This repository contains the code mentioned in the report which can be found here.
- bctpy:
$pip install bctpy
- cdlib:
$pip install cdlib
- scipy:
$pip install scipy
- pandas:
$pip install pandas
- matplotlib:
$pip install matplotlib
Tested in python 3.7
/BrainConnectivityToolboxWrapper/
- Contains code to compute multiple metrics.
- More information on its own README file.
/data/pre-processed/
- The original data
/data/processed/
- Data after some transformations for our usage (file process.py). Includes edge list and matrices.
- Also includes some templates:
- lobes.node: division of each lobe by color.
- communities_template.node: coordinates of each of the 68 nodes.
- template.node: template based on the Desikan atlas.
/DesikanViz/
- Populates the Desikan template for visualization.
/reports/
- Includes code to generate bar charts, box plots and scatter plots (plots.py).
Remaining folders are for saving the analysis results and statistics.
Run: $python main.py
from root directory.
Parameters of function analyse
may be changed, to select which metrics to run:
degree_centrality = True/False
node_strength = True/False,
clustering_coeff = True/False,
weighted_clustering_coeff = True/False,
average_path_len = True/False,
betweenness_centrality = True/False,
newman_modularity = True/False,
edge_betweenness = True/False,
rich_club = True/False,
participation_coefficient = True/False,
communities_algorithm=
'all'/'louvain'/'spinglass'/'walktrap'/'girvan_newman'/'infomap'
desikan_metric=
set this parameter with a node metric. (stats file header column)
- João Coelho
- João Saraiva