forked from HeSunPU/cosense
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers_posci.py
123 lines (86 loc) · 3.02 KB
/
helpers_posci.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""
created on Wed Oct. 31, 2019
@author: He Sun, Caltech
help trainging the joint sensing and imaging network
member functions include discrete fourier transforms (dft), spliting & concatenating complex matrices and generating observation mask
"""
import numpy as np
import tensorflow as tf
from keras import backend as K
from keras.layers import Layer, Lambda
from keras.initializers import RandomUniform, Constant
import keras.layers
def Lambda_dft(F):
def func(input_im):
input_im = tf.cast(input_im, tf.complex64)
input_im_reshape = tf.reshape(input_im, (-1, F.shape[1], 1))
# compute the Fourier domain measurements
F_tensor = tf.constant(F, dtype=tf.complex64)
vis = tf.matmul(F_tensor, input_im_reshape)
vis_r = tf.math.real(vis)
vis_i = tf.math.imag(vis)
# concatenate the real and imag parts of the visibility
vis_con = tf.concat([vis_r, vis_i], -1)
return tf.cast(vis_con, dtype=tf.float32)
return func
def Lambda_dft3(F):
def func(input_im):
input_im = tf.cast(input_im, tf.complex64)
input_im_reshape = tf.reshape(input_im, (-1, F.shape[1], 1))
# compute the Fourier domain measurements
vis = tf.squeeze(tf.matmul(F, input_im_reshape), -1)
return vis
return func
def Lambda_vis_mask2(F1, F2):
def func(x):
return tf.matmul(x, tf.transpose(F1)) * tf.matmul(x, tf.transpose(F2))
return func
def Lambda_cphase_mask2(F1, F2, F3):
def func(x):
return tf.matmul(x, tf.transpose(F1)) * tf.matmul(x, tf.transpose(F2)) * tf.matmul(x, tf.transpose(F3))
return func
def Lambda_select0(x):
return tf.matmul(tf.matrix_diag(x[0]), x[1])
def Lambda_select(x):
return x[0] * x[1]
def Lambda_binary_convert(const=10):
def func(x):
# return K.sigmoid(const * x)
return 0.5 * (x + 1)
return func
def Lambda_split(vis):
vis_r = tf.math.real(vis)
vis_i = tf.math.imag(vis)
vis_con = tf.concat([tf.expand_dims(vis_r, -1), tf.expand_dims(vis_i, -1)], -1)
return tf.cast(vis_con, dtype=tf.float32)
def Lambda_combine(vis_con):
vis_r = vis_con[:, :, 0]
vis_i = vis_con[:, :, 1]
vis = tf.cast(vis_r, dtype=tf.complex64) + 1j * tf.cast(vis_i, dtype=tf.complex64)
return vis
def Lambda_amp(x):
return tf.abs(x)
def Lambda_angle(vis):
return tf.math.angle(vis)
def Lambda_Vis(x):
amp, angle = x
amp = tf.cast(amp, tf.complex64)
angle = tf.cast(angle, tf.complex64) * np.pi / 180
vis = amp * tf.exp(1j * angle)
return tf.concat([tf.math.real(vis), tf.math.imag(vis)], -1)
def Lambda_cphase(cphase_proj):
def func(x):
return tf.matmul(x, tf.transpose(cphase_proj))
return func
def Lambda_cphase2(F_cphase):
def func(input_im):
input_im = tf.cast(input_im, tf.complex64)
input_im_reshape = tf.reshape(input_im, (-1, F_cphase.shape[1], 1))
# compute the Fourier domain measurements
vis1 = tf.squeeze(tf.matmul(F_cphase[:, :, 0], input_im_reshape), -1)
vis2 = tf.squeeze(tf.matmul(F_cphase[:, :, 1], input_im_reshape), -1)
vis3 = tf.squeeze(tf.matmul(F_cphase[:, :, 2], input_im_reshape), -1)
bispec = vis1 * vis2 * vis3
cphase = tf.math.angle(bispec) * 180 / np.pi
return cphase
return func