-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadvLaneDetect.py
554 lines (464 loc) · 21.8 KB
/
advLaneDetect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
import numpy as np
import cv2
import glob
import sys
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import imageio
from moviepy.editor import *
#%matplotlib qt
class CameraSetup:
def cameraCalibration(self, imagePaths, size=(9, 6)):
nc = size[0]
nr = size[1]
objp = np.zeros((nr * nc, 3), np.float32)
objp[:, :2] = np.mgrid[0:nc, 0:nr].T.reshape(-1, 2)
print('length of images: ', len(imagePaths))
objpoints = []
imgpoints = []
gray = None
# Step through the list and search for chessboard corners
for fname in imagePaths:
img = cv2.imread(fname)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find the chessboard corners
ret, corners = cv2.findChessboardCorners(gray, (9, 6), None)
# If found, add object points, image points
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
# Draw and display the corners
# img = cv2.drawChessboardCorners(img, (9, 6), corners, ret)
# cv2.imshow('img', img)
# cv2.waitKey(500)
# cv2.destroyAllWindows()
camMat, distCoeffs = None, None
if gray != None:
retVal, self.camMat, self.distCoeffs, self.rotVecs, self.transformVecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
return camMat, distCoeffs
def rectifyImage(self, srcImage):
undistImage = cv2.undistort(srcImage, self.camMat, self.distCoeffs)
return undistImage
class ImageProc:
def abs_sobel_thresh(self, img, orient='x', sobel_kernel=3, thresh=(0, 255)):
# Calculate directional gradient
# Apply threshold
# Apply the following steps to img
# 1) Convert to grayscale
# 2) Take the derivative in x or y given orient = 'x' or 'y'
# 3) Take the absolute value of the derivative or gradient
# 4) Scale to 8-bit (0 - 255) then convert to type = np.uint8
# 5) Create a mask of 1's where the scaled gradient magnitude
# is > thresh_min and < thresh_max
# 6) Return this mask as your binary_output image
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
sobel = None
if orient == 'x':
sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
else:
sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
abs_sobel = np.absolute(sobel)
scaled_sobel = np.uint8(255 * abs_sobel / np.max(abs_sobel))
grad_binary = np.zeros_like(scaled_sobel)
grad_binary[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1
return grad_binary
def mag_thresh(self, image, sobel_kernel=3, mag_thresh=(0, 255)):
# Calculate gradient magnitude
# Apply threshold
# Apply the following steps to img
# 1) Convert to grayscale
# 2) Take the gradient in x and y separately
# 3) Calculate the magnitude
# 4) Scale to 8-bit (0 - 255) and convert to type = np.uint8
# 5) Create a binary mask where mag thresholds are met
# 6) Return this mask as your binary_output image
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
abs_sobelx = np.sqrt(np.square(sobelx) + np.square(sobely))
scaled_sobel = np.uint8(255 * abs_sobelx / np.max(abs_sobelx))
mag_binary = np.zeros_like(scaled_sobel)
thresh_min = mag_thresh[0]
thresh_max = mag_thresh[1]
mag_binary[(scaled_sobel >= thresh_min) & (scaled_sobel <= thresh_max)] = 1
return mag_binary
def dir_threshold(self, image, sobel_kernel=3, thresh=(0, np.pi / 2)):
# Calculate gradient direction
# Apply threshold
# Apply the following steps to img
# 1) Convert to grayscale
# 2) Take the gradient in x and y separately
# 3) Take the absolute value of the x and y gradients
# 4) Use np.arctan2(abs_sobely, abs_sobelx) to calculate the direction of the gradient
# 5) Create a binary mask where direction thresholds are met
# 6) Return this mask as your binary_output image
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
abs_sobelx = np.absolute(sobelx)
abs_sobely = np.absolute(sobely)
grad_dir = np.arctan2(abs_sobely, abs_sobelx)
# scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx))
dir_binary = np.zeros_like(grad_dir)
thresh_min = thresh[0]
thresh_max = thresh[1]
dir_binary[(grad_dir >= thresh_min) & (grad_dir <= thresh_max)] = 1
return dir_binary
def grayThreshold(self, rgbImage, thresh = (0, 255)):
gray = cv2.cvtColor(rgbImage, cv2.COLOR_RGB2GRAY)
binary = np.zeros_like(gray)
binary[(gray > thresh[0]) & (gray <= thresh[1])] = 1
return binary
def colorThreshold(self, rgbImage, color = 'r', thresh = (0, 255)):
colorChannel = None
if color == 'r':
colorChannel = rgbImage[:, :, 0]
elif color == 'g':
colorChannel = rgbImage[:, :, 1]
else: # blue
colorChannel = rgbImage[:, :, 2]
binary = np.zeros_like(colorChannel)
binary[(colorChannel > thresh[0]) & (colorChannel <= thresh[1])] = 1
return binary
def hlsThreshold(self, rgbImage, color = 's', thresh = (0, 255)):
hlsImage = cv2.cvtColor(rgbImage, cv2.COLOR_RGB2HLS)
hlsChannel = None
if color == 'h':
hlsChannel = hlsImage[:, :, 0]
if thresh[1] > 179:
thresh = (thresh[0], 179)
elif color == 'l':
hlsChannel = hlsImage[:, :, 1]
else: # s channel
hlsChannel = hlsImage[:, :, 2]
binary = np.zeros_like(hlsChannel)
binary[(hlsChannel > thresh[0]) & (hlsChannel <= thresh[1])] = 1
return binary
def region_of_interest(img, vertices):
"""
Applies an image mask.
Only keeps the region of the image defined by the polygon
formed from `vertices`. The rest of the image is set to black.
"""
# defining a blank mask to start with
mask = np.zeros_like(img)
# defining a 3 channel or 1 channel color to fill the mask with depending on the input image
if len(img.shape) > 2:
channel_count = img.shape[2] # i.e. 3 or 4 depending on your image
ignore_mask_color = (255,) * channel_count
else:
ignore_mask_color = 255
# filling pixels inside the polygon defined by "vertices" with the fill color
cv2.fillPoly(mask, vertices, ignore_mask_color)
# returning the image only where mask pixels are nonzero
masked_image = cv2.bitwise_and(img, mask)
return masked_image
left_fit = None
right_fit = None
def slidingWindows(binary_warped):
# Assuming you have created a warped binary image called "binary_warped"
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[binary_warped.shape[0] / 2:, :], axis=0)
# Create an output image to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped)) * 255
# out_img = cv2.cvtColor(binary_warped, cv2.COLOR_GRAY2RGB)
# out_img = np.dstack((binary_warped, binary_warped, binary_warped))
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0] / 2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Choose the number of sliding windows
nwindows = 9
# Set height of windows
window_height = np.int(binary_warped.shape[0] / nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# plt.figure(figsize=(10, 5))
# plt.imshow(out_img)
# plt.show()
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window + 1) * window_height
win_y_high = binary_warped.shape[0] - window * window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
cv2.rectangle(out_img, (win_xleft_low, win_y_low), (win_xleft_high, win_y_high), (0, 255, 0), 2)
cv2.rectangle(out_img, (win_xright_low, win_y_low), (win_xright_high, win_y_high), (0, 255, 0), 2)
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (
nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (
nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
global left_fit, right_fit
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0] - 1, binary_warped.shape[0])
left_fitx = left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2]
right_fitx = right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2]
# print(out_img.shape)
# out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
# out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
# plt.figure(figsize=(10, 5))
# plt.imshow(out_img)
# # plt.plot(leftx, lefty, color='red')
# plt.plot(rightx, righty, color='blue')
# plt.plot(left_fitx, ploty, color='yellow')
# plt.plot(right_fitx, ploty, color='yellow')
# plt.xlim(0, 1280)
# plt.ylim(720, 0)
# plt.show()
# y_eval = np.max(ploty)
# # Define conversions in x and y from pixels space to meters
# ym_per_pix = 30 / 720 # meters per pixel in y dimension
# xm_per_pix = 3.7 / 700 # meters per pixel in x dimension
#
# # Fit new polynomials to x,y in world space
# left_fit_cr = np.polyfit(ploty * ym_per_pix, left_fitx * xm_per_pix, 2)
# right_fit_cr = np.polyfit(ploty * ym_per_pix, right_fitx * xm_per_pix, 2)
# # Calculate the new radii of curvature
# left_curverad = ((1 + (2 * left_fit_cr[0] * y_eval * ym_per_pix + left_fit_cr[1]) ** 2) ** 1.5) / np.absolute(
# 2 * left_fit_cr[0])
# right_curverad = ((1 + (2 * right_fit_cr[0] * y_eval * ym_per_pix + right_fit_cr[1]) ** 2) ** 1.5) / np.absolute(
# 2 * right_fit_cr[0])
# # Now our radius of curvature is in meters
# print(left_curverad, 'm', right_curverad, 'm')
# # Example values: 632.1 m 626.2 m
return left_fitx, right_fitx, ploty
## Taken from Udacity CarND tutorials
def skipSlidingWindow(binary_warped):
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
margin = 100
global left_fit, right_fit
left_lane_inds = ((nonzerox > (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy + left_fit[2] - margin)) & (
nonzerox < (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy + left_fit[2] + margin)))
right_lane_inds = (
(nonzerox > (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy + right_fit[2] - margin)) & (
nonzerox < (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy + right_fit[2] + margin)))
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0] - 1, binary_warped.shape[0])
left_fitx = left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2]
right_fitx = right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2]
return left_fitx, right_fitx, ploty
def advLaneDetectionPipeline(inputImage):
# Lane detection pipeline:
# 1. Use the region of interest in the image to get the perspective transform of the image
# 2. Warp the image using the perspective transform to get a topview of the lanes
# 3. Identify the lane-pixels using the sliding window method
# 4. Using a 2nd degree polynomial fitting, estimate the lane lines on left and right side
# 5. Identify the radius of curvature of both the lanes after fitting the polynomial
ysize = inputImage.shape[0]
xsize = inputImage.shape[1]
vertices = np.array([[(125, ysize), (xsize/2-75, ysize/2+100), (xsize/2 + 75, ysize/2+100),(xsize - 50, ysize)]], dtype = np.int32)
destVertices = np.array([[(125, ysize), (125, 0), (xsize-50, 0),(xsize - 50, ysize)]], dtype = np.float32)
# print(vertices, destVertices)
# maskedImage = region_of_interest(inputImage, vertices=vertices)
drawnImage = inputImage.copy()
cv2.polylines(drawnImage, pts=vertices, isClosed=True, color=(255, 0, 0), thickness=2)
M = cv2.getPerspectiveTransform(np.float32(vertices), destVertices)
Minv = cv2.getPerspectiveTransform(destVertices, np.float32(vertices))
warped = cv2.warpPerspective(inputImage, M, (drawnImage.shape[1], drawnImage.shape[0]))
# print(np.max(warped))
binary_warped = np.zeros_like(warped, dtype=np.uint8)
binary_warped[warped != 0] = 1
# plt.figure(figsize=(10, 5))
# plt.subplot(1, 2, 1)
# plt.imshow(drawnImage)
# plt.xlabel('original image', 'gray')
#
# plt.subplot(1, 2, 2)
# plt.imshow(binary_warped, 'gray')
# plt.xlabel('warped image')
#
# plt.show()
# if left_fit == None or right_fit == None:
# leftFitX, rightFitX, ploty = slidingWindows(binary_warped)
# else:
# leftFitX, rightFitX, ploty = skipSlidingWindow(binary_warped)
leftFitX, rightFitX, ploty = slidingWindows(binary_warped)
warp_zero = np.zeros_like(warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([leftFitX, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([rightFitX, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(color_warp, Minv, (inputImage.shape[1], inputImage.shape[0]))
# Combine the result with the original image
y_eval = np.max(ploty)
# Define conversions in x and y from pixels space to meters
ym_per_pix = 25 / 720 # meters per pixel in y dimension
xm_per_pix = 3.7 / 700 # meters per pixel in x dimension
# Fit new polynomials to x,y in world space
left_fit_cr = np.polyfit(ploty * ym_per_pix, leftFitX * xm_per_pix, 2)
right_fit_cr = np.polyfit(ploty * ym_per_pix, rightFitX * xm_per_pix, 2)
# Calculate the new radii of curvature
left_curverad = ((1 + (2 * left_fit_cr[0] * y_eval * ym_per_pix + left_fit_cr[1]) ** 2) ** 1.5) / np.absolute(
2 * left_fit_cr[0])
right_curverad = ((1 + (2 * right_fit_cr[0] * y_eval * ym_per_pix + right_fit_cr[1]) ** 2) ** 1.5) / np.absolute(
2 * right_fit_cr[0])
# Now our radius of curvature is in meters
# print(left_curverad, 'm', right_curverad, 'm')
# Example values: 632.1 m 626.2 m
radius = np.mean([left_curverad, right_curverad])
cv2.putText(newwarp, 'Lane Radius: {}m'.format(int(radius)), (10, 50), cv2.FONT_HERSHEY_DUPLEX, 1.5, 255, thickness=2)
laneCenter = (leftFitX[ysize-1] + rightFitX[ysize-1]) / 2.
offsetInPixels = xsize/2. - laneCenter
offsetInMeters = offsetInPixels * xm_per_pix
# print('lane offset is ', offsetInMeters)
cv2.putText(newwarp, 'Lane Offset: {:.2f}m'.format(offsetInMeters), (10, 100), cv2.FONT_HERSHEY_DUPLEX, 1.5, 255, thickness=2)
return newwarp
def playVideo(path):
imageio.plugins.ffmpeg.download()
clip = VideoFileClip(path)
x = clip.iter_frames(dtype="uint8")
print(clip.duration)
t = 0.
while (t < clip.duration):
frame = clip.get_frame(t)
bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
cv2.imshow('window', bgr)
cv2.waitKey(40)
t = t + 0.04
cv2.destroyAllWindows()
def plot2Images(image1, image2, title1='image1', title2='image2', color1=None, color2=None):
plt.figure(figsize=(10, 5))
plt.subplot(121)
plt.imshow(image1, cmap=color1)
plt.title(title1)
plt.subplot(122)
plt.imshow(image2, cmap=color2)
plt.title(title2)
plt.show()
def plotImage(image=None, title='Image', color=None):
plt.figure(figsize=(10, 5))
plt.imshow(image)
plt.title(title)
plt.show()
cs = None
ip = None
def applyThreshold(image):
global ip
rChannel = ip.colorThreshold(image, 'r', (200, 255))
sChannel = ip.hlsThreshold(image, 's', (90, 255))
sobelxImage = ip.abs_sobel_thresh(image, thresh=(20, 100))
sobelyImage = ip.abs_sobel_thresh(image,orient='y', thresh = (20, 100))
magThreshImage = ip.mag_thresh(image, mag_thresh=(20, 100))
dirThreshImage = ip.dir_threshold(image, sobel_kernel=15, thresh=(0.9, 1.1))
combined_GrayScale = np.zeros_like(rChannel)
combined_GrayScale[(sobelxImage == 1) | (rChannel == 1)] = 255
# plt.figure(figsize=(30, 15))
# plt.subplot(321)
# plt.imshow(image, 'gray')
# plt.title('Original')
#
# plt.subplot(322)
# plt.imshow(rChannel, cmap='gray')
# plt.title('R Channel Threshold')
#
# plt.subplot(323)
# plt.imshow(sChannel, cmap='gray')
# plt.title('S Channel Threshold')
#
# plt.subplot(324)
# plt.imshow(sobelxImage, cmap='gray')
# plt.title('Sobel X Threshold')
#
#
# plt.subplot(325)
# plt.imshow(sobelyImage, cmap='gray')
# plt.title('Sobel Y Threshold')
#
# plt.subplot(326)
# plt.imshow(magThreshImage, cmap='gray')
# plt.title('Mag Threshold')
#
# plt.subplot(427)
# plt.imshow(dirThreshImage, cmap='gray')
# plt.title('Dir Threshold')
plt.show()
return combined_GrayScale
# Processing pipieline for lane detection. Contains preprocessing steps for the image like - rectifcation and thresholding,
# before feeling into the lane detection pipeline
def process_image(image):
# NOTE: The output you return should be a color image (3 channel) for processing video below
global cs
rectifiedImage = cs.rectifyImage(image)
# plot2Images(image, rectifiedImage, 'Original Image', 'Rectified Image', None, None)
thresholdedImage = applyThreshold(rectifiedImage)
# plot2Images(rectifiedImage, thresholdedImage, 'Original Rectified Image', 'Thresholded Image', None, 'gray')
detectedLanes = advLaneDetectionPipeline(thresholdedImage)
result = cv2.addWeighted(rectifiedImage, 1, detectedLanes, 0.3, 0)
# you should return the final output (image with lines are drawn on lanes)
return result
def main(args):
global cs, ip
calibrationImageFolder = 'camera_cal'
print(calibrationImageFolder + '/*.jpg')
imagePaths = glob.glob(calibrationImageFolder + '/*.jpg')
print(imagePaths)
cs = CameraSetup()
cs.cameraCalibration(imagePaths, (9, 6))
# testDistortedImage = plt.imread('camera_cal/calibration1.jpg')
# testRectifiedImage = cs.rectifyImage(testDistortedImage)
# plot2Images(testDistortedImage, testRectifiedImage, 'Original Image', 'Rectified Image')
ip = ImageProc()
test_image_path = 'test_images/test2.jpg'
rgbImage = plt.imread(test_image_path)
test_result = process_image(rgbImage)
plot2Images(rgbImage, test_result, 'Original Image', 'Rectified and Processed Image')
plotImage(test_result, 'Lane Detection')
video_name = 'challenge_video_out2.mp4'
clip = VideoFileClip('challenge_video.mp4')
white_clip = clip.fl_image(process_image) # NOTE: this function expects color images!!
white_clip.write_videofile(video_name, audio=False)
print('Destroying all the windows...')
cv2.destroyAllWindows()
if __name__ == '__main__':
main(sys.argv)