-
Notifications
You must be signed in to change notification settings - Fork 0
/
A2C-train.py
66 lines (52 loc) · 1.75 KB
/
A2C-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gym
import numpy as np
from stable_baselines3 import A2C
from stable_baselines3.common.callbacks import BaseCallback
from helper import LearningCurvePlot, smooth
from gym_ao.gym_ao.gym_sharpening import Sharpening_AO_system
import wandb
from callbacks import WandbCustomCallback
# Set up Weights and Biases
config = {
"policy_type": "MlpPolicy",
"env_name": "Sharpening_AO_system"
}
api = wandb.Api()
runs = api.runs("adapt_opt/sharpening-ao-system")
group_name = "A2C-test"
run_num = 0
for run in runs:
if group_name in run.name:
run_num += 1
run = wandb.init(
group=group_name,
name=f"A2C-test-run-{run_num}",
project="sharpening-ao-system",
entity="adapt_opt",
config=config,
sync_tensorboard=True,
)
class CustomEnvWrapper(gym.Env):
def __init__(self):
# Initialize your Sharpening_AO_system environment here
self.env = Sharpening_AO_system()
self.action_space = gym.spaces.Box(low=-0.3, high=0.3, shape=(400,), dtype=np.float32)
self.observation_space = gym.spaces.Box(low=0, high=1., shape=self.env.observation_space.shape, dtype=np.float32)
def step(self, action):
observation, reward, done, trunc, info = self.env.step(action)
if done:
observation = self.reset()
if trunc:
observation = self.reset()
return observation, reward, done, info
def reset(self):
return self.env.reset()
def render(self, mode='human'):
self.env.render()
# Create the Gym wrapper
env = CustomEnvWrapper()
# Create and train the TD3 model with the custom callback
model = A2C("MlpPolicy", env, verbose=1)
model.learn(total_timesteps=110, callback=WandbCustomCallback(), progress_bar=True)
# Close the environment
env.close()