let top; + let left; + // Configure nodes with current widget data + const selectedIds = ids.length ? ids : Object.keys(app.canvas.selected_nodes); + const newNodes = []; + for (let i = 0; i < selectedIds.length; i++) { + const id = selectedIds[i]; + const newNode = app.graph.getNodeById(id); + const innerNode = innerNodes[i]; + newNodes.push(newNode); + + if (left == null || newNode.pos[0] < left) { + left = newNode.pos[0]; + } + if (top == null || newNode.pos[1] < top) { + top = newNode.pos[1]; + } + + const map = this.groupData.oldToNewWidgetMap[innerNode.index]; + if (map) { + const widgets = Object.keys(map); + + for (const oldName of widgets) { + const newName = map[oldName]; + if (!newName) continue; + + const widgetIndex = this.node.widgets.findIndex((w) => w.name === newName); + if (widgetIndex === -1) continue; + + // Populate the main and any linked widgets + if (innerNode.type === "PrimitiveNode") { + for (let i = 0; i < newNode.widgets.length; i++) { + newNode.widgets[i].value = this.node.widgets[widgetIndex + i].value; + } + } else { + const outerWidget = this.node.widgets[widgetIndex]; + const newWidget = newNode.widgets.find((w) => w.name === oldName); + if (!newWidget) continue; + + newWidget.value = outerWidget.value; + for (let w = 0; w < outerWidget.linkedWidgets?.length; w++) { + newWidget.linkedWidgets[w].value = outerWidget.linkedWidgets[w].value; + } + } + } + } + } + + // Shift each node + for (const newNode of newNodes) { + newNode.pos = [newNode.pos[0] - (left - x), newNode.pos[1] - (top - y)]; + } + + return { newNodes, selectedIds }; + }; + + const reconnectInputs = (selectedIds) => { + for (const innerNodeIndex in this.groupData.oldToNewInputMap) { + const id = selectedIds[innerNodeIndex]; + const newNode = app.graph.getNodeById(id); + const map = this.groupData.oldToNewInputMap[innerNodeIndex]; + for (const innerInputId in map) { + const groupSlotId = map[innerInputId]; + if (groupSlotId == null) continue; + const slot = node.inputs[groupSlotId]; + if (slot.link == null) continue; + const link = app.graph.links[slot.link]; + // connect this node output to the input of another node + const originNode = app.graph.getNodeById(link.origin_id); + originNode.connect(link.origin_slot, newNode, +innerInputId); + } + } + }; + + const reconnectOutputs = () => { + for (let groupOutputId = 0; groupOutputId < node.outputs?.length; groupOutputId++) { + const output = node.outputs[groupOutputId]; + if (!output.links) continue; + const links = [...output.links]; + for (const l of links) { + const slot = this.groupData.newToOldOutputMap[groupOutputId]; + const link = app.graph.links[l]; + const targetNode = app.graph.getNodeById(link.target_id); + const newNode = app.graph.getNodeById(selectedIds[slot.node.index]); + newNode.connect(slot.slot, targetNode, link.target_slot); + } + } + }; + + const { newNodes, selectedIds } = addInnerNodes(); + reconnectInputs(selectedIds); + reconnectOutputs(selectedIds); + app.graph.remove(this.node); + + return newNodes; + }; + + const getExtraMenuOptions = this.node.getExtraMenuOptions; + this.node.getExtraMenuOptions = function (_, options) { + getExtraMenuOptions?.apply(this, arguments); + + let optionIndex = options.findIndex((o) => o.content === "Outputs"); + if (optionIndex === -1) optionIndex = options.length; + else optionIndex++; + options.splice(optionIndex, 0, null, { + content: "Convert to nodes", + callback: () => { + return this.convertToNodes(); + }, + }); + }; + + // Draw custom collapse icon to identity this as a group + const onDrawTitleBox = this.node.onDrawTitleBox; + this.node.onDrawTitleBox = function (ctx, height, size, scale) { + onDrawTitleBox?.apply(this, arguments); + + const fill = ctx.fillStyle; + ctx.beginPath(); + ctx.rect(11, -height + 11, 2, 2); + ctx.rect(14, -height + 11, 2, 2); + ctx.rect(17, -height + 11, 2, 2); + ctx.rect(11, -height + 14, 2, 2); + ctx.rect(14, -height + 14, 2, 2); + ctx.rect(17, -height + 14, 2, 2); + ctx.rect(11, -height + 17, 2, 2); + ctx.rect(14, -height + 17, 2, 2); + ctx.rect(17, -height + 17, 2, 2); + + ctx.fillStyle = this.boxcolor || LiteGraph.NODE_DEFAULT_BOXCOLOR; + ctx.fill(); + ctx.fillStyle = fill; + }; + + // Draw progress label + const onDrawForeground = node.onDrawForeground; + const groupData = this.groupData.nodeData; + node.onDrawForeground = function (ctx) { + const r = onDrawForeground?.apply?.(this, arguments); + if (+app.runningNodeId === this.id && this.runningInternalNodeId !== null) { + const n = groupData.nodes[this.runningInternalNodeId]; + const message = `Running ${n.title || n.type} (${this.runningInternalNodeId}/${groupData.nodes.length})`; + ctx.save(); + ctx.font = "12px sans-serif"; + const sz = ctx.measureText(message); + ctx.fillStyle = node.boxcolor || LiteGraph.NODE_DEFAULT_BOXCOLOR; + ctx.beginPath(); + ctx.roundRect(0, -LiteGraph.NODE_TITLE_HEIGHT - 20, sz.width + 12, 20, 5); + ctx.fill(); + + ctx.fillStyle = "#fff"; + ctx.fillText(message, 6, -LiteGraph.NODE_TITLE_HEIGHT - 6); + ctx.restore(); + } + }; + + // Flag this node as needing to be reset + const onExecutionStart = this.node.onExecutionStart; + this.node.onExecutionStart = function () { + this.resetExecution = true; + return onExecutionStart?.apply(this, arguments); + }; + + function handleEvent(type, getId, getEvent) { + const handler = ({ detail }) => { + const id = getId(detail); + if (!id) return; + const node = app.graph.getNodeById(id); + if (node) return; + + const innerNodeIndex = this.innerNodes?.findIndex((n) => n.id == id); + if (innerNodeIndex > -1) { + this.node.runningInternalNodeId = innerNodeIndex; + api.dispatchEvent(new CustomEvent(type, { detail: getEvent(detail, this.node.id + "", this.node) })); + } + }; + api.addEventListener(type, handler); + return handler; + } + + const executing = handleEvent.call( + this, + "executing", + (d) => d, + (d, id, node) => id + ); + + const executed = handleEvent.call( + this, + "executed", + (d) => d?.node, + (d, id, node) => ({ ...d, node: id, merge: !node.resetExecution }) + ); + + const onRemoved = node.onRemoved; + this.node.onRemoved = function () { + onRemoved?.apply(this, arguments); + api.removeEventListener("executing", executing); + api.removeEventListener("executed", executed); + }; + } + + updateInnerWidgets() { + for (const newWidgetName in this.groupData.newToOldWidgetMap) { + const newWidget = this.node.widgets.find((w) => w.name === newWidgetName); + if (!newWidget) continue; + + const newValue = newWidget.value; + const old = this.groupData.newToOldWidgetMap[newWidgetName]; + let innerNode = this.innerNodes[old.node.index]; + + if (innerNode.type === "PrimitiveNode") { + innerNode.primitiveValue = newValue; + const primitiveLinked = this.groupData.primitiveToWidget[old.node.index]; + for (const linked of primitiveLinked) { + const node = this.innerNodes[linked.nodeId]; + const widget = node.widgets.find((w) => w.name === linked.inputName); + + if (widget) { + widget.value = newValue; + } + } + continue; + } + + const widget = innerNode.widgets?.find((w) => w.name === old.inputName); + if (widget) { + widget.value = newValue; + } + } + } + + populatePrimitive(node, nodeId, oldName, i, linkedShift) { + // Converted widget, populate primitive if linked + const primitiveId = this.groupData.widgetToPrimitive[nodeId]?.[oldName]; + if (primitiveId == null) return; + const targetWidgetName = this.groupData.oldToNewWidgetMap[primitiveId]["value"]; + const targetWidgetIndex = this.node.widgets.findIndex((w) => w.name === targetWidgetName); + if (targetWidgetIndex > -1) { + const primitiveNode = this.innerNodes[primitiveId]; + let len = primitiveNode.widgets.length; + if (len - 1 !== this.node.widgets[targetWidgetIndex].linkedWidgets?.length) { + // Fallback handling for if some reason the primitive has a different number of widgets + // we dont want to overwrite random widgets, better to leave blank + len = 1; + } + for (let i = 0; i < len; i++) { + this.node.widgets[targetWidgetIndex + i].value = primitiveNode.widgets[i].value; + } + } + } + + populateWidgets() { + for (let nodeId = 0; nodeId < this.groupData.nodeData.nodes.length; nodeId++) { + const node = this.groupData.nodeData.nodes[nodeId]; + + if (!node.widgets_values?.length) continue; + + const map = this.groupData.oldToNewWidgetMap[nodeId]; + const widgets = Object.keys(map); + + let linkedShift = 0; + for (let i = 0; i < widgets.length; i++) { + const oldName = widgets[i]; + const newName = map[oldName]; + const widgetIndex = this.node.widgets.findIndex((w) => w.name === newName); + const mainWidget = this.node.widgets[widgetIndex]; + if (!newName) { + // New name will be null if its a converted widget + this.populatePrimitive(node, nodeId, oldName, i, linkedShift); + + // Find the inner widget and shift by the number of linked widgets as they will have been removed too + const innerWidget = this.innerNodes[nodeId].widgets?.find((w) => w.name === oldName); + linkedShift += innerWidget.linkedWidgets?.length ?? 0; + continue; + } + + if (widgetIndex === -1) { + continue; + } + + // Populate the main and any linked widget + mainWidget.value = node.widgets_values[i + linkedShift]; + for (let w = 0; w < mainWidget.linkedWidgets?.length; w++) { + this.node.widgets[widgetIndex + w + 1].value = node.widgets_values[i + ++linkedShift]; + } + } + } + } + + replaceNodes(nodes) { + let top; + let left; + + for (let i = 0; i < nodes.length; i++) { + const node = nodes[i]; + if (left == null || node.pos[0] < left) { + left = node.pos[0]; + } + if (top == null || node.pos[1] < top) { + top = node.pos[1]; + } + + this.linkOutputs(node, i); + app.graph.remove(node); + } + + this.linkInputs(); + this.node.pos = [left, top]; + } + + linkOutputs(originalNode, nodeId) { + if (!originalNode.outputs) return; + + for (const output of originalNode.outputs) { + if (!output.links) continue; + // Clone the links as they'll be changed if we reconnect + const links = [...output.links]; + for (const l of links) { + const link = app.graph.links[l]; + if (!link) continue; + + const targetNode = app.graph.getNodeById(link.target_id); + const newSlot = this.groupData.oldToNewOutputMap[nodeId]?.[link.origin_slot]; + if (newSlot != null) { + this.node.connect(newSlot, targetNode, link.target_slot); + } + } + } + } + + linkInputs() { + for (const link of this.groupData.nodeData.links ?? []) { + const [, originSlot, targetId, targetSlot, actualOriginId] = link; + const originNode = app.graph.getNodeById(actualOriginId); + if (!originNode) continue; // this node is in the group + originNode.connect(originSlot, this.node.id, this.groupData.oldToNewInputMap[targetId][targetSlot]); + } + } + + static getGroupData(node) { + return node.constructor?.nodeData?.[GROUP]; + } + + static isGroupNode(node) { + return !!node.constructor?.nodeData?.[GROUP]; + } + + static async fromNodes(nodes) { + // Process the nodes into the stored workflow group node data + const builder = new GroupNodeBuilder(nodes); + const res = builder.build(); + if (!res) return; + + const { name, nodeData } = res; + + // Convert this data into a LG node definition and register it + const config = new GroupNodeConfig(name, nodeData); + await config.registerType(); + + const groupNode = LiteGraph.createNode(`workflow/${name}`); + // Reuse the existing nodes for this instance + groupNode.setInnerNodes(builder.nodes); + groupNode[GROUP].populateWidgets(); + app.graph.add(groupNode); + + // Remove all converted nodes and relink them + groupNode[GROUP].replaceNodes(builder.nodes); + return groupNode; + } +} + +function addConvertToGroupOptions() { + function addOption(options, index) { + const selected = Object.values(app.canvas.selected_nodes ?? {}); + const disabled = selected.length < 2 || selected.find((n) => GroupNodeHandler.isGroupNode(n)); + options.splice(index + 1, null, { + content: `Convert to Group Node`, + disabled, + callback: async () => { + return await GroupNodeHandler.fromNodes(selected); + }, + }); + } + + // Add to canvas + const getCanvasMenuOptions = LGraphCanvas.prototype.getCanvasMenuOptions; + LGraphCanvas.prototype.getCanvasMenuOptions = function () { + const options = getCanvasMenuOptions.apply(this, arguments); + const index = options.findIndex((o) => o?.content === "Add Group") + 1 || opts.length; + addOption(options, index); + return options; + }; + + // Add to nodes + const getNodeMenuOptions = LGraphCanvas.prototype.getNodeMenuOptions; + LGraphCanvas.prototype.getNodeMenuOptions = function (node) { + const options = getNodeMenuOptions.apply(this, arguments); + if (!GroupNodeHandler.isGroupNode(node)) { + const index = options.findIndex((o) => o?.content === "Outputs") + 1 || opts.length - 1; + addOption(options, index); + } + return options; + }; +} + +const id = "Comfy.GroupNode"; +let globalDefs; +const ext = { + name: id, + setup() { + addConvertToGroupOptions(); + }, + async beforeConfigureGraph(graphData, missingNodeTypes) { + const nodes = graphData?.extra?.groupNodes; + if (nodes) { + await GroupNodeConfig.registerFromWorkflow(nodes, missingNodeTypes); + } + }, + addCustomNodeDefs(defs) { + // Store this so we can mutate it later with group nodes + globalDefs = defs; + }, + nodeCreated(node) { + if (GroupNodeHandler.isGroupNode(node)) { + node[GROUP] = new GroupNodeHandler(node); + } + }, +}; + +app.registerExtension(ext); diff --git a/web/extensions/core/groupOptions.js b/web/extensions/core/groupOptions.js index 1d935e90aef..5dd21e73016 100644 --- a/web/extensions/core/groupOptions.js +++ b/web/extensions/core/groupOptions.js @@ -5,6 +5,61 @@ function setNodeMode(node, mode) { node.graph.change(); } +function addNodesToGroup(group, nodes=[]) { + var x1, y1, x2, y2; + var nx1, ny1, nx2, ny2; + var node; + + x1 = y1 = x2 = y2 = -1; + nx1 = ny1 = nx2 = ny2 = -1; + + for (var n of [group._nodes, nodes]) { + for (var i in n) { + node = n[i] + + nx1 = node.pos[0] + ny1 = node.pos[1] + nx2 = node.pos[0] + node.size[0] + ny2 = node.pos[1] + node.size[1] + + if (node.type != "Reroute") { + ny1 -= LiteGraph.NODE_TITLE_HEIGHT; + } + + if (node.flags?.collapsed) { + ny2 = ny1 + LiteGraph.NODE_TITLE_HEIGHT; + + if (node?._collapsed_width) { + nx2 = nx1 + Math.round(node._collapsed_width); + } + } + + if (x1 == -1 || nx1 < x1) { + x1 = nx1; + } + + if (y1 == -1 || ny1 < y1) { + y1 = ny1; + } + + if (x2 == -1 || nx2 > x2) { + x2 = nx2; + } + + if (y2 == -1 || ny2 > y2) { + y2 = ny2; + } + } + } + + var padding = 10; + + y1 = y1 - Math.round(group.font_size * 1.4); + + group.pos = [x1 - padding, y1 - padding]; + group.size = [x2 - x1 + padding * 2, y2 - y1 + padding * 2]; +} + app.registerExtension({ name: "Comfy.GroupOptions", setup() { @@ -14,6 +69,17 @@ app.registerExtension({ const options = orig.apply(this, arguments); const group = this.graph.getGroupOnPos(this.graph_mouse[0], this.graph_mouse[1]); if (!group) { + options.push({ + content: "Add Group For Selected Nodes", + disabled: !Object.keys(app.canvas.selected_nodes || {}).length, + callback: () => { + var group = new LiteGraph.LGraphGroup(); + addNodesToGroup(group, this.selected_nodes) + app.canvas.graph.add(group); + this.graph.change(); + } + }); + return options; } @@ -21,6 +87,15 @@ app.registerExtension({ group.recomputeInsideNodes(); const nodesInGroup = group._nodes; + options.push({ + content: "Add Selected Nodes To Group", + disabled: !Object.keys(app.canvas.selected_nodes || {}).length, + callback: () => { + addNodesToGroup(group, this.selected_nodes) + this.graph.change(); + } + }); + // No nodes in group, return default options if (nodesInGroup.length === 0) { return options; @@ -38,6 +113,23 @@ app.registerExtension({ } } + options.push({ + content: "Fit Group To Nodes", + callback: () => { + addNodesToGroup(group) + this.graph.change(); + } + }); + + options.push({ + content: "Select Nodes", + callback: () => { + this.selectNodes(nodesInGroup); + this.graph.change(); + this.canvas.focus(); + } + }); + // Modes // 0: Always // 1: On Event diff --git a/web/extensions/core/nodeTemplates.js b/web/extensions/core/nodeTemplates.js index 7059f826d74..2d4821742d1 100644 --- a/web/extensions/core/nodeTemplates.js +++ b/web/extensions/core/nodeTemplates.js @@ -1,5 +1,6 @@ import { app } from "../../scripts/app.js"; import { ComfyDialog, $el } from "../../scripts/ui.js"; +import { GroupNodeConfig, GroupNodeHandler } from "./groupNode.js"; // Adds the ability to save and add multiple nodes as a template // To save: @@ -14,6 +15,9 @@ import { ComfyDialog, $el } from "../../scripts/ui.js"; // To delete/rename: // Right click the canvas // Node templates -> Manage +// +// To rearrange: +// Open the manage dialog and Drag and drop elements using the "Name:" label as handle const id = "Comfy.NodeTemplates"; @@ -22,16 +26,42 @@ class ManageTemplates extends ComfyDialog { super(); this.element.classList.add("comfy-manage-templates"); this.templates = this.load(); + this.draggedEl = null; + this.saveVisualCue = null; + this.emptyImg = new Image(); + this.emptyImg.src = ''; + + this.importInput = $el("input", { + type: "file", + accept: ".json", + multiple: true, + style: { display: "none" }, + parent: document.body, + onchange: () => this.importAll(), + }); } createButtons() { const btns = super.createButtons(); - btns[0].textContent = "Cancel"; + btns[0].textContent = "Close"; + btns[0].onclick = (e) => { + clearTimeout(this.saveVisualCue); + this.close(); + }; + btns.unshift( + $el("button", { + type: "button", + textContent: "Export", + onclick: () => this.exportAll(), + }) + ); btns.unshift( $el("button", { type: "button", - textContent: "Save", - onclick: () => this.save(), + textContent: "Import", + onclick: () => { + this.importInput.click(); + }, }) ); return btns; @@ -46,27 +76,54 @@ class ManageTemplates extends ComfyDialog { } } - save() { - // Find all visible inputs and save them as our new list - const inputs = this.element.querySelectorAll("input"); - const updated = []; - - for (let i = 0; i < inputs.length; i++) { - const input = inputs[i]; - if (input.parentElement.style.display !== "none") { - const t = this.templates[i]; - t.name = input.value.trim() || input.getAttribute("data-name"); - updated.push(t); + store() { + localStorage.setItem(id, JSON.stringify(this.templates)); + } + + async importAll() { + for (const file of this.importInput.files) { + if (file.type === "application/json" || file.name.endsWith(".json")) { + const reader = new FileReader(); + reader.onload = async () => { + var importFile = JSON.parse(reader.result); + if (importFile && importFile?.templates) { + for (const template of importFile.templates) { + if (template?.name && template?.data) { + this.templates.push(template); + } + } + this.store(); + } + }; + await reader.readAsText(file); } } - this.templates = updated; - this.store(); + this.importInput.value = null; + this.close(); } - store() { - localStorage.setItem(id, JSON.stringify(this.templates)); + exportAll() { + if (this.templates.length == 0) { + alert("No templates to export."); + return; + } + + const json = JSON.stringify({ templates: this.templates }, null, 2); // convert the data to a JSON string + const blob = new Blob([json], { type: "application/json" }); + const url = URL.createObjectURL(blob); + const a = $el("a", { + href: url, + download: "node_templates.json", + style: { display: "none" }, + parent: document.body, + }); + a.click(); + setTimeout(function () { + a.remove(); + window.URL.revokeObjectURL(url); + }, 0); } show() { @@ -74,42 +131,155 @@ class ManageTemplates extends ComfyDialog { super.show( $el( "div", - { - style: { - display: "grid", - gridTemplateColumns: "1fr auto", - gap: "5px", - }, - }, - this.templates.flatMap((t) => { + {}, + this.templates.flatMap((t,i) => { let nameInput; return [ $el( - "label", + "div", { - textContent: "Name: ", + dataset: { id: i }, + className: "tempateManagerRow", + style: { + display: "grid", + gridTemplateColumns: "1fr auto", + border: "1px dashed transparent", + gap: "5px", + backgroundColor: "var(--comfy-menu-bg)" + }, + ondragstart: (e) => { + this.draggedEl = e.currentTarget; + e.currentTarget.style.opacity = "0.6"; + e.currentTarget.style.border = "1px dashed yellow"; + e.dataTransfer.effectAllowed = 'move'; + e.dataTransfer.setDragImage(this.emptyImg, 0, 0); + }, + ondragend: (e) => { + e.target.style.opacity = "1"; + e.currentTarget.style.border = "1px dashed transparent"; + e.currentTarget.removeAttribute("draggable"); + + // rearrange the elements in the localStorage + this.element.querySelectorAll('.tempateManagerRow').forEach((el,i) => { + var prev_i = el.dataset.id; + + if ( el == this.draggedEl && prev_i != i ) { + [this.templates[i], this.templates[prev_i]] = [this.templates[prev_i], this.templates[i]]; + } + el.dataset.id = i; + }); + this.store(); + }, + ondragover: (e) => { + e.preventDefault(); + if ( e.currentTarget == this.draggedEl ) + return; + + let rect = e.currentTarget.getBoundingClientRect(); + if (e.clientY > rect.top + rect.height / 2) { + e.currentTarget.parentNode.insertBefore(this.draggedEl, e.currentTarget.nextSibling); + } else { + e.currentTarget.parentNode.insertBefore(this.draggedEl, e.currentTarget); + } + } }, [ - $el("input", { - value: t.name, - dataset: { name: t.name }, - $: (el) => (nameInput = el), - }), + $el( + "label", + { + textContent: "Name: ", + style: { + cursor: "grab", + }, + onmousedown: (e) => { + // enable dragging only from the label + if (e.target.localName == 'label') + e.currentTarget.parentNode.draggable = 'true'; + } + }, + [ + $el("input", { + value: t.name, + dataset: { name: t.name }, + style: { + transitionProperty: 'background-color', + transitionDuration: '0s', + }, + onchange: (e) => { + clearTimeout(this.saveVisualCue); + var el = e.target; + var row = el.parentNode.parentNode; + this.templates[row.dataset.id].name = el.value.trim() || 'untitled'; + this.store(); + el.style.backgroundColor = 'rgb(40, 95, 40)'; + el.style.transitionDuration = '0s'; + this.saveVisualCue = setTimeout(function () { + el.style.transitionDuration = '.7s'; + el.style.backgroundColor = 'var(--comfy-input-bg)'; + }, 15); + }, + onkeypress: (e) => { + var el = e.target; + clearTimeout(this.saveVisualCue); + el.style.transitionDuration = '0s'; + el.style.backgroundColor = 'var(--comfy-input-bg)'; + }, + $: (el) => (nameInput = el), + }) + ] + ), + $el( + "div", + {}, + [ + $el("button", { + textContent: "Export", + style: { + fontSize: "12px", + fontWeight: "normal", + }, + onclick: (e) => { + const json = JSON.stringify({templates: [t]}, null, 2); // convert the data to a JSON string + const blob = new Blob([json], {type: "application/json"}); + const url = URL.createObjectURL(blob); + const a = $el("a", { + href: url, + download: (nameInput.value || t.name) + ".json", + style: {display: "none"}, + parent: document.body, + }); + a.click(); + setTimeout(function () { + a.remove(); + window.URL.revokeObjectURL(url); + }, 0); + }, + }), + $el("button", { + textContent: "Delete", + style: { + fontSize: "12px", + color: "red", + fontWeight: "normal", + }, + onclick: (e) => { + const item = e.target.parentNode.parentNode; + item.parentNode.removeChild(item); + this.templates.splice(item.dataset.id*1, 1); + this.store(); + // update the rows index, setTimeout ensures that the list is updated + var that = this; + setTimeout(function (){ + that.element.querySelectorAll('.tempateManagerRow').forEach((el,i) => { + el.dataset.id = i; + }); + }, 0); + }, + }), + ] + ), ] - ), - $el("button", { - textContent: "Delete", - style: { - fontSize: "12px", - color: "red", - fontWeight: "normal", - }, - onclick: (e) => { - nameInput.value = ""; - e.target.style.display = "none"; - e.target.previousElementSibling.style.display = "none"; - }, - }), + ) ]; }) ) @@ -122,11 +292,11 @@ app.registerExtension({ setup() { const manage = new ManageTemplates(); - const clipboardAction = (cb) => { + const clipboardAction = async (cb) => { // We use the clipboard functions but dont want to overwrite the current user clipboard // Restore it after we've run our callback const old = localStorage.getItem("litegrapheditor_clipboard"); - cb(); + await cb(); localStorage.setItem("litegrapheditor_clipboard", old); }; @@ -140,13 +310,31 @@ app.registerExtension({ disabled: !Object.keys(app.canvas.selected_nodes || {}).length, callback: () => { const name = prompt("Enter name"); - if (!name || !name.trim()) return; + if (!name?.trim()) return; clipboardAction(() => { app.canvas.copyToClipboard(); + let data = localStorage.getItem("litegrapheditor_clipboard"); + data = JSON.parse(data); + const nodeIds = Object.keys(app.canvas.selected_nodes); + for (let i = 0; i < nodeIds.length; i++) { + const node = app.graph.getNodeById(nodeIds[i]); + const nodeData = node?.constructor.nodeData; + + let groupData = GroupNodeHandler.getGroupData(node); + if (groupData) { + groupData = groupData.nodeData; + if (!data.groupNodes) { + data.groupNodes = {}; + } + data.groupNodes[nodeData.name] = groupData; + data.nodes[i].type = nodeData.name; + } + } + manage.templates.push({ name, - data: localStorage.getItem("litegrapheditor_clipboard"), + data: JSON.stringify(data), }); manage.store(); }); @@ -154,29 +342,31 @@ app.registerExtension({ }); // Map each template to a menu item - const subItems = manage.templates.map((t) => ({ - content: t.name, - callback: () => { - clipboardAction(() => { - localStorage.setItem("litegrapheditor_clipboard", t.data); - app.canvas.pasteFromClipboard(); - }); - }, - })); - - if (subItems.length) { - subItems.push(null, { - content: "Manage", - callback: () => manage.show(), - }); - - options.push({ - content: "Node Templates", - submenu: { - options: subItems, + const subItems = manage.templates.map((t) => { + return { + content: t.name, + callback: () => { + clipboardAction(async () => { + const data = JSON.parse(t.data); + await GroupNodeConfig.registerFromWorkflow(data.groupNodes, {}); + localStorage.setItem("litegrapheditor_clipboard", t.data); + app.canvas.pasteFromClipboard(); + }); }, - }); - } + }; + }); + + subItems.push(null, { + content: "Manage", + callback: () => manage.show(), + }); + + options.push({ + content: "Node Templates", + submenu: { + options: subItems, + }, + }); return options; }; diff --git a/web/extensions/core/undoRedo.js b/web/extensions/core/undoRedo.js new file mode 100644 index 00000000000..c6613b0f02d --- /dev/null +++ b/web/extensions/core/undoRedo.js @@ -0,0 +1,150 @@ +import { app } from "../../scripts/app.js"; + +const MAX_HISTORY = 50; + +let undo = []; +let redo = []; +let activeState = null; +let isOurLoad = false; +function checkState() { + const currentState = app.graph.serialize(); + if (!graphEqual(activeState, currentState)) { + undo.push(activeState); + if (undo.length > MAX_HISTORY) { + undo.shift(); + } + activeState = clone(currentState); + redo.length = 0; + } +} + +const loadGraphData = app.loadGraphData; +app.loadGraphData = async function () { + const v = await loadGraphData.apply(this, arguments); + if (isOurLoad) { + isOurLoad = false; + } else { + checkState(); + } + return v; +}; + +function clone(obj) { + try { + if (typeof structuredClone !== "undefined") { + return structuredClone(obj); + } + } catch (error) { + // structuredClone is stricter than using JSON.parse/stringify so fallback to that + } + + return JSON.parse(JSON.stringify(obj)); +} + +function graphEqual(a, b, root = true) { + if (a === b) return true; + + if (typeof a == "object" && a && typeof b == "object" && b) { + const keys = Object.getOwnPropertyNames(a); + + if (keys.length != Object.getOwnPropertyNames(b).length) { + return false; + } + + for (const key of keys) { + let av = a[key]; + let bv = b[key]; + if (root && key === "nodes") { + // Nodes need to be sorted as the order changes when selecting nodes + av = [...av].sort((a, b) => a.id - b.id); + bv = [...bv].sort((a, b) => a.id - b.id); + } + if (!graphEqual(av, bv, false)) { + return false; + } + } + + return true; + } + + return false; +} + +const undoRedo = async (e) => { + if (e.ctrlKey || e.metaKey) { + if (e.key === "y") { + const prevState = redo.pop(); + if (prevState) { + undo.push(activeState); + isOurLoad = true; + await app.loadGraphData(prevState); + activeState = prevState; + } + return true; + } else if (e.key === "z") { + const prevState = undo.pop(); + if (prevState) { + redo.push(activeState); + isOurLoad = true; + await app.loadGraphData(prevState); + activeState = prevState; + } + return true; + } + } +}; + +const bindInput = (activeEl) => { + if (activeEl?.tagName !== "CANVAS" && activeEl?.tagName !== "BODY") { + for (const evt of ["change", "input", "blur"]) { + if (`on${evt}` in activeEl) { + const listener = () => { + checkState(); + activeEl.removeEventListener(evt, listener); + }; + activeEl.addEventListener(evt, listener); + return true; + } + } + } +}; + +window.addEventListener( + "keydown", + (e) => { + requestAnimationFrame(async () => { + const activeEl = document.activeElement; + if (activeEl?.tagName === "INPUT" || activeEl?.type === "textarea") { + // Ignore events on inputs, they have their native history + return; + } + + // Check if this is a ctrl+z ctrl+y + if (await undoRedo(e)) return; + + // If our active element is some type of input then handle changes after they're done + if (bindInput(activeEl)) return; + checkState(); + }); + }, + true +); + +// Handle clicking DOM elements (e.g. widgets) +window.addEventListener("mouseup", () => { + checkState(); +}); + +// Handle litegraph clicks +const processMouseUp = LGraphCanvas.prototype.processMouseUp; +LGraphCanvas.prototype.processMouseUp = function (e) { + const v = processMouseUp.apply(this, arguments); + checkState(); + return v; +}; +const processMouseDown = LGraphCanvas.prototype.processMouseDown; +LGraphCanvas.prototype.processMouseDown = function (e) { + const v = processMouseDown.apply(this, arguments); + checkState(); + return v; +}; diff --git a/web/extensions/core/widgetInputs.js b/web/extensions/core/widgetInputs.js index 606605f0a96..b6fa411f7e1 100644 --- a/web/extensions/core/widgetInputs.js +++ b/web/extensions/core/widgetInputs.js @@ -1,8 +1,15 @@ -import { ComfyWidgets, addValueControlWidget } from "../../scripts/widgets.js"; +import { ComfyWidgets, addValueControlWidgets } from "../../scripts/widgets.js"; import { app } from "../../scripts/app.js"; const CONVERTED_TYPE = "converted-widget"; const VALID_TYPES = ["STRING", "combo", "number", "BOOLEAN"]; +const CONFIG = Symbol(); +const GET_CONFIG = Symbol(); + +function getConfig(widgetName) { + const { nodeData } = this.constructor; + return nodeData?.input?.required[widgetName] ?? nodeData?.input?.optional?.[widgetName]; +} function isConvertableWidget(widget, config) { return (VALID_TYPES.includes(widget.type) || VALID_TYPES.includes(config[0])) && !widget.options?.forceInput; @@ -55,12 +62,12 @@ function showWidget(widget) { function convertToInput(node, widget, config) { hideWidget(node, widget); - const { linkType } = getWidgetType(config); + const { type } = getWidgetType(config); // Add input and store widget config for creating on primitive node const sz = node.size; - node.addInput(widget.name, linkType, { - widget: { name: widget.name, config }, + node.addInput(widget.name, type, { + widget: { name: widget.name, [GET_CONFIG]: () => config }, }); for (const widget of node.widgets) { @@ -87,12 +94,135 @@ function convertToWidget(node, widget) { function getWidgetType(config) { // Special handling for COMBO so we restrict links based on the entries let type = config[0]; - let linkType = type; if (type instanceof Array) { type = "COMBO"; - linkType = linkType.join(","); } - return { type, linkType }; + return { type }; +} + + +function isValidCombo(combo, obj) { + // New input isnt a combo + if (!(obj instanceof Array)) { + console.log(`connection rejected: tried to connect combo to ${obj}`); + return false; + } + // New imput combo has a different size + if (combo.length !== obj.length) { + console.log(`connection rejected: combo lists dont match`); + return false; + } + // New input combo has different elements + if (combo.find((v, i) => obj[i] !== v)) { + console.log(`connection rejected: combo lists dont match`); + return false; + } + + return true; +} + +export function mergeIfValid(output, config2, forceUpdate, recreateWidget, config1) { + if (!config1) { + config1 = output.widget[CONFIG] ?? output.widget[GET_CONFIG](); + } + + if (config1[0] instanceof Array) { + if (!isValidCombo(config1[0], config2[0])) return false; + } else if (config1[0] !== config2[0]) { + // Types dont match + console.log(`connection rejected: types dont match`, config1[0], config2[0]); + return false; + } + + const keys = new Set([...Object.keys(config1[1] ?? {}), ...Object.keys(config2[1] ?? {})]); + + let customConfig; + const getCustomConfig = () => { + if (!customConfig) { + if (typeof structuredClone === "undefined") { + customConfig = JSON.parse(JSON.stringify(config1[1] ?? {})); + } else { + customConfig = structuredClone(config1[1] ?? {}); + } + } + return customConfig; + }; + + const isNumber = config1[0] === "INT" || config1[0] === "FLOAT"; + for (const k of keys.values()) { + if (k !== "default" && k !== "forceInput" && k !== "defaultInput") { + let v1 = config1[1][k]; + let v2 = config2[1]?.[k]; + + if (v1 === v2 || (!v1 && !v2)) continue; + + if (isNumber) { + if (k === "min") { + const theirMax = config2[1]?.["max"]; + if (theirMax != null && v1 > theirMax) { + console.log("connection rejected: min > max", v1, theirMax); + return false; + } + getCustomConfig()[k] = v1 == null ? v2 : v2 == null ? v1 : Math.max(v1, v2); + continue; + } else if (k === "max") { + const theirMin = config2[1]?.["min"]; + if (theirMin != null && v1 < theirMin) { + console.log("connection rejected: max < min", v1, theirMin); + return false; + } + getCustomConfig()[k] = v1 == null ? v2 : v2 == null ? v1 : Math.min(v1, v2); + continue; + } else if (k === "step") { + let step; + if (v1 == null) { + // No current step + step = v2; + } else if (v2 == null) { + // No new step + step = v1; + } else { + if (v1 < v2) { + // Ensure v1 is larger for the mod + const a = v2; + v2 = v1; + v1 = a; + } + if (v1 % v2) { + console.log("connection rejected: steps not divisible", "current:", v1, "new:", v2); + return false; + } + + step = v1; + } + + getCustomConfig()[k] = step; + continue; + } + } + + console.log(`connection rejected: config ${k} values dont match`, v1, v2); + return false; + } + } + + if (customConfig || forceUpdate) { + if (customConfig) { + output.widget[CONFIG] = [config1[0], customConfig]; + } + + const widget = recreateWidget?.call(this); + // When deleting a node this can be null + if (widget) { + const min = widget.options.min; + const max = widget.options.max; + if (min != null && widget.value < min) widget.value = min; + if (max != null && widget.value > max) widget.value = max; + widget.callback(widget.value); + } + } + + return { customConfig }; } app.registerExtension({ @@ -116,7 +246,7 @@ app.registerExtension({ callback: () => convertToWidget(this, w), }); } else { - const config = nodeData?.input?.required[w.name] || nodeData?.input?.optional?.[w.name] || [w.type, w.options || {}]; + const config = getConfig.call(this, w.name) ?? [w.type, w.options || {}]; if (isConvertableWidget(w, config)) { toInput.push({ content: `Convert ${w.name} to input`, @@ -137,33 +267,67 @@ app.registerExtension({ return r; }; - const origOnNodeCreated = nodeType.prototype.onNodeCreated + nodeType.prototype.onGraphConfigured = function () { + if (!this.inputs) return; + + for (const input of this.inputs) { + if (input.widget) { + if (!input.widget[GET_CONFIG]) { + input.widget[GET_CONFIG] = () => getConfig.call(this, input.widget.name); + } + + // Cleanup old widget config + if (input.widget.config) { + if (input.widget.config[0] instanceof Array) { + // If we are an old converted combo then replace the input type and the stored link data + input.type = "COMBO"; + + const link = app.graph.links[input.link]; + if (link) { + link.type = input.type; + } + } + delete input.widget.config; + } + + const w = this.widgets.find((w) => w.name === input.widget.name); + if (w) { + hideWidget(this, w); + } else { + convertToWidget(this, input); + } + } + } + }; + + const origOnNodeCreated = nodeType.prototype.onNodeCreated; nodeType.prototype.onNodeCreated = function () { const r = origOnNodeCreated ? origOnNodeCreated.apply(this) : undefined; - if (this.widgets) { + + // When node is created, convert any force/default inputs + if (!app.configuringGraph && this.widgets) { for (const w of this.widgets) { if (w?.options?.forceInput || w?.options?.defaultInput) { - const config = nodeData?.input?.required[w.name] || nodeData?.input?.optional?.[w.name] || [w.type, w.options || {}]; + const config = getConfig.call(this, w.name) ?? [w.type, w.options || {}]; convertToInput(this, w, config); } } } + return r; - } + }; - // On initial configure of nodes hide all converted widgets const origOnConfigure = nodeType.prototype.onConfigure; nodeType.prototype.onConfigure = function () { const r = origOnConfigure ? origOnConfigure.apply(this, arguments) : undefined; - - if (this.inputs) { + if (!app.configuringGraph && this.inputs) { + // On copy + paste of nodes, ensure that widget configs are set up for (const input of this.inputs) { - if (input.widget && !input.widget.config[1]?.forceInput) { + if (input.widget && !input.widget[GET_CONFIG]) { + input.widget[GET_CONFIG] = () => getConfig.call(this, input.widget.name); const w = this.widgets.find((w) => w.name === input.widget.name); if (w) { hideWidget(this, w); - } else { - convertToWidget(this, input) } } } @@ -190,7 +354,7 @@ app.registerExtension({ const input = this.inputs[slot]; if (!input.widget || !input[ignoreDblClick]) { // Not a widget input or already handled input - if (!(input.type in ComfyWidgets) && !(input.widget.config?.[0] instanceof Array)) { + if (!(input.type in ComfyWidgets) && !(input.widget[GET_CONFIG]?.()?.[0] instanceof Array)) { return r; //also Not a ComfyWidgets input or combo (do nothing) } } @@ -217,6 +381,28 @@ app.registerExtension({ return r; }; + + // Prevent connecting COMBO lists to converted inputs that dont match types + const onConnectInput = nodeType.prototype.onConnectInput; + nodeType.prototype.onConnectInput = function (targetSlot, type, output, originNode, originSlot) { + const v = onConnectInput?.(this, arguments); + // Not a combo, ignore + if (type !== "COMBO") return v; + // Primitive output, allow that to handle + if (originNode.outputs[originSlot].widget) return v; + + // Ensure target is also a combo + const targetCombo = this.inputs[targetSlot].widget?.[GET_CONFIG]?.()?.[0]; + if (!targetCombo || !(targetCombo instanceof Array)) return v; + + // Check they match + const originConfig = originNode.constructor?.nodeData?.output?.[originSlot]; + if (!originConfig || !isValidCombo(targetCombo, originConfig)) { + return false; + } + + return v; + }; }, registerCustomNodes() { class PrimitiveNode { @@ -226,7 +412,7 @@ app.registerExtension({ this.isVirtualNode = true; } - applyToGraph() { + applyToGraph(extraLinks = []) { if (!this.outputs[0].links?.length) return; function get_links(node) { @@ -243,10 +429,9 @@ app.registerExtension({ return links; } - let links = get_links(this); + let links = [...get_links(this).map((l) => app.graph.links[l]), ...extraLinks]; // For each output link copy our value over the original widget value - for (const l of links) { - const linkInfo = app.graph.links[l]; + for (const linkInfo of links) { const node = this.graph.getNodeById(linkInfo.target_id); const input = node.inputs[linkInfo.target_slot]; const widgetName = input.widget.name; @@ -262,20 +447,55 @@ app.registerExtension({ } } + refreshComboInNode() { + const widget = this.widgets?.[0]; + if (widget?.type === "combo") { + widget.options.values = this.outputs[0].widget[GET_CONFIG]()[0]; + + if (!widget.options.values.includes(widget.value)) { + widget.value = widget.options.values[0]; + widget.callback(widget.value); + } + } + } + + onAfterGraphConfigured() { + if (this.outputs[0].links?.length && !this.widgets?.length) { + if (!this.#onFirstConnection()) return; + + // Populate widget values from config data + if (this.widgets) { + for (let i = 0; i < this.widgets_values.length; i++) { + const w = this.widgets[i]; + if (w) { + w.value = this.widgets_values[i]; + } + } + } + + // Merge values if required + this.#mergeWidgetConfig(); + } + } + onConnectionsChange(_, index, connected) { + if (app.configuringGraph) { + // Dont run while the graph is still setting up + return; + } + + const links = this.outputs[0].links; if (connected) { - if (this.outputs[0].links?.length) { - if (!this.widgets?.length) { - this.#onFirstConnection(); - } - if (!this.widgets?.length && this.outputs[0].widget) { - // On first load it often cant recreate the widget as the other node doesnt exist yet - // Manually recreate it from the output info - this.#createWidget(this.outputs[0].widget.config); - } + if (links?.length && !this.widgets?.length) { + this.#onFirstConnection(); + } + } else { + // We may have removed a link that caused the constraints to change + this.#mergeWidgetConfig(); + + if (!links?.length) { + this.#onLastDisconnect(); } - } else if (!this.outputs[0].links?.length) { - this.#onLastDisconnect(); } } @@ -288,11 +508,16 @@ app.registerExtension({ } if (this.outputs[slot].links?.length) { - return this.#isValidConnection(input); + const valid = this.#isValidConnection(input); + if (valid) { + // On connect of additional outputs, copy our value to their widget + this.applyToGraph([{ target_id: target_node.id, target_slot }]); + } + return valid; } } - #onFirstConnection() { + #onFirstConnection(recreating) { // First connection can fire before the graph is ready on initial load so random things can be missing const linkId = this.outputs[0].links[0]; const link = this.graph.links[linkId]; @@ -304,26 +529,27 @@ app.registerExtension({ const input = theirNode.inputs[link.target_slot]; if (!input) return; - - var _widget; + let widget; if (!input.widget) { if (!(input.type in ComfyWidgets)) return; - _widget = { "name": input.name, "config": [input.type, {}] }//fake widget + widget = { name: input.name, [GET_CONFIG]: () => [input.type, {}] }; //fake widget } else { - _widget = input.widget; + widget = input.widget; } - const widget = _widget; - const { type, linkType } = getWidgetType(widget.config); + const config = widget[GET_CONFIG]?.(); + if (!config) return; + + const { type } = getWidgetType(config); // Update our output to restrict to the widget type - this.outputs[0].type = linkType; + this.outputs[0].type = type; this.outputs[0].name = type; this.outputs[0].widget = widget; - this.#createWidget(widget.config, theirNode, widget.name); + this.#createWidget(widget[CONFIG] ?? config, theirNode, widget.name, recreating); } - #createWidget(inputData, node, widgetName) { + #createWidget(inputData, node, widgetName, recreating) { let type = inputData[0]; if (type instanceof Array) { @@ -334,7 +560,7 @@ app.registerExtension({ if (type in ComfyWidgets) { widget = (ComfyWidgets[type](this, "value", inputData, app) || {}).widget; } else { - widget = this.addWidget(type, "value", null, () => { }, {}); + widget = this.addWidget(type, "value", null, () => {}, {}); } if (node?.widgets && widget) { @@ -344,8 +570,16 @@ app.registerExtension({ } } - if (widget.type === "number" || widget.type === "combo") { - addValueControlWidget(this, widget, "fixed"); + if (!inputData?.[1]?.control_after_generate && (widget.type === "number" || widget.type === "combo")) { + let control_value = this.widgets_values?.[1]; + if (!control_value) { + control_value = "fixed"; + } + addValueControlWidgets(this, widget, control_value, undefined, inputData); + let filter = this.widgets_values?.[2]; + if(filter && this.widgets.length === 3) { + this.widgets[2].value = filter; + } } // When our value changes, update other widgets to reflect our changes @@ -358,60 +592,75 @@ app.registerExtension({ return r; }; - // Grow our node if required - const sz = this.computeSize(); - if (this.size[0] < sz[0]) { - this.size[0] = sz[0]; - } - if (this.size[1] < sz[1]) { - this.size[1] = sz[1]; + if (!recreating) { + // Grow our node if required + const sz = this.computeSize(); + if (this.size[0] < sz[0]) { + this.size[0] = sz[0]; + } + if (this.size[1] < sz[1]) { + this.size[1] = sz[1]; + } + + requestAnimationFrame(() => { + if (this.onResize) { + this.onResize(this.size); + } + }); } + } - requestAnimationFrame(() => { - if (this.onResize) { - this.onResize(this.size); - } - }); + #recreateWidget() { + const values = this.widgets.map((w) => w.value); + this.#removeWidgets(); + this.#onFirstConnection(true); + for (let i = 0; i < this.widgets?.length; i++) this.widgets[i].value = values[i]; + return this.widgets[0]; } - #isValidConnection(input) { - // Only allow connections where the configs match - const config1 = this.outputs[0].widget.config; - const config2 = input.widget.config; - - if (config1[0] instanceof Array) { - // These checks shouldnt actually be necessary as the types should match - // but double checking doesn't hurt - - // New input isnt a combo - if (!(config2[0] instanceof Array)) return false; - // New imput combo has a different size - if (config1[0].length !== config2[0].length) return false; - // New input combo has different elements - if (config1[0].find((v, i) => config2[0][i] !== v)) return false; - } else if (config1[0] !== config2[0]) { - // Configs dont match - return false; + #mergeWidgetConfig() { + // Merge widget configs if the node has multiple outputs + const output = this.outputs[0]; + const links = output.links; + + const hasConfig = !!output.widget[CONFIG]; + if (hasConfig) { + delete output.widget[CONFIG]; } - for (const k in config1[1]) { - if (k !== "default" && k !== 'forceInput') { - if (config1[1][k] !== config2[1][k]) { - return false; - } + if (links?.length < 2 && hasConfig) { + // Copy the widget options from the source + if (links.length) { + this.#recreateWidget(); } + + return; } - return true; + const config1 = output.widget[GET_CONFIG](); + const isNumber = config1[0] === "INT" || config1[0] === "FLOAT"; + if (!isNumber) return; + + for (const linkId of links) { + const link = app.graph.links[linkId]; + if (!link) continue; // Can be null when removing a node + + const theirNode = app.graph.getNodeById(link.target_id); + const theirInput = theirNode.inputs[link.target_slot]; + + // Call is valid connection so it can merge the configs when validating + this.#isValidConnection(theirInput, hasConfig); + } } - #onLastDisconnect() { - // We cant remove + re-add the output here as if you drag a link over the same link - // it removes, then re-adds, causing it to break - this.outputs[0].type = "*"; - this.outputs[0].name = "connect to widget input"; - delete this.outputs[0].widget; + #isValidConnection(input, forceUpdate) { + // Only allow connections where the configs match + const output = this.outputs[0]; + const config2 = input.widget[GET_CONFIG](); + return !!mergeIfValid.call(this, output, config2, forceUpdate, this.#recreateWidget); + } + #removeWidgets() { if (this.widgets) { // Allow widgets to cleanup for (const w of this.widgets) { @@ -422,6 +671,16 @@ app.registerExtension({ this.widgets.length = 0; } } + + #onLastDisconnect() { + // We cant remove + re-add the output here as if you drag a link over the same link + // it removes, then re-adds, causing it to break + this.outputs[0].type = "*"; + this.outputs[0].name = "connect to widget input"; + delete this.outputs[0].widget; + + this.#removeWidgets(); + } } LiteGraph.registerNodeType( diff --git a/web/lib/litegraph.core.js b/web/lib/litegraph.core.js index f81c83a8a4c..f571edb30b8 100644 --- a/web/lib/litegraph.core.js +++ b/web/lib/litegraph.core.js @@ -2533,7 +2533,7 @@ var w = this.widgets[i]; if(!w) continue; - if(w.options && w.options.property && this.properties[ w.options.property ]) + if(w.options && w.options.property && (this.properties[ w.options.property ] != undefined)) w.value = JSON.parse( JSON.stringify( this.properties[ w.options.property ] ) ); } if (info.widgets_values) { @@ -3796,7 +3796,7 @@ out = out || new Float32Array(4); out[0] = this.pos[0] - 4; out[1] = this.pos[1] - LiteGraph.NODE_TITLE_HEIGHT; - out[2] = this.size[0] + 4; + out[2] = this.flags.collapsed ? (this._collapsed_width || LiteGraph.NODE_COLLAPSED_WIDTH) : this.size[0] + 4; out[3] = this.flags.collapsed ? LiteGraph.NODE_TITLE_HEIGHT : this.size[1] + LiteGraph.NODE_TITLE_HEIGHT; if (this.onBounding) { @@ -5714,10 +5714,10 @@ LGraphNode.prototype.executeAction = function(action) * @method enableWebGL **/ LGraphCanvas.prototype.enableWebGL = function() { - if (typeof GL === undefined) { + if (typeof GL === "undefined") { throw "litegl.js must be included to use a WebGL canvas"; } - if (typeof enableWebGLCanvas === undefined) { + if (typeof enableWebGLCanvas === "undefined") { throw "webglCanvas.js must be included to use this feature"; } @@ -7110,15 +7110,16 @@ LGraphNode.prototype.executeAction = function(action) } }; - LGraphCanvas.prototype.copyToClipboard = function() { + LGraphCanvas.prototype.copyToClipboard = function(nodes) { var clipboard_info = { nodes: [], links: [] }; var index = 0; var selected_nodes_array = []; - for (var i in this.selected_nodes) { - var node = this.selected_nodes[i]; + if (!nodes) nodes = this.selected_nodes; + for (var i in nodes) { + var node = nodes[i]; if (node.clonable === false) continue; node._relative_id = index; @@ -11702,7 +11703,7 @@ LGraphNode.prototype.executeAction = function(action) default: iS = 0; // try with first if no name set } - if (typeof options.node_from.outputs[iS] !== undefined){ + if (typeof options.node_from.outputs[iS] !== "undefined"){ if (iS!==false && iS>-1){ options.node_from.connectByType( iS, node, options.node_from.outputs[iS].type ); } @@ -11730,7 +11731,7 @@ LGraphNode.prototype.executeAction = function(action) default: iS = 0; // try with first if no name set } - if (typeof options.node_to.inputs[iS] !== undefined){ + if (typeof options.node_to.inputs[iS] !== "undefined"){ if (iS!==false && iS>-1){ // try connection options.node_to.connectByTypeOutput(iS,node,options.node_to.inputs[iS].type); diff --git a/web/scripts/api.js b/web/scripts/api.js index b1d245d73ff..9aa7528af04 100644 --- a/web/scripts/api.js +++ b/web/scripts/api.js @@ -254,9 +254,9 @@ class ComfyApi extends EventTarget { * Gets the prompt execution history * @returns Prompt history including node outputs */ - async getHistory() { + async getHistory(max_items=200) { try { - const res = await this.fetchApi("/history"); + const res = await this.fetchApi(`/history?max_items=${max_items}`); return { History: Object.values(await res.json()) }; } catch (error) { console.error(error); diff --git a/web/scripts/app.js b/web/scripts/app.js index ba9a438516c..397439bf13c 100644 --- a/web/scripts/app.js +++ b/web/scripts/app.js @@ -1,9 +1,28 @@ import { ComfyLogging } from "./logging.js"; -import { ComfyWidgets } from "./widgets.js"; +import { ComfyWidgets, getWidgetType } from "./widgets.js"; import { ComfyUI, $el } from "./ui.js"; import { api } from "./api.js"; import { defaultGraph } from "./defaultGraph.js"; -import { getPngMetadata, importA1111, getLatentMetadata } from "./pnginfo.js"; +import { getPngMetadata, getWebpMetadata, importA1111, getLatentMetadata } from "./pnginfo.js"; +import { addDomClippingSetting } from "./domWidget.js"; +import { createImageHost, calculateImageGrid } from "./ui/imagePreview.js" + +export const ANIM_PREVIEW_WIDGET = "$$comfy_animation_preview" + +function sanitizeNodeName(string) { + let entityMap = { + '&': '', + '<': '', + '>': '', + '"': '', + "'": '', + '`': '', + '=': '' + }; + return String(string).replace(/[&<>"'`=]/g, function fromEntityMap (s) { + return entityMap[s]; + }); +} /** * @typedef {import("types/comfy").ComfyExtension} ComfyExtension @@ -389,7 +408,9 @@ export class ComfyApp { return shiftY; } - node.prototype.setSizeForImage = function () { + node.prototype.setSizeForImage = function (force) { + if(!force && this.animatedImages) return; + if (this.inputHeight) { this.setSize(this.size); return; @@ -406,13 +427,20 @@ export class ComfyApp { let imagesChanged = false const output = app.nodeOutputs[this.id + ""]; - if (output && output.images) { + if (output?.images) { + this.animatedImages = output?.animated?.find(Boolean); if (this.images !== output.images) { this.images = output.images; imagesChanged = true; - imgURLs = imgURLs.concat(output.images.map(params => { - return api.apiURL("/view?" + new URLSearchParams(params).toString() + app.getPreviewFormatParam()); - })) + imgURLs = imgURLs.concat( + output.images.map((params) => { + return api.apiURL( + "/view?" + + new URLSearchParams(params).toString() + + (this.animatedImages ? "" : app.getPreviewFormatParam()) + ); + }) + ); } } @@ -450,8 +478,77 @@ export class ComfyApp { } } - if (this.imgs && this.imgs.length) { - const canvas = graph.list_of_graphcanvas[0]; + function calculateGrid(w, h, n) { + let columns, rows, cellsize; + + if (w > h) { + cellsize = h; + columns = Math.ceil(w / cellsize); + rows = Math.ceil(n / columns); + } else { + cellsize = w; + rows = Math.ceil(h / cellsize); + columns = Math.ceil(n / rows); + } + + while (columns * rows < n) { + cellsize++; + if (w >= h) { + columns = Math.ceil(w / cellsize); + rows = Math.ceil(n / columns); + } else { + rows = Math.ceil(h / cellsize); + columns = Math.ceil(n / rows); + } + } + + const cell_size = Math.min(w/columns, h/rows); + return {cell_size, columns, rows}; + } + + function is_all_same_aspect_ratio(imgs) { + // assume: imgs.length >= 2 + let ratio = imgs[0].naturalWidth/imgs[0].naturalHeight; + + for(let i=1; i w.name === ANIM_PREVIEW_WIDGET); + + if(this.animatedImages) { + // Instead of using the canvas we'll use a IMG + if(widgetIdx > -1) { + // Replace content + const widget = this.widgets[widgetIdx]; + widget.options.host.updateImages(this.imgs); + } else { + const host = createImageHost(this); + this.setSizeForImage(true); + const widget = this.addDOMWidget(ANIM_PREVIEW_WIDGET, "img", host.el, { + host, + getHeight: host.getHeight, + onDraw: host.onDraw, + hideOnZoom: false + }); + widget.serializeValue = () => undefined; + widget.options.host.updateImages(this.imgs); + } + return; + } + + if (widgetIdx > -1) { + this.widgets[widgetIdx].onRemove?.(); + this.widgets.splice(widgetIdx, 1); + } + + const canvas = app.graph.list_of_graphcanvas[0]; const mouse = canvas.graph_mouse; if (!canvas.pointer_is_down && this.pointerDown) { if (mouse[0] === this.pointerDown.pos[0] && mouse[1] === this.pointerDown.pos[1]) { @@ -460,45 +557,37 @@ export class ComfyApp { this.pointerDown = null; } - let w = this.imgs[0].naturalWidth; - let h = this.imgs[0].naturalHeight; let imageIndex = this.imageIndex; const numImages = this.imgs.length; if (numImages === 1 && !imageIndex) { this.imageIndex = imageIndex = 0; } - const shiftY = getImageTop(this); + const top = getImageTop(this); + var shiftY = top; let dw = this.size[0]; let dh = this.size[1]; dh -= shiftY; if (imageIndex == null) { - let best = 0; - let cellWidth; - let cellHeight; - let cols = 0; - let shiftX = 0; - for (let c = 1; c <= numImages; c++) { - const rows = Math.ceil(numImages / c); - const cW = dw / c; - const cH = dh / rows; - const scaleX = cW / w; - const scaleY = cH / h; - - const scale = Math.min(scaleX, scaleY, 1); - const imageW = w * scale; - const imageH = h * scale; - const area = imageW * imageH * numImages; - - if (area > best) { - best = area; - cellWidth = imageW; - cellHeight = imageH; - cols = c; - shiftX = c * ((cW - imageW) / 2); - } + var cellWidth, cellHeight, shiftX, cell_padding, cols; + + const compact_mode = is_all_same_aspect_ratio(this.imgs); + if(!compact_mode) { + // use rectangle cell style and border line + cell_padding = 2; + const { cell_size, columns, rows } = calculateGrid(dw, dh, numImages); + cols = columns; + + cellWidth = cell_size; + cellHeight = cell_size; + shiftX = (dw-cell_size*cols)/2; + shiftY = (dh-cell_size*rows)/2 + top; + } + else { + cell_padding = 0; + ({ cellWidth, cellHeight, cols, shiftX } = calculateImageGrid(this.imgs, dw, dh)); } let anyHovered = false; @@ -542,7 +631,14 @@ export class ComfyApp { let imgWidth = ratio * img.width; let imgX = col * cellWidth + shiftX + (cellWidth - imgWidth)/2; - ctx.drawImage(img, imgX, imgY, imgWidth, imgHeight); + ctx.drawImage(img, imgX+cell_padding, imgY+cell_padding, imgWidth-cell_padding*2, imgHeight-cell_padding*2); + if(!compact_mode) { + // rectangle cell and border line style + ctx.strokeStyle = "#8F8F8F"; + ctx.lineWidth = 1; + ctx.strokeRect(x+cell_padding, y+cell_padding, cellWidth-cell_padding*2, cellHeight-cell_padding*2); + } + ctx.filter = "none"; } @@ -552,6 +648,9 @@ export class ComfyApp { } } else { // Draw individual + let w = this.imgs[imageIndex].naturalWidth; + let h = this.imgs[imageIndex].naturalHeight; + const scaleX = dw / w; const scaleY = dh / h; const scale = Math.min(scaleX, scaleY, 1); @@ -594,14 +693,14 @@ export class ComfyApp { }; if (numImages > 1) { - if (drawButton(x + w - 35, y + h - 35, 30, `${this.imageIndex + 1}/${numImages}`)) { + if (drawButton(dw - 40, dh + top - 40, 30, `${this.imageIndex + 1}/${numImages}`)) { let i = this.imageIndex + 1 >= numImages ? 0 : this.imageIndex + 1; if (!this.pointerDown || !this.pointerDown.index === i) { this.pointerDown = { index: i, pos: [...mouse] }; } } - if (drawButton(x + w - 35, y + 5, 30, `x`)) { + if (drawButton(dw - 40, top + 10, 30, `x`)) { if (!this.pointerDown || !this.pointerDown.index === null) { this.pointerDown = { index: null, pos: [...mouse] }; } @@ -680,7 +779,7 @@ export class ComfyApp { * Adds a handler on paste that extracts and loads images or workflows from pasted JSON data */ #addPasteHandler() { - document.addEventListener("paste", (e) => { + document.addEventListener("paste", async (e) => { // ctrl+shift+v is used to paste nodes with connections // this is handled by litegraph if(this.shiftDown) return; @@ -728,7 +827,7 @@ export class ComfyApp { } if (workflow && workflow.version && workflow.nodes && workflow.extra) { - this.loadGraphData(workflow); + await this.loadGraphData(workflow); } else { if (e.target.type === "text" || e.target.type === "textarea") { @@ -861,6 +960,16 @@ export class ComfyApp { block_default = true; } + // Alt + C collapse/uncollapse + if (e.key === 'c' && e.altKey) { + if (this.selected_nodes) { + for (var i in this.selected_nodes) { + this.selected_nodes[i].collapse() + } + } + block_default = true; + } + // Ctrl+C Copy if ((e.key === 'c') && (e.metaKey || e.ctrlKey)) { // Trigger onCopy @@ -1068,7 +1177,19 @@ export class ComfyApp { }); api.addEventListener("executed", ({ detail }) => { - this.nodeOutputs[detail.node] = detail.output; + const output = this.nodeOutputs[detail.node]; + if (detail.merge && output) { + for (const k in detail.output ?? {}) { + const v = output[k]; + if (v instanceof Array) { + output[k] = v.concat(detail.output[k]); + } else { + output[k] = detail.output[k]; + } + } + } else { + this.nodeOutputs[detail.node] = detail.output; + } const node = this.graph.getNodeById(detail.node); if (node) { if (node.onExecuted) @@ -1114,6 +1235,40 @@ export class ComfyApp { }); } + #addConfigureHandler() { + const app = this; + const configure = LGraph.prototype.configure; + // Flag that the graph is configuring to prevent nodes from running checks while its still loading + LGraph.prototype.configure = function () { + app.configuringGraph = true; + try { + return configure.apply(this, arguments); + } finally { + app.configuringGraph = false; + } + }; + } + + #addAfterConfigureHandler() { + const app = this; + const onConfigure = app.graph.onConfigure; + app.graph.onConfigure = function () { + // Fire callbacks before the onConfigure, this is used by widget inputs to setup the config + for (const node of app.graph._nodes) { + node.onGraphConfigured?.(); + } + + const r = onConfigure?.apply(this, arguments); + + // Fire after onConfigure, used by primitves to generate widget using input nodes config + for (const node of app.graph._nodes) { + node.onAfterGraphConfigured?.(); + } + + return r; + }; + } + /** * Loads all extensions from the API into the window in parallel */ @@ -1145,10 +1300,16 @@ export class ComfyApp { canvasEl.tabIndex = "1"; document.body.prepend(canvasEl); + addDomClippingSetting(); this.#addProcessMouseHandler(); this.#addProcessKeyHandler(); + this.#addConfigureHandler(); + this.#addApiUpdateHandlers(); this.graph = new LGraph(); + + this.#addAfterConfigureHandler(); + const canvas = (this.canvas = new LGraphCanvas(canvasEl, this.graph)); this.ctx = canvasEl.getContext("2d"); @@ -1180,7 +1341,7 @@ export class ComfyApp { const json = localStorage.getItem("workflow"); if (json) { const workflow = JSON.parse(json); - this.loadGraphData(workflow); + await this.loadGraphData(workflow); restored = true; } } catch (err) { @@ -1189,7 +1350,7 @@ export class ComfyApp { // We failed to restore a workflow so load the default if (!restored) { - this.loadGraphData(); + await this.loadGraphData(); } // Save current workflow automatically @@ -1197,7 +1358,6 @@ export class ComfyApp { this.#addDrawNodeHandler(); this.#addDrawGroupsHandler(); - this.#addApiUpdateHandlers(); this.#addDropHandler(); this.#addCopyHandler(); this.#addPasteHandler(); @@ -1217,11 +1377,86 @@ export class ComfyApp { await this.#invokeExtensionsAsync("registerCustomNodes"); } + async registerNodeDef(nodeId, nodeData) { + const self = this; + const node = Object.assign( + function ComfyNode() { + var inputs = nodeData["input"]["required"]; + if (nodeData["input"]["optional"] != undefined) { + inputs = Object.assign({}, nodeData["input"]["required"], nodeData["input"]["optional"]); + } + const config = { minWidth: 1, minHeight: 1 }; + for (const inputName in inputs) { + const inputData = inputs[inputName]; + const type = inputData[0]; + const extraInfo = {}; + + let widgetCreated = true; + const widgetType = getWidgetType(inputData, inputName); + if(widgetType) { + if(widgetType === "COMBO") { + Object.assign(config, self.widgets.COMBO(this, inputName, inputData, app) || {}); + } else { + Object.assign(config, self.widgets[widgetType](this, inputName, inputData, app) || {}); + } + } else { + // Node connection inputs + if (inputData[1]?.multiple) { + extraInfo.multiple = true; + extraInfo.shape = LiteGraph.GRID_SHAPE; + } + this.addInput(inputName, type, extraInfo); + widgetCreated = false; + } + + if(widgetCreated && inputData[1]?.forceInput && config?.widget) { + if (!config.widget.options) config.widget.options = {}; + config.widget.options.forceInput = inputData[1].forceInput; + } + if(widgetCreated && inputData[1]?.defaultInput && config?.widget) { + if (!config.widget.options) config.widget.options = {}; + config.widget.options.defaultInput = inputData[1].defaultInput; + } + } + + for (const o in nodeData["output"]) { + let output = nodeData["output"][o]; + if(output instanceof Array) output = "COMBO"; + const outputName = nodeData["output_name"][o] || output; + const outputShape = nodeData["output_is_list"][o] ? LiteGraph.GRID_SHAPE : LiteGraph.CIRCLE_SHAPE ; + this.addOutput(outputName, output, { shape: outputShape }); + } + + const s = this.computeSize(); + s[0] = Math.max(config.minWidth, s[0] * 1.5); + s[1] = Math.max(config.minHeight, s[1]); + this.size = s; + this.serialize_widgets = true; + + app.#invokeExtensionsAsync("nodeCreated", this); + }, + { + title: nodeData.display_name || nodeData.name, + comfyClass: nodeData.name, + nodeData + } + ); + node.prototype.comfyClass = nodeData.name; + + this.#addNodeContextMenuHandler(node); + this.#addDrawBackgroundHandler(node, app); + this.#addNodeKeyHandler(node); + + await this.#invokeExtensionsAsync("beforeRegisterNodeDef", node, nodeData); + LiteGraph.registerNodeType(nodeId, node); + node.category = nodeData.category; + } + async registerNodesFromDefs(defs) { await this.#invokeExtensionsAsync("addCustomNodeDefs", defs); // Generate list of known widgets - const widgets = Object.assign( + this.widgets = Object.assign( {}, ComfyWidgets, ...(await this.#invokeExtensionsAsync("getCustomWidgets")).filter(Boolean) @@ -1229,109 +1464,96 @@ export class ComfyApp { // Register a node for each definition for (const nodeId in defs) { - const nodeData = defs[nodeId]; - const node = Object.assign( - function ComfyNode() { - var inputs = nodeData["input"]["required"]; - if (nodeData["input"]["optional"] != undefined){ - inputs = Object.assign({}, nodeData["input"]["required"], nodeData["input"]["optional"]) - } - const config = { minWidth: 1, minHeight: 1 }; - for (const inputName in inputs) { - const inputData = inputs[inputName]; - const type = inputData[0]; - const extraInfo = {}; - - let widgetCreated = true; - if (Array.isArray(type)) { - // Enums - Object.assign(config, widgets.COMBO(this, inputName, inputData, app) || {}); - } else if (`${type}:${inputName}` in widgets) { - // Support custom widgets by Type:Name - Object.assign(config, widgets[`${type}:${inputName}`](this, inputName, inputData, app) || {}); - } else if (type in widgets) { - // Standard type widgets - Object.assign(config, widgets[type](this, inputName, inputData, app) || {}); - } else { - // Node connection inputs - if (inputData[1]?.multiple) { - extraInfo.multiple = true; - extraInfo.shape = LiteGraph.GRID_SHAPE; - } - this.addInput(inputName, type, extraInfo); - widgetCreated = false; - } + this.registerNodeDef(nodeId, defs[nodeId]); + } + } - if(widgetCreated && inputData[1]?.forceInput && config?.widget) { - if (!config.widget.options) config.widget.options = {}; - config.widget.options.forceInput = inputData[1].forceInput; - } - if(widgetCreated && inputData[1]?.defaultInput && config?.widget) { - if (!config.widget.options) config.widget.options = {}; - config.widget.options.defaultInput = inputData[1].defaultInput; - } - } + loadTemplateData(templateData) { + if (!templateData?.templates) { + return; + } - for (const o in nodeData["output"]) { - const output = nodeData["output"][o]; - const outputName = nodeData["output_name"][o] || output; - const outputShape = nodeData["output_is_list"][o] ? LiteGraph.GRID_SHAPE : LiteGraph.CIRCLE_SHAPE ; - this.addOutput(outputName, output, { shape: outputShape }); - } + const old = localStorage.getItem("litegrapheditor_clipboard"); - const s = this.computeSize(); - s[0] = Math.max(config.minWidth, s[0] * 1.5); - s[1] = Math.max(config.minHeight, s[1]); - this.size = s; - this.serialize_widgets = true; - - app.#invokeExtensionsAsync("nodeCreated", this); - }, - { - title: nodeData.display_name || nodeData.name, - comfyClass: nodeData.name, - } - ); - node.prototype.comfyClass = nodeData.name; + var maxY, nodeBottom, node; - this.#addNodeContextMenuHandler(node); - this.#addDrawBackgroundHandler(node, app); - this.#addNodeKeyHandler(node); + for (const template of templateData.templates) { + if (!template?.data) { + continue; + } - await this.#invokeExtensionsAsync("beforeRegisterNodeDef", node, nodeData); - LiteGraph.registerNodeType(nodeId, node); - node.category = nodeData.category; + localStorage.setItem("litegrapheditor_clipboard", template.data); + app.canvas.pasteFromClipboard(); + + // Move mouse position down to paste the next template below + + maxY = false; + + for (const i in app.canvas.selected_nodes) { + node = app.canvas.selected_nodes[i]; + + nodeBottom = node.pos[1] + node.size[1]; + + if (maxY === false || nodeBottom > maxY) { + maxY = nodeBottom; + } + } + + app.canvas.graph_mouse[1] = maxY + 50; } + + localStorage.setItem("litegrapheditor_clipboard", old); + } + + showMissingNodesError(missingNodeTypes, hasAddedNodes = true) { + this.ui.dialog.show( + $el("div", [ + $el("span", { textContent: "When loading the graph, the following node types were not found: " }), + $el( + "ul", + Array.from(new Set(missingNodeTypes)).map((t) => $el("li", { textContent: t })) + ), + ...(hasAddedNodes ? [$el("span", { textContent: "Nodes that have failed to load will show as red on the graph." })] : []), + ]) + ); + this.logging.addEntry("Comfy.App", "warn", { + MissingNodes: missingNodeTypes, + }); } /** * Populates the graph with the specified workflow data * @param {*} graphData A serialized graph object */ - loadGraphData(graphData) { + async loadGraphData(graphData) { this.clean(); let reset_invalid_values = false; if (!graphData) { - if (typeof structuredClone === "undefined") - { - graphData = JSON.parse(JSON.stringify(defaultGraph)); - }else - { - graphData = structuredClone(defaultGraph); - } + graphData = defaultGraph; reset_invalid_values = true; } + if (typeof structuredClone === "undefined") + { + graphData = JSON.parse(JSON.stringify(graphData)); + }else + { + graphData = structuredClone(graphData); + } + const missingNodeTypes = []; + await this.#invokeExtensionsAsync("beforeConfigureGraph", graphData, missingNodeTypes); for (let n of graphData.nodes) { // Patch T2IAdapterLoader to ControlNetLoader since they are the same node now if (n.type == "T2IAdapterLoader") n.type = "ControlNetLoader"; if (n.type == "ConditioningAverage ") n.type = "ConditioningAverage"; //typo fix + if (n.type == "SDV_img2vid_Conditioning") n.type = "SVD_img2vid_Conditioning"; //typo fix // Find missing node types if (!(n.type in LiteGraph.registered_node_types)) { missingNodeTypes.push(n.type); + n.type = sanitizeNodeName(n.type); } } @@ -1421,14 +1643,7 @@ export class ComfyApp { } if (missingNodeTypes.length) { - this.ui.dialog.show( - `When loading the graph, the following node types were not found:
    ${Array.from(new Set(missingNodeTypes)).map( - (t) => `
  • ${t}
  • ` - ).join("")}
Nodes that have failed to load will show as red on the graph.` - ); - this.logging.addEntry("Comfy.App", "warn", { - MissingNodes: missingNodeTypes, - }); + this.showMissingNodesError(missingNodeTypes); } } @@ -1437,86 +1652,98 @@ export class ComfyApp { * @returns The workflow and node links */ async graphToPrompt() { + for (const outerNode of this.graph.computeExecutionOrder(false)) { + const innerNodes = outerNode.getInnerNodes ? outerNode.getInnerNodes() : [outerNode]; + for (const node of innerNodes) { + if (node.isVirtualNode) { + // Don't serialize frontend only nodes but let them make changes + if (node.applyToGraph) { + node.applyToGraph(); + } + } + } + } + const workflow = this.graph.serialize(); const output = {}; // Process nodes in order of execution - for (const node of this.graph.computeExecutionOrder(false)) { - const n = workflow.nodes.find((n) => n.id === node.id); - - if (node.isVirtualNode) { - // Don't serialize frontend only nodes but let them make changes - if (node.applyToGraph) { - node.applyToGraph(workflow); + for (const outerNode of this.graph.computeExecutionOrder(false)) { + const innerNodes = outerNode.getInnerNodes ? outerNode.getInnerNodes() : [outerNode]; + for (const node of innerNodes) { + if (node.isVirtualNode) { + continue; } - continue; - } - if (node.mode === 2 || node.mode === 4) { - // Don't serialize muted nodes - continue; - } + if (node.mode === 2 || node.mode === 4) { + // Don't serialize muted nodes + continue; + } - const inputs = {}; - const widgets = node.widgets; + const inputs = {}; + const widgets = node.widgets; - // Store all widget values - if (widgets) { - for (const i in widgets) { - const widget = widgets[i]; - if (!widget.options || widget.options.serialize !== false) { - inputs[widget.name] = widget.serializeValue ? await widget.serializeValue(n, i) : widget.value; + // Store all widget values + if (widgets) { + for (const i in widgets) { + const widget = widgets[i]; + if (!widget.options || widget.options.serialize !== false) { + inputs[widget.name] = widget.serializeValue ? await widget.serializeValue(node, i) : widget.value; + } } } - } - // Store all node links - for (let i in node.inputs) { - let parent = node.getInputNode(i); - if (parent) { - let link = node.getInputLink(i); - while (parent.mode === 4 || parent.isVirtualNode) { - let found = false; - if (parent.isVirtualNode) { - link = parent.getInputLink(link.origin_slot); - if (link) { - parent = parent.getInputNode(link.target_slot); - if (parent) { - found = true; + // Store all node links + for (let i in node.inputs) { + let parent = node.getInputNode(i); + if (parent) { + let link = node.getInputLink(i); + while (parent.mode === 4 || parent.isVirtualNode) { + let found = false; + if (parent.isVirtualNode) { + link = parent.getInputLink(link.origin_slot); + if (link) { + parent = parent.getInputNode(link.target_slot); + if (parent) { + found = true; + } } - } - } else if (link && parent.mode === 4) { - let all_inputs = [link.origin_slot]; - if (parent.inputs) { - all_inputs = all_inputs.concat(Object.keys(parent.inputs)) - for (let parent_input in all_inputs) { - parent_input = all_inputs[parent_input]; - if (parent.inputs[parent_input].type === node.inputs[i].type) { - link = parent.getInputLink(parent_input); - if (link) { - parent = parent.getInputNode(parent_input); + } else if (link && parent.mode === 4) { + let all_inputs = [link.origin_slot]; + if (parent.inputs) { + all_inputs = all_inputs.concat(Object.keys(parent.inputs)) + for (let parent_input in all_inputs) { + parent_input = all_inputs[parent_input]; + if (parent.inputs[parent_input]?.type === node.inputs[i].type) { + link = parent.getInputLink(parent_input); + if (link) { + parent = parent.getInputNode(parent_input); + } + found = true; + break; } - found = true; - break; } } } - } - if (!found) { - break; + if (!found) { + break; + } } - } - if (link) { - inputs[node.inputs[i].name] = [String(link.origin_id), parseInt(link.origin_slot)]; + if (link) { + if (parent?.updateLink) { + link = parent.updateLink(link); + } + inputs[node.inputs[i].name] = [String(link.origin_id), parseInt(link.origin_slot)]; + } } } - } - output[String(node.id)] = { - inputs, - class_type: node.comfyClass, - }; + output[String(node.id)] = { + inputs, + class_type: node.comfyClass, + }; + } } // Remove inputs connected to removed nodes @@ -1636,25 +1863,86 @@ export class ComfyApp { const pngInfo = await getPngMetadata(file); if (pngInfo) { if (pngInfo.workflow) { - this.loadGraphData(JSON.parse(pngInfo.workflow)); + await this.loadGraphData(JSON.parse(pngInfo.workflow)); } else if (pngInfo.parameters) { importA1111(this.graph, pngInfo.parameters); } } + } else if (file.type === "image/webp") { + const pngInfo = await getWebpMetadata(file); + if (pngInfo) { + if (pngInfo.workflow) { + this.loadGraphData(JSON.parse(pngInfo.workflow)); + } else if (pngInfo.Workflow) { + this.loadGraphData(JSON.parse(pngInfo.Workflow)); // Support loading workflows from that webp custom node. + } + } } else if (file.type === "application/json" || file.name?.endsWith(".json")) { const reader = new FileReader(); - reader.onload = () => { - this.loadGraphData(JSON.parse(reader.result)); + reader.onload = async () => { + const jsonContent = JSON.parse(reader.result); + if (jsonContent?.templates) { + this.loadTemplateData(jsonContent); + } else if(this.isApiJson(jsonContent)) { + this.loadApiJson(jsonContent); + } else { + await this.loadGraphData(jsonContent); + } }; reader.readAsText(file); } else if (file.name?.endsWith(".latent") || file.name?.endsWith(".safetensors")) { const info = await getLatentMetadata(file); if (info.workflow) { - this.loadGraphData(JSON.parse(info.workflow)); + await this.loadGraphData(JSON.parse(info.workflow)); } } } + isApiJson(data) { + return Object.values(data).every((v) => v.class_type); + } + + loadApiJson(apiData) { + const missingNodeTypes = Object.values(apiData).filter((n) => !LiteGraph.registered_node_types[n.class_type]); + if (missingNodeTypes.length) { + this.showMissingNodesError(missingNodeTypes.map(t => t.class_type), false); + return; + } + + const ids = Object.keys(apiData); + app.graph.clear(); + for (const id of ids) { + const data = apiData[id]; + const node = LiteGraph.createNode(data.class_type); + node.id = isNaN(+id) ? id : +id; + graph.add(node); + } + + for (const id of ids) { + const data = apiData[id]; + const node = app.graph.getNodeById(id); + for (const input in data.inputs ?? {}) { + const value = data.inputs[input]; + if (value instanceof Array) { + const [fromId, fromSlot] = value; + const fromNode = app.graph.getNodeById(fromId); + const toSlot = node.inputs?.findIndex((inp) => inp.name === input); + if (toSlot !== -1) { + fromNode.connect(fromSlot, node, toSlot); + } + } else { + const widget = node.widgets?.find((w) => w.name === input); + if (widget) { + widget.value = value; + widget.callback?.(value); + } + } + } + } + + app.graph.arrange(); + } + /** * Registers a Comfy web extension with the app * @param {ComfyExtension} extension @@ -1675,13 +1963,21 @@ export class ComfyApp { async refreshComboInNodes() { const defs = await api.getNodeDefs(); + for(const nodeId in LiteGraph.registered_node_types) { + const node = LiteGraph.registered_node_types[nodeId]; + const nodeDef = defs[nodeId]; + if(!nodeDef) continue; + + node.nodeData = nodeDef; + } + for(let nodeNum in this.graph._nodes) { const node = this.graph._nodes[nodeNum]; - const def = defs[node.type]; - // HOTFIX: The current patch is designed to prevent the rest of the code from breaking due to primitive nodes, - // and additional work is needed to consider the primitive logic in the refresh logic. + // Allow primitive nodes to handle refresh + node.refreshComboInNode?.(defs); + if(!def) continue; diff --git a/web/scripts/domWidget.js b/web/scripts/domWidget.js new file mode 100644 index 00000000000..37d26f3c5ef --- /dev/null +++ b/web/scripts/domWidget.js @@ -0,0 +1,322 @@ +import { app, ANIM_PREVIEW_WIDGET } from "./app.js"; + +const SIZE = Symbol(); + +function intersect(a, b) { + const x = Math.max(a.x, b.x); + const num1 = Math.min(a.x + a.width, b.x + b.width); + const y = Math.max(a.y, b.y); + const num2 = Math.min(a.y + a.height, b.y + b.height); + if (num1 >= x && num2 >= y) return [x, y, num1 - x, num2 - y]; + else return null; +} + +function getClipPath(node, element, elRect) { + const selectedNode = Object.values(app.canvas.selected_nodes)[0]; + if (selectedNode && selectedNode !== node) { + const MARGIN = 7; + const scale = app.canvas.ds.scale; + + const bounding = selectedNode.getBounding(); + const intersection = intersect( + { x: elRect.x / scale, y: elRect.y / scale, width: elRect.width / scale, height: elRect.height / scale }, + { + x: selectedNode.pos[0] + app.canvas.ds.offset[0] - MARGIN, + y: selectedNode.pos[1] + app.canvas.ds.offset[1] - LiteGraph.NODE_TITLE_HEIGHT - MARGIN, + width: bounding[2] + MARGIN + MARGIN, + height: bounding[3] + MARGIN + MARGIN, + } + ); + + if (!intersection) { + return ""; + } + + const widgetRect = element.getBoundingClientRect(); + const clipX = intersection[0] - widgetRect.x / scale + "px"; + const clipY = intersection[1] - widgetRect.y / scale + "px"; + const clipWidth = intersection[2] + "px"; + const clipHeight = intersection[3] + "px"; + const path = `polygon(0% 0%, 0% 100%, ${clipX} 100%, ${clipX} ${clipY}, calc(${clipX} + ${clipWidth}) ${clipY}, calc(${clipX} + ${clipWidth}) calc(${clipY} + ${clipHeight}), ${clipX} calc(${clipY} + ${clipHeight}), ${clipX} 100%, 100% 100%, 100% 0%)`; + return path; + } + return ""; +} + +function computeSize(size) { + if (this.widgets?.[0]?.last_y == null) return; + + let y = this.widgets[0].last_y; + let freeSpace = size[1] - y; + + let widgetHeight = 0; + let dom = []; + for (const w of this.widgets) { + if (w.type === "converted-widget") { + // Ignore + delete w.computedHeight; + } else if (w.computeSize) { + widgetHeight += w.computeSize()[1] + 4; + } else if (w.element) { + // Extract DOM widget size info + const styles = getComputedStyle(w.element); + let minHeight = w.options.getMinHeight?.() ?? parseInt(styles.getPropertyValue("--comfy-widget-min-height")); + let maxHeight = w.options.getMaxHeight?.() ?? parseInt(styles.getPropertyValue("--comfy-widget-max-height")); + + let prefHeight = w.options.getHeight?.() ?? styles.getPropertyValue("--comfy-widget-height"); + if (prefHeight.endsWith?.("%")) { + prefHeight = size[1] * (parseFloat(prefHeight.substring(0, prefHeight.length - 1)) / 100); + } else { + prefHeight = parseInt(prefHeight); + if (isNaN(minHeight)) { + minHeight = prefHeight; + } + } + if (isNaN(minHeight)) { + minHeight = 50; + } + if (!isNaN(maxHeight)) { + if (!isNaN(prefHeight)) { + prefHeight = Math.min(prefHeight, maxHeight); + } else { + prefHeight = maxHeight; + } + } + dom.push({ + minHeight, + prefHeight, + w, + }); + } else { + widgetHeight += LiteGraph.NODE_WIDGET_HEIGHT + 4; + } + } + + freeSpace -= widgetHeight; + + // Calculate sizes with all widgets at their min height + const prefGrow = []; // Nodes that want to grow to their prefd size + const canGrow = []; // Nodes that can grow to auto size + let growBy = 0; + for (const d of dom) { + freeSpace -= d.minHeight; + if (isNaN(d.prefHeight)) { + canGrow.push(d); + d.w.computedHeight = d.minHeight; + } else { + const diff = d.prefHeight - d.minHeight; + if (diff > 0) { + prefGrow.push(d); + growBy += diff; + d.diff = diff; + } else { + d.w.computedHeight = d.minHeight; + } + } + } + + if (this.imgs && !this.widgets.find((w) => w.name === ANIM_PREVIEW_WIDGET)) { + // Allocate space for image + freeSpace -= 220; + } + + if (freeSpace < 0) { + // Not enough space for all widgets so we need to grow + size[1] -= freeSpace; + this.graph.setDirtyCanvas(true); + } else { + // Share the space between each + const growDiff = freeSpace - growBy; + if (growDiff > 0) { + // All pref sizes can be fulfilled + freeSpace = growDiff; + for (const d of prefGrow) { + d.w.computedHeight = d.prefHeight; + } + } else { + // We need to grow evenly + const shared = -growDiff / prefGrow.length; + for (const d of prefGrow) { + d.w.computedHeight = d.prefHeight - shared; + } + freeSpace = 0; + } + + if (freeSpace > 0 && canGrow.length) { + // Grow any that are auto height + const shared = freeSpace / canGrow.length; + for (const d of canGrow) { + d.w.computedHeight += shared; + } + } + } + + // Position each of the widgets + for (const w of this.widgets) { + w.y = y; + if (w.computedHeight) { + y += w.computedHeight; + } else if (w.computeSize) { + y += w.computeSize()[1] + 4; + } else { + y += LiteGraph.NODE_WIDGET_HEIGHT + 4; + } + } +} + +// Override the compute visible nodes function to allow us to hide/show DOM elements when the node goes offscreen +const elementWidgets = new Set(); +const computeVisibleNodes = LGraphCanvas.prototype.computeVisibleNodes; +LGraphCanvas.prototype.computeVisibleNodes = function () { + const visibleNodes = computeVisibleNodes.apply(this, arguments); + for (const node of app.graph._nodes) { + if (elementWidgets.has(node)) { + const hidden = visibleNodes.indexOf(node) === -1; + for (const w of node.widgets) { + if (w.element) { + w.element.hidden = hidden; + if (hidden) { + w.options.onHide?.(w); + } + } + } + } + } + + return visibleNodes; +}; + +let enableDomClipping = true; + +export function addDomClippingSetting() { + app.ui.settings.addSetting({ + id: "Comfy.DOMClippingEnabled", + name: "Enable DOM element clipping (enabling may reduce performance)", + type: "boolean", + defaultValue: enableDomClipping, + onChange(value) { + enableDomClipping = !!value; + }, + }); +} + +LGraphNode.prototype.addDOMWidget = function (name, type, element, options) { + options = { hideOnZoom: true, selectOn: ["focus", "click"], ...options }; + + if (!element.parentElement) { + document.body.append(element); + } + + let mouseDownHandler; + if (element.blur) { + mouseDownHandler = (event) => { + if (!element.contains(event.target)) { + element.blur(); + } + }; + document.addEventListener("mousedown", mouseDownHandler); + } + + const widget = { + type, + name, + get value() { + return options.getValue?.() ?? undefined; + }, + set value(v) { + options.setValue?.(v); + widget.callback?.(widget.value); + }, + draw: function (ctx, node, widgetWidth, y, widgetHeight) { + if (widget.computedHeight == null) { + computeSize.call(node, node.size); + } + + const hidden = + node.flags?.collapsed || + (!!options.hideOnZoom && app.canvas.ds.scale < 0.5) || + widget.computedHeight <= 0 || + widget.type === "converted-widget"; + element.hidden = hidden; + element.style.display = hidden ? "none" : null; + if (hidden) { + widget.options.onHide?.(widget); + return; + } + + const margin = 10; + const elRect = ctx.canvas.getBoundingClientRect(); + const transform = new DOMMatrix() + .scaleSelf(elRect.width / ctx.canvas.width, elRect.height / ctx.canvas.height) + .multiplySelf(ctx.getTransform()) + .translateSelf(margin, margin + y); + + const scale = new DOMMatrix().scaleSelf(transform.a, transform.d); + + Object.assign(element.style, { + transformOrigin: "0 0", + transform: scale, + left: `${transform.a + transform.e}px`, + top: `${transform.d + transform.f}px`, + width: `${widgetWidth - margin * 2}px`, + height: `${(widget.computedHeight ?? 50) - margin * 2}px`, + position: "absolute", + zIndex: app.graph._nodes.indexOf(node), + }); + + if (enableDomClipping) { + element.style.clipPath = getClipPath(node, element, elRect); + element.style.willChange = "clip-path"; + } + + this.options.onDraw?.(widget); + }, + element, + options, + onRemove() { + if (mouseDownHandler) { + document.removeEventListener("mousedown", mouseDownHandler); + } + element.remove(); + }, + }; + + for (const evt of options.selectOn) { + element.addEventListener(evt, () => { + app.canvas.selectNode(this); + app.canvas.bringToFront(this); + }); + } + + this.addCustomWidget(widget); + elementWidgets.add(this); + + const collapse = this.collapse; + this.collapse = function() { + collapse.apply(this, arguments); + if(this.flags?.collapsed) { + element.hidden = true; + element.style.display = "none"; + } + } + + const onRemoved = this.onRemoved; + this.onRemoved = function () { + element.remove(); + elementWidgets.delete(this); + onRemoved?.apply(this, arguments); + }; + + if (!this[SIZE]) { + this[SIZE] = true; + const onResize = this.onResize; + this.onResize = function (size) { + options.beforeResize?.call(widget, this); + computeSize.call(this, size); + onResize?.apply(this, arguments); + options.afterResize?.call(widget, this); + }; + } + + return widget; +}; diff --git a/web/scripts/pnginfo.js b/web/scripts/pnginfo.js index c5293dfa332..83a4ebc86c4 100644 --- a/web/scripts/pnginfo.js +++ b/web/scripts/pnginfo.js @@ -24,7 +24,7 @@ export function getPngMetadata(file) { const length = dataView.getUint32(offset); // Get the chunk type const type = String.fromCharCode(...pngData.slice(offset + 4, offset + 8)); - if (type === "tEXt") { + if (type === "tEXt" || type == "comf") { // Get the keyword let keyword_end = offset + 8; while (pngData[keyword_end] !== 0) { @@ -47,6 +47,105 @@ export function getPngMetadata(file) { }); } +function parseExifData(exifData) { + // Check for the correct TIFF header (0x4949 for little-endian or 0x4D4D for big-endian) + const isLittleEndian = new Uint16Array(exifData.slice(0, 2))[0] === 0x4949; + + // Function to read 16-bit and 32-bit integers from binary data + function readInt(offset, isLittleEndian, length) { + let arr = exifData.slice(offset, offset + length) + if (length === 2) { + return new DataView(arr.buffer, arr.byteOffset, arr.byteLength).getUint16(0, isLittleEndian); + } else if (length === 4) { + return new DataView(arr.buffer, arr.byteOffset, arr.byteLength).getUint32(0, isLittleEndian); + } + } + + // Read the offset to the first IFD (Image File Directory) + const ifdOffset = readInt(4, isLittleEndian, 4); + + function parseIFD(offset) { + const numEntries = readInt(offset, isLittleEndian, 2); + const result = {}; + + for (let i = 0; i < numEntries; i++) { + const entryOffset = offset + 2 + i * 12; + const tag = readInt(entryOffset, isLittleEndian, 2); + const type = readInt(entryOffset + 2, isLittleEndian, 2); + const numValues = readInt(entryOffset + 4, isLittleEndian, 4); + const valueOffset = readInt(entryOffset + 8, isLittleEndian, 4); + + // Read the value(s) based on the data type + let value; + if (type === 2) { + // ASCII string + value = String.fromCharCode(...exifData.slice(valueOffset, valueOffset + numValues - 1)); + } + + result[tag] = value; + } + + return result; + } + + // Parse the first IFD + const ifdData = parseIFD(ifdOffset); + return ifdData; +} + +function splitValues(input) { + var output = {}; + for (var key in input) { + var value = input[key]; + var splitValues = value.split(':', 2); + output[splitValues[0]] = splitValues[1]; + } + return output; +} + +export function getWebpMetadata(file) { + return new Promise((r) => { + const reader = new FileReader(); + reader.onload = (event) => { + const webp = new Uint8Array(event.target.result); + const dataView = new DataView(webp.buffer); + + // Check that the WEBP signature is present + if (dataView.getUint32(0) !== 0x52494646 || dataView.getUint32(8) !== 0x57454250) { + console.error("Not a valid WEBP file"); + r(); + return; + } + + // Start searching for chunks after the WEBP signature + let offset = 12; + let txt_chunks = {}; + // Loop through the chunks in the WEBP file + while (offset < webp.length) { + const chunk_length = dataView.getUint32(offset + 4, true); + const chunk_type = String.fromCharCode(...webp.slice(offset, offset + 4)); + if (chunk_type === "EXIF") { + if (String.fromCharCode(...webp.slice(offset + 8, offset + 8 + 6)) == "Exif\0\0") { + offset += 6; + } + let data = parseExifData(webp.slice(offset + 8, offset + 8 + chunk_length)); + for (var key in data) { + var value = data[key]; + let index = value.indexOf(':'); + txt_chunks[value.slice(0, index)] = value.slice(index + 1); + } + } + + offset += 8 + chunk_length; + } + + r(txt_chunks); + }; + + reader.readAsArrayBuffer(file); + }); +} + export function getLatentMetadata(file) { return new Promise((r) => { const reader = new FileReader(); diff --git a/web/scripts/ui.js b/web/scripts/ui.js index 1e7920167a6..ebaf86fe428 100644 --- a/web/scripts/ui.js +++ b/web/scripts/ui.js @@ -462,8 +462,8 @@ class ComfyList { return $el("div", {textContent: item.prompt[0] + ": "}, [ $el("button", { textContent: "Load", - onclick: () => { - app.loadGraphData(item.prompt[3].extra_pnginfo.workflow); + onclick: async () => { + await app.loadGraphData(item.prompt[3].extra_pnginfo.workflow); if (item.outputs) { app.nodeOutputs = item.outputs; } @@ -599,7 +599,7 @@ export class ComfyUI { const fileInput = $el("input", { id: "comfy-file-input", type: "file", - accept: ".json,image/png,.latent,.safetensors", + accept: ".json,image/png,.latent,.safetensors,image/webp", style: {display: "none"}, parent: document.body, onchange: () => { @@ -719,20 +719,22 @@ export class ComfyUI { filename += ".json"; } } - const json = JSON.stringify(app.graph.serialize(), null, 2); // convert the data to a JSON string - const blob = new Blob([json], {type: "application/json"}); - const url = URL.createObjectURL(blob); - const a = $el("a", { - href: url, - download: filename, - style: {display: "none"}, - parent: document.body, + app.graphToPrompt().then(p=>{ + const json = JSON.stringify(p.workflow, null, 2); // convert the data to a JSON string + const blob = new Blob([json], {type: "application/json"}); + const url = URL.createObjectURL(blob); + const a = $el("a", { + href: url, + download: filename, + style: {display: "none"}, + parent: document.body, + }); + a.click(); + setTimeout(function () { + a.remove(); + window.URL.revokeObjectURL(url); + }, 0); }); - a.click(); - setTimeout(function () { - a.remove(); - window.URL.revokeObjectURL(url); - }, 0); }, }), $el("button", { @@ -782,9 +784,9 @@ export class ComfyUI { } }), $el("button", { - id: "comfy-load-default-button", textContent: "Load Default", onclick: () => { + id: "comfy-load-default-button", textContent: "Load Default", onclick: async () => { if (!confirmClear.value || confirm("Load default workflow?")) { - app.loadGraphData() + await app.loadGraphData() } } }), @@ -809,7 +811,8 @@ export class ComfyUI { if ( this.lastQueueSize != 0 && status.exec_info.queue_remaining == 0 && - document.getElementById("autoQueueCheckbox").checked + document.getElementById("autoQueueCheckbox").checked && + ! app.lastExecutionError ) { app.queuePrompt(0, this.batchCount); } diff --git a/web/scripts/ui/imagePreview.js b/web/scripts/ui/imagePreview.js new file mode 100644 index 00000000000..2a7f66b8f3b --- /dev/null +++ b/web/scripts/ui/imagePreview.js @@ -0,0 +1,97 @@ +import { $el } from "../ui.js"; + +export function calculateImageGrid(imgs, dw, dh) { + let best = 0; + let w = imgs[0].naturalWidth; + let h = imgs[0].naturalHeight; + const numImages = imgs.length; + + let cellWidth, cellHeight, cols, rows, shiftX; + // compact style + for (let c = 1; c <= numImages; c++) { + const r = Math.ceil(numImages / c); + const cW = dw / c; + const cH = dh / r; + const scaleX = cW / w; + const scaleY = cH / h; + + const scale = Math.min(scaleX, scaleY, 1); + const imageW = w * scale; + const imageH = h * scale; + const area = imageW * imageH * numImages; + + if (area > best) { + best = area; + cellWidth = imageW; + cellHeight = imageH; + cols = c; + rows = r; + shiftX = c * ((cW - imageW) / 2); + } + } + + return { cellWidth, cellHeight, cols, rows, shiftX }; +} + +export function createImageHost(node) { + const el = $el("div.comfy-img-preview"); + let currentImgs; + let first = true; + + function updateSize() { + let w = null; + let h = null; + + if (currentImgs) { + let elH = el.clientHeight; + if (first) { + first = false; + // On first run, if we are small then grow a bit + if (elH < 190) { + elH = 190; + } + el.style.setProperty("--comfy-widget-min-height", elH); + } else { + el.style.setProperty("--comfy-widget-min-height", null); + } + + const nw = node.size[0]; + ({ cellWidth: w, cellHeight: h } = calculateImageGrid(currentImgs, nw - 20, elH)); + w += "px"; + h += "px"; + + el.style.setProperty("--comfy-img-preview-width", w); + el.style.setProperty("--comfy-img-preview-height", h); + } + } + return { + el, + updateImages(imgs) { + if (imgs !== currentImgs) { + if (currentImgs == null) { + requestAnimationFrame(() => { + updateSize(); + }); + } + el.replaceChildren(...imgs); + currentImgs = imgs; + node.onResize(node.size); + node.graph.setDirtyCanvas(true, true); + } + }, + getHeight() { + updateSize(); + }, + onDraw() { + // Element from point uses a hittest find elements so we need to toggle pointer events + el.style.pointerEvents = "all"; + const over = document.elementFromPoint(app.canvas.mouse[0], app.canvas.mouse[1]); + el.style.pointerEvents = "none"; + + if(!over) return; + // Set the overIndex so Open Image etc work + const idx = currentImgs.indexOf(over); + node.overIndex = idx; + }, + }; +} diff --git a/web/scripts/widgets.js b/web/scripts/widgets.js index 2b023937415..de5877e5448 100644 --- a/web/scripts/widgets.js +++ b/web/scripts/widgets.js @@ -1,4 +1,5 @@ import { api } from "./api.js" +import "./domWidget.js"; function getNumberDefaults(inputData, defaultStep, precision, enable_rounding) { let defaultVal = inputData[1]["default"]; @@ -22,18 +23,103 @@ function getNumberDefaults(inputData, defaultStep, precision, enable_rounding) { return { val: defaultVal, config: { min, max, step: 10.0 * step, round, precision } }; } -export function addValueControlWidget(node, targetWidget, defaultValue = "randomize", values) { - const valueControl = node.addWidget("combo", "control_after_generate", defaultValue, function (v) { }, { - values: ["fixed", "increment", "decrement", "randomize"], - serialize: false, // Don't include this in prompt. - }); - valueControl.afterQueued = () => { +export function getWidgetType(inputData, inputName) { + const type = inputData[0]; + if (Array.isArray(type)) { + return "COMBO"; + } else if (`${type}:${inputName}` in ComfyWidgets) { + return `${type}:${inputName}`; + } else if (type in ComfyWidgets) { + return type; + } else { + return null; + } +} + +export function addValueControlWidget(node, targetWidget, defaultValue = "randomize", values, widgetName, inputData) { + let name = inputData[1]?.control_after_generate; + if(typeof name !== "string") { + name = widgetName; + } + const widgets = addValueControlWidgets(node, targetWidget, defaultValue, { + addFilterList: false, + controlAfterGenerateName: name + }, inputData); + return widgets[0]; +} + +export function addValueControlWidgets(node, targetWidget, defaultValue = "randomize", options, inputData) { + if (!defaultValue) defaultValue = "randomize"; + if (!options) options = {}; + + const getName = (defaultName, optionName) => { + let name = defaultName; + if (options[optionName]) { + name = options[optionName]; + } else if (typeof inputData?.[1]?.[defaultName] === "string") { + name = inputData?.[1]?.[defaultName]; + } else if (inputData?.[1]?.control_prefix) { + name = inputData?.[1]?.control_prefix + " " + name + } + return name; + } + + const widgets = []; + const valueControl = node.addWidget( + "combo", + getName("control_after_generate", "controlAfterGenerateName"), + defaultValue, + function () {}, + { + values: ["fixed", "increment", "decrement", "randomize"], + serialize: false, // Don't include this in prompt. + } + ); + widgets.push(valueControl); + + const isCombo = targetWidget.type === "combo"; + let comboFilter; + if (isCombo && options.addFilterList !== false) { + comboFilter = node.addWidget( + "string", + getName("control_filter_list", "controlFilterListName"), + "", + function () {}, + { + serialize: false, // Don't include this in prompt. + } + ); + widgets.push(comboFilter); + } + + valueControl.afterQueued = () => { var v = valueControl.value; - if (targetWidget.type == "combo" && v !== "fixed") { - let current_index = targetWidget.options.values.indexOf(targetWidget.value); - let current_length = targetWidget.options.values.length; + if (isCombo && v !== "fixed") { + let values = targetWidget.options.values; + const filter = comboFilter?.value; + if (filter) { + let check; + if (filter.startsWith("/") && filter.endsWith("/")) { + try { + const regex = new RegExp(filter.substring(1, filter.length - 1)); + check = (item) => regex.test(item); + } catch (error) { + console.error("Error constructing RegExp filter for node " + node.id, filter, error); + } + } + if (!check) { + const lower = filter.toLocaleLowerCase(); + check = (item) => item.toLocaleLowerCase().includes(lower); + } + values = values.filter(item => check(item)); + if (!values.length && targetWidget.options.values.length) { + console.warn("Filter for node " + node.id + " has filtered out all items", filter); + } + } + let current_index = values.indexOf(targetWidget.value); + let current_length = values.length; switch (v) { case "increment": @@ -50,11 +136,12 @@ export function addValueControlWidget(node, targetWidget, defaultValue = "random current_index = Math.max(0, current_index); current_index = Math.min(current_length - 1, current_index); if (current_index >= 0) { - let value = targetWidget.options.values[current_index]; + let value = values[current_index]; targetWidget.value = value; targetWidget.callback(value); } - } else { //number + } else { + //number let min = targetWidget.options.min; let max = targetWidget.options.max; // limit to something that javascript can handle @@ -77,185 +164,68 @@ export function addValueControlWidget(node, targetWidget, defaultValue = "random default: break; } - /*check if values are over or under their respective - * ranges and set them to min or max.*/ - if (targetWidget.value < min) - targetWidget.value = min; + /*check if values are over or under their respective + * ranges and set them to min or max.*/ + if (targetWidget.value < min) targetWidget.value = min; if (targetWidget.value > max) targetWidget.value = max; + targetWidget.callback(targetWidget.value); } - } - return valueControl; + }; + return widgets; }; -function seedWidget(node, inputName, inputData, app) { - const seed = ComfyWidgets.INT(node, inputName, inputData, app); - const seedControl = addValueControlWidget(node, seed.widget, "randomize"); +function seedWidget(node, inputName, inputData, app, widgetName) { + const seed = createIntWidget(node, inputName, inputData, app, true); + const seedControl = addValueControlWidget(node, seed.widget, "randomize", undefined, widgetName, inputData); seed.widget.linkedWidgets = [seedControl]; return seed; } -const MultilineSymbol = Symbol(); -const MultilineResizeSymbol = Symbol(); - -function addMultilineWidget(node, name, opts, app) { - const MIN_SIZE = 50; - - function computeSize(size) { - if (node.widgets[0].last_y == null) return; - - let y = node.widgets[0].last_y; - let freeSpace = size[1] - y; - - // Compute the height of all non customtext widgets - let widgetHeight = 0; - const multi = []; - for (let i = 0; i < node.widgets.length; i++) { - const w = node.widgets[i]; - if (w.type === "customtext") { - multi.push(w); - } else { - if (w.computeSize) { - widgetHeight += w.computeSize()[1] + 4; - } else { - widgetHeight += LiteGraph.NODE_WIDGET_HEIGHT + 4; - } - } - } - - // See how large each text input can be - freeSpace -= widgetHeight; - freeSpace /= multi.length + (!!node.imgs?.length); - - if (freeSpace < MIN_SIZE) { - // There isnt enough space for all the widgets, increase the size of the node - freeSpace = MIN_SIZE; - node.size[1] = y + widgetHeight + freeSpace * (multi.length + (!!node.imgs?.length)); - node.graph.setDirtyCanvas(true); - } - - // Position each of the widgets - for (const w of node.widgets) { - w.y = y; - if (w.type === "customtext") { - y += freeSpace; - w.computedHeight = freeSpace - multi.length*4; - } else if (w.computeSize) { - y += w.computeSize()[1] + 4; - } else { - y += LiteGraph.NODE_WIDGET_HEIGHT + 4; - } - } - - node.inputHeight = freeSpace; +function createIntWidget(node, inputName, inputData, app, isSeedInput) { + const control = inputData[1]?.control_after_generate; + if (!isSeedInput && control) { + return seedWidget(node, inputName, inputData, app, typeof control === "string" ? control : undefined); } - const widget = { - type: "customtext", - name, - get value() { - return this.inputEl.value; - }, - set value(x) { - this.inputEl.value = x; + let widgetType = isSlider(inputData[1]["display"], app); + const { val, config } = getNumberDefaults(inputData, 1, 0, true); + Object.assign(config, { precision: 0 }); + return { + widget: node.addWidget( + widgetType, + inputName, + val, + function (v) { + const s = this.options.step / 10; + this.value = Math.round(v / s) * s; + }, + config + ), + }; +} + +function addMultilineWidget(node, name, opts, app) { + const inputEl = document.createElement("textarea"); + inputEl.className = "comfy-multiline-input"; + inputEl.value = opts.defaultVal; + inputEl.placeholder = opts.placeholder || name; + + const widget = node.addDOMWidget(name, "customtext", inputEl, { + getValue() { + return inputEl.value; }, - draw: function (ctx, _, widgetWidth, y, widgetHeight) { - if (!this.parent.inputHeight) { - // If we are initially offscreen when created we wont have received a resize event - // Calculate it here instead - computeSize(node.size); - } - const visible = app.canvas.ds.scale > 0.5 && this.type === "customtext"; - const margin = 10; - const elRect = ctx.canvas.getBoundingClientRect(); - const transform = new DOMMatrix() - .scaleSelf(elRect.width / ctx.canvas.width, elRect.height / ctx.canvas.height) - .multiplySelf(ctx.getTransform()) - .translateSelf(margin, margin + y); - - const scale = new DOMMatrix().scaleSelf(transform.a, transform.d) - Object.assign(this.inputEl.style, { - transformOrigin: "0 0", - transform: scale, - left: `${transform.a + transform.e}px`, - top: `${transform.d + transform.f}px`, - width: `${widgetWidth - (margin * 2)}px`, - height: `${this.parent.inputHeight - (margin * 2)}px`, - position: "absolute", - background: (!node.color)?'':node.color, - color: (!node.color)?'':'white', - zIndex: app.graph._nodes.indexOf(node), - }); - this.inputEl.hidden = !visible; + setValue(v) { + inputEl.value = v; }, - }; - widget.inputEl = document.createElement("textarea"); - widget.inputEl.className = "comfy-multiline-input"; - widget.inputEl.value = opts.defaultVal; - widget.inputEl.placeholder = opts.placeholder || ""; - document.addEventListener("mousedown", function (event) { - if (!widget.inputEl.contains(event.target)) { - widget.inputEl.blur(); - } }); - widget.parent = node; - document.body.appendChild(widget.inputEl); - - node.addCustomWidget(widget); - - app.canvas.onDrawBackground = function () { - // Draw node isnt fired once the node is off the screen - // if it goes off screen quickly, the input may not be removed - // this shifts it off screen so it can be moved back if the node is visible. - for (let n in app.graph._nodes) { - n = graph._nodes[n]; - for (let w in n.widgets) { - let wid = n.widgets[w]; - if (Object.hasOwn(wid, "inputEl")) { - wid.inputEl.style.left = -8000 + "px"; - wid.inputEl.style.position = "absolute"; - } - } - } - }; - - node.onRemoved = function () { - // When removing this node we need to remove the input from the DOM - for (let y in this.widgets) { - if (this.widgets[y].inputEl) { - this.widgets[y].inputEl.remove(); - } - } - }; - - widget.onRemove = () => { - widget.inputEl?.remove(); + widget.inputEl = inputEl; - // Restore original size handler if we are the last - if (!--node[MultilineSymbol]) { - node.onResize = node[MultilineResizeSymbol]; - delete node[MultilineSymbol]; - delete node[MultilineResizeSymbol]; - } - }; - - if (node[MultilineSymbol]) { - node[MultilineSymbol]++; - } else { - node[MultilineSymbol] = 1; - const onResize = (node[MultilineResizeSymbol] = node.onResize); - - node.onResize = function (size) { - computeSize(size); - - // Call original resizer handler - if (onResize) { - onResize.apply(this, arguments); - } - }; - } + inputEl.addEventListener("input", () => { + widget.callback?.(widget.value); + }); return { minWidth: 400, minHeight: 200, widget }; } @@ -287,31 +257,26 @@ export const ComfyWidgets = { }, config) }; }, INT(node, inputName, inputData, app) { - let widgetType = isSlider(inputData[1]["display"], app); - const { val, config } = getNumberDefaults(inputData, 1, 0, true); - Object.assign(config, { precision: 0 }); - return { - widget: node.addWidget( - widgetType, - inputName, - val, - function (v) { - const s = this.options.step / 10; - this.value = Math.round(v / s) * s; - }, - config - ), - }; + return createIntWidget(node, inputName, inputData, app); }, BOOLEAN(node, inputName, inputData) { - let defaultVal = inputData[1]["default"]; + let defaultVal = false; + let options = {}; + if (inputData[1]) { + if (inputData[1].default) + defaultVal = inputData[1].default; + if (inputData[1].label_on) + options["on"] = inputData[1].label_on; + if (inputData[1].label_off) + options["off"] = inputData[1].label_off; + } return { widget: node.addWidget( "toggle", inputName, defaultVal, () => {}, - {"on": inputData[1].label_on, "off": inputData[1].label_off} + options, ) }; }, @@ -337,10 +302,14 @@ export const ComfyWidgets = { if (inputData[1] && inputData[1].default) { defaultValue = inputData[1].default; } - return { widget: node.addWidget("combo", inputName, defaultValue, () => {}, { values: type }) }; + const res = { widget: node.addWidget("combo", inputName, defaultValue, () => {}, { values: type }) }; + if (inputData[1]?.control_after_generate) { + res.widget.linkedWidgets = addValueControlWidgets(node, res.widget, undefined, undefined, inputData); + } + return res; }, IMAGEUPLOAD(node, inputName, inputData, app) { - const imageWidget = node.widgets.find((w) => w.name === "image"); + const imageWidget = node.widgets.find((w) => w.name === (inputData[1]?.widget ?? "image")); let uploadWidget; function showImage(name) { @@ -454,9 +423,10 @@ export const ComfyWidgets = { document.body.append(fileInput); // Create the button widget for selecting the files - uploadWidget = node.addWidget("button", "choose file to upload", "image", () => { + uploadWidget = node.addWidget("button", inputName, "image", () => { fileInput.click(); }); + uploadWidget.label = "choose file to upload"; uploadWidget.serialize = false; // Add handler to check if an image is being dragged over our node diff --git a/web/style.css b/web/style.css index 692fa31d672..378fe0a48b9 100644 --- a/web/style.css +++ b/web/style.css @@ -409,6 +409,21 @@ dialog::backdrop { width: calc(100% - 10px); } +.comfy-img-preview { + pointer-events: none; + overflow: hidden; + display: flex; + flex-wrap: wrap; + align-content: flex-start; + justify-content: center; +} + +.comfy-img-preview img { + object-fit: contain; + width: var(--comfy-img-preview-width); + height: var(--comfy-img-preview-height); +} + /* Search box */ .litegraph.litesearchbox {