-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdivergence-main.py
164 lines (136 loc) · 6.62 KB
/
divergence-main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse
import platform
import os, random, time
import pandas as pd
import numpy as np
import torch
from pytorch_metric_learning import distances, losses, miners, reducers
from network import Network
from divergence import SelfTraining
import create_convergence_graph
if platform.system() == 'Windows':
webDriveFolder = "W:/staff-umbrella/JGMasters/2122-mathijs-de-wolf/feature_sets/"
outputFolder = ""
else:
webDriveFolder = "/tudelft.net/staff-umbrella/JGMasters/2122-mathijs-de-wolf/feature_sets/"
outputFolder = "/tudelft.net/staff-umbrella/JGMasters/2122-mathijs-de-wolf/output/"
def undersample(idx, labels):
idx_0 = [id for id in idx if labels[id]==0]
idx_1 = [id for id in idx if labels[id]==1]
if len(idx_0) < len(idx_1):
idx_1 = np.random.choice(idx_1, len(idx_0), replace=False)
if len(idx_0) > len(idx_1):
idx_0 = np.random.choice(idx_0, len(idx_1), replace=False)
return np.concatenate([idx_0, idx_1])
def setup_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def init_argparse() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(
usage="%(prog)s [OPTION] [FILE]...",
description="Run self training model"
)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument('-C', '--cancer', choices=['BRCA', 'CESC', 'COAD', 'KIRC', 'LAML', 'LUAD', 'SKCM', 'OV'], default='BRCA')
parser.add_argument("--output-file", type=str, default=None)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--lr", type=float, default=0.01)
parser.add_argument("--knn", type=int, default=5)
parser.add_argument("--conf", type=float, default=0.8)
parser.add_argument("--num-pseudolabels", type=int, default=50)
parser.add_argument("--retrain", action='store_true')
parser.add_argument("--early-stop-pseudolabeling", action='store_true')
parser.add_argument("--single-fold", action='store_true')
return parser
if __name__ == '__main__':
parser = init_argparse()
args = parser.parse_args()
dataPath = f"train_seq_128_{args.cancer}.csv"
if not os.path.exists(dataPath):
dataPath = webDriveFolder + dataPath
if not os.path.exists(dataPath):
raise FileNotFoundError('The dataset does not exist')
unlabeledDatapath = webDriveFolder + f"unknown_repair_cancer_{args.cancer}_seq_128.csv"
testDatapath = webDriveFolder + f"test_seq_128.csv"
if args.output_file:
outputFolder = outputFolder + args.output_file + "/"
else:
outputFile = "experiment-"
i = 0
while os.path.exists(outputFolder + outputFile + str(i)):
i += 1
outputFolder = outputFolder + outputFile + str(i) + '/'
if not os.path.exists(outputFolder):
os.mkdir(outputFolder)
if args.lr > 1:
args.lr = 1 / args.lr
while args.conf > 1:
args.conf = args.conf / 10
with open(outputFolder + 'settings.txt', 'a') as f:
f.write('\n'.join([
outputFolder,
'batch size: '+str(args.batch_size),
'cancer: '+str(args.cancer),
'learning rate: '+str(args.lr),
'seed: '+str(args.seed),
'knn: '+str(args.knn),
'confidence: '+str(args.conf),
'number of pseudolabels added per round: '+str(args.num_pseudolabels),
'retrain model from scratch during pseudolabeling: '+str(args.retrain),
'add pseudolabels until convergence: '+str(args.early_stop_pseudolabeling),
''
]))
setup_seed(args.seed)
dataset = pd.read_csv(dataPath, index_col=0).fillna(0)
# dataset = dataset[dataset['cancer']=="BRCA"]
dataset = dataset[(dataset['seq1']!=-1.0) & (dataset['seq1']!=0.0)]
unlabeled_dataset = pd.read_csv(unlabeledDatapath)
unlabeled_dataset = unlabeled_dataset[unlabeled_dataset['cancer'] == args.cancer]
unlabeled_dataset = unlabeled_dataset[(unlabeled_dataset['seq1']!=-1.0) & (unlabeled_dataset['seq1']!=0.0)]
test_dataset = pd.read_csv(testDatapath)
test_dataset = test_dataset[test_dataset['cancer'] == args.cancer]
test_dataset = test_dataset[(test_dataset['seq1']!=-1.0) & (test_dataset['seq1']!=0.0)]
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
device = torch.device(device)
distance = distances.LpDistance(normalize_embeddings=False, p=2, power=1)
reducer = reducers.MeanReducer()
start = time.time()
for fold in range(5):
print(f'fold: {fold}')
# Undersample dataset
idx_0 = dataset[dataset['class'] == 0]
idx_1 = dataset[dataset['class'] == 1]
if len(idx_0) < len(idx_1):
idx_1 = idx_1.sample(len(idx_0))
if len(idx_0) > len(idx_1):
idx_0 = idx_0.sample(len(idx_1))
# Split dataset in validation and train set
partion = round((len(idx_0)+len(idx_1))/10)
train_dataset = pd.concat([idx_0.iloc[partion:, :], idx_1.iloc[partion:, :]], ignore_index=True)
validation_dataset = pd.concat([idx_0.iloc[:partion, :], idx_1.iloc[:partion, :]], ignore_index=True)
# Shuffle datasets, otherwise the first half is negative and the second half is positive
train_dataset = train_dataset.sample(frac=1).reset_index(drop=True)
validation_dataset = validation_dataset.sample(frac=1).reset_index(drop=True)
# Undersample test set
idx_0 = test_dataset[test_dataset['class'] == 0]
idx_1 = test_dataset[test_dataset['class'] == 1]
if len(idx_0) < len(idx_1):
idx_1 = idx_1.sample(len(idx_0))
if len(idx_0) > len(idx_1):
idx_0 = idx_0.sample(len(idx_1))
fold_test_dataset = pd.concat([idx_0, idx_1])
fold_test_dataset = fold_test_dataset.sample(frac=1).reset_index(drop=True)
loss_func = losses.ContrastiveLoss(pos_margin=0.3, neg_margin=0.5, distance=distance, reducer=reducer)
ntwrk = Network([128,8,2], loss_func, args.lr, device)
ml = SelfTraining(ntwrk, fold_test_dataset, train_dataset, unlabeled_dataset, validation_dataset, outputFolder, "semisupervised", args.knn, args.conf, args.num_pseudolabels)
ml.train(fold, retrain=args.retrain, add_samples_to_convergence=args.early_stop_pseudolabeling, pseudolabel_method="semi_supervised")
if args.single_fold:
break
end = time.time()
print(end - start)
create_convergence_graph.create_fold_convergence_graph(outputFolder + "semisupervised_performance.csv", outputFolder)