forked from leanprover/lean2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconnectives.hlean
155 lines (102 loc) · 4.93 KB
/
connectives.hlean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura, Haitao Zhang
The propositional connectives.
-/
prelude
import .types
open unit
variables {a b c d : Type}
/- implies -/
definition imp (a b : Type) : Type := a → b
definition imp.id (H : a) : a := H
definition imp.intro (H : a) (H₂ : b) : a := H
definition imp.mp (H : a) (H₂ : a → b) : b :=
H₂ H
definition imp.syl (H : a → b) (H₂ : c → a) (Hc : c) : b :=
H (H₂ Hc)
definition imp.left (H : a → b) (H₂ : b → c) (Ha : a) : c :=
H₂ (H Ha)
definition imp_unit (a : Type) : (a → unit) ↔ unit :=
iff_unit_intro (imp.intro star)
definition unit_imp (a : Type) : (unit → a) ↔ a :=
iff.intro (assume H, H star) imp.intro
definition imp_empty (a : Type) : (a → empty) ↔ ¬ a := iff.rfl
definition empty_imp (a : Type) : (empty → a) ↔ unit :=
iff_unit_intro empty.elim
/- not -/
definition not.elim {A : Type} (H1 : ¬a) (H2 : a) : A := absurd H2 H1
definition not.mto {a b : Type} : (a → b) → ¬b → ¬a := imp.left
definition not_imp_not_of_imp {a b : Type} : (a → b) → ¬b → ¬a := not.mto
definition not_not_of_not_implies : ¬(a → b) → ¬¬a :=
not.mto not.elim
definition not_of_not_implies : ¬(a → b) → ¬b :=
not.mto imp.intro
definition not_not_em : ¬¬(a ⊎ ¬a) :=
assume not_em : ¬(a ⊎ ¬a),
not_em (sum.inr (not.mto sum.inl not_em))
definition not_iff_not (H : a ↔ b) : ¬a ↔ ¬b :=
iff.intro (not.mto (iff.mpr H)) (not.mto (iff.mp H))
/- prod -/
definition not_prod_of_not_left (b : Type) : ¬a → ¬(a × b) :=
not.mto prod.pr1
definition not_prod_of_not_right (a : Type) {b : Type} : ¬b → ¬(a × b) :=
not.mto prod.pr2
definition prod.imp_left (H : a → b) : a × c → b × c :=
prod.imp H imp.id
definition prod.imp_right (H : a → b) : c × a → c × b :=
prod.imp imp.id H
definition prod_of_prod_of_imp_of_imp (H₁ : a × b) (H₂ : a → c) (H₃ : b → d) : c × d :=
prod.imp H₂ H₃ H₁
definition prod_of_prod_of_imp_left (H₁ : a × c) (H : a → b) : b × c :=
prod.imp_left H H₁
definition prod_of_prod_of_imp_right (H₁ : c × a) (H : a → b) : c × b :=
prod.imp_right H H₁
definition prod_imp_iff (a b c : Type) : (a × b → c) ↔ (a → b → c) :=
iff.intro (λH a b, H (pair a b)) prod.rec
/- sum -/
definition not_sum : ¬a → ¬b → ¬(a ⊎ b) := sum.rec
definition sum_of_sum_of_imp_of_imp (H₁ : a ⊎ b) (H₂ : a → c) (H₃ : b → d) : c ⊎ d :=
sum.imp H₂ H₃ H₁
definition sum_of_sum_of_imp_left (H₁ : a ⊎ c) (H : a → b) : b ⊎ c :=
sum.imp_left H H₁
definition sum_of_sum_of_imp_right (H₁ : c ⊎ a) (H : a → b) : c ⊎ b :=
sum.imp_right H H₁
definition sum.elim3 (H : a ⊎ b ⊎ c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d :=
sum.elim H Ha (assume H₂, sum.elim H₂ Hb Hc)
definition sum_resolve_right (H₁ : a ⊎ b) (H₂ : ¬a) : b :=
sum.elim H₁ (not.elim H₂) imp.id
definition sum_resolve_left (H₁ : a ⊎ b) : ¬b → a :=
sum_resolve_right (sum.swap H₁)
definition sum.imp_distrib : ((a ⊎ b) → c) ↔ ((a → c) × (b → c)) :=
iff.intro
(λH, pair (imp.syl H sum.inl) (imp.syl H sum.inr))
(prod.rec sum.rec)
definition sum_iff_right_of_imp {a b : Type} (Ha : a → b) : (a ⊎ b) ↔ b :=
iff.intro (sum.rec Ha imp.id) sum.inr
definition sum_iff_left_of_imp {a b : Type} (Hb : b → a) : (a ⊎ b) ↔ a :=
iff.intro (sum.rec imp.id Hb) sum.inl
definition sum_iff_sum (H1 : a ↔ c) (H2 : b ↔ d) : (a ⊎ b) ↔ (c ⊎ d) :=
iff.intro (sum.imp (iff.mp H1) (iff.mp H2)) (sum.imp (iff.mpr H1) (iff.mpr H2))
/- distributivity -/
definition prod.pr1_distrib (a b c : Type) : a × (b ⊎ c) ↔ (a × b) ⊎ (a × c) :=
iff.intro
(prod.rec (λH, sum.imp (pair H) (pair H)))
(sum.rec (prod.imp_right sum.inl) (prod.imp_right sum.inr))
definition prod.pr2_distrib (a b c : Type) : (a ⊎ b) × c ↔ (a × c) ⊎ (b × c) :=
iff.trans (iff.trans !prod.comm !prod.pr1_distrib) (sum_iff_sum !prod.comm !prod.comm)
definition sum.left_distrib (a b c : Type) : a ⊎ (b × c) ↔ (a ⊎ b) × (a ⊎ c) :=
iff.intro
(sum.rec (λH, pair (sum.inl H) (sum.inl H)) (prod.imp sum.inr sum.inr))
(prod.rec (sum.rec (imp.syl imp.intro sum.inl) (imp.syl sum.imp_right pair)))
definition sum.right_distrib (a b c : Type) : (a × b) ⊎ c ↔ (a ⊎ c) × (b ⊎ c) :=
iff.trans (iff.trans !sum.comm !sum.left_distrib) (prod_congr !sum.comm !sum.comm)
/- iff -/
definition iff.def : (a ↔ b) = ((a → b) × (b → a)) := rfl
definition pi_imp_pi {A : Type} {P Q : A → Type} (H : Πa, (P a → Q a)) (p : Πa, P a) (a : A) : Q a :=
(H a) (p a)
definition pi_iff_pi {A : Type} {P Q : A → Type} (H : Πa, (P a ↔ Q a)) : (Πa, P a) ↔ (Πa, Q a) :=
iff.intro (λp a, iff.elim_left (H a) (p a)) (λq a, iff.elim_right (H a) (q a))
definition imp_iff {P : Type} (Q : Type) (p : P) : (P → Q) ↔ Q :=
iff.intro (λf, f p) imp.intro