forked from leanprover/lean2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogic.hlean
702 lines (498 loc) · 23.7 KB
/
logic.hlean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Floris van Doorn
-/
prelude
import init.reserved_notation
open unit
definition id [reducible] [unfold_full] {A : Type} (a : A) : A :=
a
/- not -/
definition not [reducible] (a : Type) := a → empty
prefix ¬ := not
definition absurd {a b : Type} (H₁ : a) (H₂ : ¬a) : b :=
empty.rec (λ e, b) (H₂ H₁)
definition mt {a b : Type} (H₁ : a → b) (H₂ : ¬b) : ¬a :=
assume Ha : a, absurd (H₁ Ha) H₂
definition not_empty : ¬empty :=
assume H : empty, H
definition non_contradictory (a : Type) : Type := ¬¬a
definition non_contradictory_intro {a : Type} (Ha : a) : ¬¬a :=
assume Hna : ¬a, absurd Ha Hna
definition not.intro {a : Type} (H : a → empty) : ¬a := H
/- empty -/
definition empty.elim {c : Type} (H : empty) : c :=
empty.rec _ H
/- eq -/
infix = := eq
definition rfl [constructor] {A : Type} {a : A} := eq.refl a
/-
These notions are here only to make porting from the standard library easier.
They are defined again in init/path.hlean, and those definitions will be used
throughout the HoTT-library. That's why the notation for eq below is only local.
-/
namespace eq
variables {A : Type} {a b c : A}
definition subst [unfold 5] {P : A → Type} (H₁ : a = b) (H₂ : P a) : P b :=
eq.rec H₂ H₁
definition trans [unfold 5] (H₁ : a = b) (H₂ : b = c) : a = c :=
subst H₂ H₁
definition symm [unfold 4] (H : a = b) : b = a :=
subst H (refl a)
definition mp {a b : Type} : (a = b) → a → b :=
eq.rec_on
definition mpr {a b : Type} : (a = b) → b → a :=
assume H₁ H₂, eq.rec_on (eq.symm H₁) H₂
namespace ops end ops -- this is just to ensure that this namespace exists. There is nothing in it
end eq
local postfix ⁻¹ := eq.symm --input with \sy or \-1 or \inv
local infixl ⬝ := eq.trans
local infixr ▸ := eq.subst
-- Auxiliary definition used by automation. It has the same type of eq.rec in the standard library
definition eq.nrec.{l₁ l₂} {A : Type.{l₂}} {a : A} {C : A → Type.{l₁}} (H₁ : C a) (b : A) (H₂ : a = b) : C b :=
eq.rec H₁ H₂
definition congr {A B : Type} {f₁ f₂ : A → B} {a₁ a₂ : A} (H₁ : f₁ = f₂) (H₂ : a₁ = a₂) : f₁ a₁ = f₂ a₂ :=
eq.subst H₁ (eq.subst H₂ rfl)
definition congr_fun {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a :=
eq.subst H (eq.refl (f a))
definition congr_arg {A B : Type} (a a' : A) (f : A → B) (Ha : a = a') : f a = f a' :=
eq.subst Ha rfl
definition congr_arg2 {A B C : Type} (a a' : A) (b b' : B) (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' :=
eq.subst Ha (eq.subst Hb rfl)
section
variables {A : Type} {a b c: A}
open eq.ops
definition trans_rel_left (R : A → A → Type) (H₁ : R a b) (H₂ : b = c) : R a c :=
H₂ ▸ H₁
definition trans_rel_right (R : A → A → Type) (H₁ : a = b) (H₂ : R b c) : R a c :=
H₁⁻¹ ▸ H₂
end
attribute eq.subst [subst]
attribute eq.refl [refl]
attribute eq.trans [trans]
attribute eq.symm [symm]
namespace lift
definition down_up.{l₁ l₂} {A : Type.{l₁}} (a : A) : down (up.{l₁ l₂} a) = a :=
rfl
definition up_down.{l₁ l₂} {A : Type.{l₁}} (a : lift.{l₁ l₂} A) : up (down a) = a :=
lift.rec_on a (λ d, rfl)
end lift
/- ne -/
definition ne [reducible] {A : Type} (a b : A) := ¬(a = b)
notation a ≠ b := ne a b
namespace ne
open eq.ops
variable {A : Type}
variables {a b : A}
definition intro (H : a = b → empty) : a ≠ b := H
definition elim (H : a ≠ b) : a = b → empty := H
definition irrefl (H : a ≠ a) : empty := H rfl
definition symm (H : a ≠ b) : b ≠ a :=
assume (H₁ : b = a), H (H₁⁻¹)
end ne
definition empty_of_ne {A : Type} {a : A} : a ≠ a → empty := ne.irrefl
section
open eq.ops
variables {p : Type₀}
definition ne_empty_of_self : p → p ≠ empty :=
assume (Hp : p) (Heq : p = empty), Heq ▸ Hp
definition ne_unit_of_not : ¬p → p ≠ unit :=
assume (Hnp : ¬p) (Heq : p = unit), (Heq ▸ Hnp) star
definition unit_ne_empty : ¬unit = empty :=
ne_empty_of_self star
end
/- prod -/
abbreviation pair [constructor] := @prod.mk
infixr × := prod
variables {a b c d : Type}
attribute prod.rec [elim]
attribute prod.mk [intro!]
protected definition prod.elim [unfold 4] (H₁ : a × b) (H₂ : a → b → c) : c :=
prod.rec H₂ H₁
definition prod.swap [unfold 3] : a × b → b × a :=
prod.rec (λHa Hb, prod.mk Hb Ha)
/- sum -/
infixr ⊎ := sum
attribute sum.rec [elim]
protected definition sum.elim [unfold 4] (H₁ : a ⊎ b) (H₂ : a → c) (H₃ : b → c) : c :=
sum.rec H₂ H₃ H₁
definition non_contradictory_em (a : Type) : ¬¬(a ⊎ ¬a) :=
assume not_em : ¬(a ⊎ ¬a),
have neg_a : ¬a, from
assume pos_a : a, absurd (sum.inl pos_a) not_em,
absurd (sum.inr neg_a) not_em
definition sum.swap : a ⊎ b → b ⊎ a := sum.rec sum.inr sum.inl
/- iff -/
definition iff (a b : Type) := (a → b) × (b → a)
notation a <-> b := iff a b
notation a ↔ b := iff a b
definition iff.intro : (a → b) → (b → a) → (a ↔ b) := prod.mk
attribute iff.intro [intro!]
definition iff.elim : ((a → b) → (b → a) → c) → (a ↔ b) → c := prod.rec
attribute iff.elim [recursor 5] [elim]
definition iff.elim_left : (a ↔ b) → a → b := prod.pr1
definition iff.mp := @iff.elim_left
definition iff.elim_right : (a ↔ b) → b → a := prod.pr2
definition iff.mpr := @iff.elim_right
definition iff.refl [refl] (a : Type) : a ↔ a :=
iff.intro (assume H, H) (assume H, H)
definition iff.rfl {a : Type} : a ↔ a :=
iff.refl a
definition iff.trans [trans] (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
iff.intro
(assume Ha, iff.mp H₂ (iff.mp H₁ Ha))
(assume Hc, iff.mpr H₁ (iff.mpr H₂ Hc))
definition iff.symm [symm] (H : a ↔ b) : b ↔ a :=
iff.intro (iff.elim_right H) (iff.elim_left H)
definition iff.comm : (a ↔ b) ↔ (b ↔ a) :=
iff.intro iff.symm iff.symm
definition iff.of_eq {a b : Type} (H : a = b) : a ↔ b :=
eq.rec_on H iff.rfl
definition not_iff_not_of_iff (H₁ : a ↔ b) : ¬a ↔ ¬b :=
iff.intro
(assume (Hna : ¬ a) (Hb : b), Hna (iff.elim_right H₁ Hb))
(assume (Hnb : ¬ b) (Ha : a), Hnb (iff.elim_left H₁ Ha))
definition of_iff_unit (H : a ↔ unit) : a :=
iff.mp (iff.symm H) star
definition not_of_iff_empty : (a ↔ empty) → ¬a := iff.mp
definition iff_unit_intro (H : a) : a ↔ unit :=
iff.intro
(λ Hl, star)
(λ Hr, H)
definition iff_empty_intro (H : ¬a) : a ↔ empty :=
iff.intro H (empty.rec _)
definition not_non_contradictory_iff_absurd (a : Type) : ¬¬¬a ↔ ¬a :=
iff.intro
(λ (Hl : ¬¬¬a) (Ha : a), Hl (non_contradictory_intro Ha))
absurd
definition imp_congr [congr] (H1 : a ↔ c) (H2 : b ↔ d) : (a → b) ↔ (c → d) :=
iff.intro
(λHab Hc, iff.mp H2 (Hab (iff.mpr H1 Hc)))
(λHcd Ha, iff.mpr H2 (Hcd (iff.mp H1 Ha)))
definition not_not_intro (Ha : a) : ¬¬a :=
assume Hna : ¬a, Hna Ha
definition not_of_not_not_not (H : ¬¬¬a) : ¬a :=
λ Ha, absurd (not_not_intro Ha) H
definition not_unit [simp] : (¬ unit) ↔ empty :=
iff_empty_intro (not_not_intro star)
definition not_empty_iff [simp] : (¬ empty) ↔ unit :=
iff_unit_intro not_empty
definition not_congr (H : a ↔ b) : ¬a ↔ ¬b :=
iff.intro (λ H₁ H₂, H₁ (iff.mpr H H₂)) (λ H₁ H₂, H₁ (iff.mp H H₂))
definition ne_self_iff_empty [simp] {A : Type} (a : A) : (not (a = a)) ↔ empty :=
iff.intro empty_of_ne empty.elim
definition eq_self_iff_unit [simp] {A : Type} (a : A) : (a = a) ↔ unit :=
iff_unit_intro rfl
definition iff_not_self [simp] (a : Type) : (a ↔ ¬a) ↔ empty :=
iff_empty_intro (λ H,
have H' : ¬a, from (λ Ha, (iff.mp H Ha) Ha),
H' (iff.mpr H H'))
definition not_iff_self [simp] (a : Type) : (¬a ↔ a) ↔ empty :=
iff_empty_intro (λ H,
have H' : ¬a, from (λ Ha, (iff.mpr H Ha) Ha),
H' (iff.mp H H'))
definition unit_iff_empty [simp] : (unit ↔ empty) ↔ empty :=
iff_empty_intro (λ H, iff.mp H star)
definition empty_iff_unit [simp] : (empty ↔ unit) ↔ empty :=
iff_empty_intro (λ H, iff.mpr H star)
definition empty_of_unit_iff_empty : (unit ↔ empty) → empty :=
assume H, iff.mp H star
/- prod simp rules -/
definition prod.imp (H₂ : a → c) (H₃ : b → d) : a × b → c × d :=
prod.rec (λHa Hb, prod.mk (H₂ Ha) (H₃ Hb))
definition prod_congr [congr] (H1 : a ↔ c) (H2 : b ↔ d) : (a × b) ↔ (c × d) :=
iff.intro (prod.imp (iff.mp H1) (iff.mp H2)) (prod.imp (iff.mpr H1) (iff.mpr H2))
definition prod.comm [simp] : a × b ↔ b × a :=
iff.intro prod.swap prod.swap
definition prod.assoc [simp] : (a × b) × c ↔ a × (b × c) :=
iff.intro
(prod.rec (λ H' Hc, prod.rec (λ Ha Hb, prod.mk Ha (prod.mk Hb Hc)) H'))
(prod.rec (λ Ha, prod.rec (λ Hb Hc, prod.mk (prod.mk Ha Hb) Hc)))
definition prod.pr1_comm [simp] : a × (b × c) ↔ b × (a × c) :=
iff.trans (iff.symm !prod.assoc) (iff.trans (prod_congr !prod.comm !iff.refl) !prod.assoc)
definition prod_iff_left {a b : Type} (Hb : b) : (a × b) ↔ a :=
iff.intro prod.pr1 (λHa, prod.mk Ha Hb)
definition prod_iff_right {a b : Type} (Ha : a) : (a × b) ↔ b :=
iff.intro prod.pr2 (prod.mk Ha)
definition prod_unit [simp] (a : Type) : a × unit ↔ a :=
prod_iff_left star
definition unit_prod [simp] (a : Type) : unit × a ↔ a :=
prod_iff_right star
definition prod_empty [simp] (a : Type) : a × empty ↔ empty :=
iff_empty_intro prod.pr2
definition empty_prod [simp] (a : Type) : empty × a ↔ empty :=
iff_empty_intro prod.pr1
definition not_prod_self [simp] (a : Type) : (¬a × a) ↔ empty :=
iff_empty_intro (λ H, prod.elim H (λ H₁ H₂, absurd H₂ H₁))
definition prod_not_self [simp] (a : Type) : (a × ¬a) ↔ empty :=
iff_empty_intro (λ H, prod.elim H (λ H₁ H₂, absurd H₁ H₂))
definition prod_self [simp] (a : Type) : a × a ↔ a :=
iff.intro prod.pr1 (assume H, prod.mk H H)
/- sum simp rules -/
definition sum.imp (H₂ : a → c) (H₃ : b → d) : a ⊎ b → c ⊎ d :=
sum.rec (λ H, sum.inl (H₂ H)) (λ H, sum.inr (H₃ H))
definition sum.imp_left (H : a → b) : a ⊎ c → b ⊎ c :=
sum.imp H id
definition sum.imp_right (H : a → b) : c ⊎ a → c ⊎ b :=
sum.imp id H
definition sum_congr [congr] (H1 : a ↔ c) (H2 : b ↔ d) : (a ⊎ b) ↔ (c ⊎ d) :=
iff.intro (sum.imp (iff.mp H1) (iff.mp H2)) (sum.imp (iff.mpr H1) (iff.mpr H2))
definition sum.comm [simp] : a ⊎ b ↔ b ⊎ a := iff.intro sum.swap sum.swap
definition sum.assoc [simp] : (a ⊎ b) ⊎ c ↔ a ⊎ (b ⊎ c) :=
iff.intro
(sum.rec (sum.imp_right sum.inl) (λ H, sum.inr (sum.inr H)))
(sum.rec (λ H, sum.inl (sum.inl H)) (sum.imp_left sum.inr))
definition sum.left_comm [simp] : a ⊎ (b ⊎ c) ↔ b ⊎ (a ⊎ c) :=
iff.trans (iff.symm !sum.assoc) (iff.trans (sum_congr !sum.comm !iff.refl) !sum.assoc)
definition sum_unit [simp] (a : Type) : a ⊎ unit ↔ unit :=
iff_unit_intro (sum.inr star)
definition unit_sum [simp] (a : Type) : unit ⊎ a ↔ unit :=
iff_unit_intro (sum.inl star)
definition sum_empty [simp] (a : Type) : a ⊎ empty ↔ a :=
iff.intro (sum.rec id empty.elim) sum.inl
definition empty_sum [simp] (a : Type) : empty ⊎ a ↔ a :=
iff.trans sum.comm !sum_empty
definition sum_self [simp] (a : Type) : a ⊎ a ↔ a :=
iff.intro (sum.rec id id) sum.inl
/- sum resolution rulse -/
definition sum.resolve_left {a b : Type} (H : a ⊎ b) (na : ¬ a) : b :=
sum.elim H (λ Ha, absurd Ha na) id
definition sum.neg_resolve_left {a b : Type} (H : ¬ a ⊎ b) (Ha : a) : b :=
sum.elim H (λ na, absurd Ha na) id
definition sum.resolve_right {a b : Type} (H : a ⊎ b) (nb : ¬ b) : a :=
sum.elim H id (λ Hb, absurd Hb nb)
definition sum.neg_resolve_right {a b : Type} (H : a ⊎ ¬ b) (Hb : b) : a :=
sum.elim H id (λ nb, absurd Hb nb)
/- iff simp rules -/
definition iff_unit [simp] (a : Type) : (a ↔ unit) ↔ a :=
iff.intro (assume H, iff.mpr H star) iff_unit_intro
definition unit_iff [simp] (a : Type) : (unit ↔ a) ↔ a :=
iff.trans iff.comm !iff_unit
definition iff_empty [simp] (a : Type) : (a ↔ empty) ↔ ¬ a :=
iff.intro prod.pr1 iff_empty_intro
definition empty_iff [simp] (a : Type) : (empty ↔ a) ↔ ¬ a :=
iff.trans iff.comm !iff_empty
definition iff_self [simp] (a : Type) : (a ↔ a) ↔ unit :=
iff_unit_intro iff.rfl
definition iff_congr [congr] (H1 : a ↔ c) (H2 : b ↔ d) : (a ↔ b) ↔ (c ↔ d) :=
prod_congr (imp_congr H1 H2) (imp_congr H2 H1)
/- decidable -/
inductive decidable [class] (p : Type) : Type :=
| inl : p → decidable p
| inr : ¬p → decidable p
definition decidable_unit [instance] : decidable unit :=
decidable.inl star
definition decidable_empty [instance] : decidable empty :=
decidable.inr not_empty
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition
-- to the branches
definition dite (c : Type) [H : decidable c] {A : Type} : (c → A) → (¬ c → A) → A :=
decidable.rec_on H
/- if-then-else -/
definition ite (c : Type) [H : decidable c] {A : Type} (t e : A) : A :=
decidable.rec_on H (λ Hc, t) (λ Hnc, e)
namespace decidable
variables {p q : Type}
definition by_cases {q : Type} [C : decidable p] : (p → q) → (¬p → q) → q := !dite
theorem em (p : Type) [H : decidable p] : p ⊎ ¬p := by_cases sum.inl sum.inr
theorem by_contradiction [Hp : decidable p] (H : ¬p → empty) : p :=
if H1 : p then H1 else empty.rec _ (H H1)
end decidable
section
variables {p q : Type}
open decidable
definition decidable_of_decidable_of_iff (Hp : decidable p) (H : p ↔ q) : decidable q :=
if Hp : p then inl (iff.mp H Hp)
else inr (iff.mp (not_iff_not_of_iff H) Hp)
definition decidable_of_decidable_of_eq {p q : Type} (Hp : decidable p) (H : p = q)
: decidable q :=
decidable_of_decidable_of_iff Hp (iff.of_eq H)
protected definition sum.by_cases [Hp : decidable p] [Hq : decidable q] {A : Type}
(h : p ⊎ q) (h₁ : p → A) (h₂ : q → A) : A :=
if hp : p then h₁ hp else
if hq : q then h₂ hq else
empty.rec _ (sum.elim h hp hq)
end
section
variables {p q : Type}
open decidable (rec_on inl inr)
definition decidable_prod [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p × q) :=
if hp : p then
if hq : q then inl (prod.mk hp hq)
else inr (assume H : p × q, hq (prod.pr2 H))
else inr (assume H : p × q, hp (prod.pr1 H))
definition decidable_sum [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ⊎ q) :=
if hp : p then inl (sum.inl hp) else
if hq : q then inl (sum.inr hq) else
inr (sum.rec hp hq)
definition decidable_not [instance] [Hp : decidable p] : decidable (¬p) :=
if hp : p then inr (absurd hp) else inl hp
definition decidable_implies [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) :=
if hp : p then
if hq : q then inl (assume H, hq)
else inr (assume H : p → q, absurd (H hp) hq)
else inl (assume Hp, absurd Hp hp)
definition decidable_iff [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) :=
decidable_prod
end
definition decidable_pred [reducible] {A : Type} (R : A → Type) := Π (a : A), decidable (R a)
definition decidable_rel [reducible] {A : Type} (R : A → A → Type) := Π (a b : A), decidable (R a b)
definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A)
definition decidable_ne [instance] {A : Type} [H : decidable_eq A] (a b : A) : decidable (a ≠ b) :=
decidable_implies
namespace bool
theorem ff_ne_tt : ff = tt → empty
| [none]
end bool
open bool
definition is_dec_eq {A : Type} (p : A → A → bool) : Type := Π ⦃x y : A⦄, p x y = tt → x = y
definition is_dec_refl {A : Type} (p : A → A → bool) : Type := Πx, p x x = tt
open decidable
protected definition bool.has_decidable_eq [instance] : Πa b : bool, decidable (a = b)
| ff ff := inl rfl
| ff tt := inr ff_ne_tt
| tt ff := inr (ne.symm ff_ne_tt)
| tt tt := inl rfl
definition decidable_eq_of_bool_pred {A : Type} {p : A → A → bool} (H₁ : is_dec_eq p) (H₂ : is_dec_refl p) : decidable_eq A :=
take x y : A, if Hp : p x y = tt then inl (H₁ Hp)
else inr (assume Hxy : x = y, (eq.subst Hxy Hp) (H₂ y))
/- inhabited -/
inductive inhabited [class] (A : Type) : Type :=
mk : A → inhabited A
protected definition inhabited.value {A : Type} : inhabited A → A :=
inhabited.rec (λa, a)
protected definition inhabited.destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
inhabited.rec H2 H1
definition default (A : Type) [H : inhabited A] : A :=
inhabited.value H
definition arbitrary [irreducible] (A : Type) [H : inhabited A] : A :=
inhabited.value H
definition Type.is_inhabited [instance] : inhabited Type :=
inhabited.mk (lift unit)
definition inhabited_fun [instance] (A : Type) {B : Type} [H : inhabited B] : inhabited (A → B) :=
inhabited.rec_on H (λb, inhabited.mk (λa, b))
definition inhabited_Pi [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] :
inhabited (Πx, B x) :=
inhabited.mk (λa, !default)
protected definition bool.is_inhabited [instance] : inhabited bool :=
inhabited.mk ff
protected definition pos_num.is_inhabited [instance] : inhabited pos_num :=
inhabited.mk pos_num.one
protected definition num.is_inhabited [instance] : inhabited num :=
inhabited.mk num.zero
inductive nonempty [class] (A : Type) : Type :=
intro : A → nonempty A
protected definition nonempty.elim {A : Type} {B : Type} (H1 : nonempty A) (H2 : A → B) : B :=
nonempty.rec H2 H1
theorem nonempty_of_inhabited [instance] {A : Type} [H : inhabited A] : nonempty A :=
nonempty.intro !default
theorem nonempty_of_exists {A : Type} {P : A → Type} : (sigma P) → nonempty A :=
sigma.rec (λw H, nonempty.intro w)
/- subsingleton -/
inductive subsingleton [class] (A : Type) : Type :=
intro : (Π a b : A, a = b) → subsingleton A
protected definition subsingleton.elim {A : Type} [H : subsingleton A] : Π(a b : A), a = b :=
subsingleton.rec (λp, p) H
protected theorem rec_subsingleton {p : Type} [H : decidable p]
{H1 : p → Type} {H2 : ¬p → Type}
[H3 : Π(h : p), subsingleton (H1 h)] [H4 : Π(h : ¬p), subsingleton (H2 h)]
: subsingleton (decidable.rec_on H H1 H2) :=
decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases"
theorem if_pos {c : Type} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (ite c t e) = t :=
decidable.rec
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e))
(λ Hnc : ¬c, absurd Hc Hnc)
H
theorem if_neg {c : Type} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (ite c t e) = e :=
decidable.rec
(λ Hc : c, absurd Hc Hnc)
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e))
H
theorem if_t_t [simp] (c : Type) [H : decidable c] {A : Type} (t : A) : (ite c t t) = t :=
decidable.rec
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t))
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t))
H
theorem implies_of_if_pos {c t e : Type} [H : decidable c] (h : ite c t e) : c → t :=
assume Hc, eq.rec_on (if_pos Hc) h
theorem implies_of_if_neg {c t e : Type} [H : decidable c] (h : ite c t e) : ¬c → e :=
assume Hnc, eq.rec_on (if_neg Hnc) h
theorem if_ctx_congr {A : Type} {b c : Type} [dec_b : decidable b] [dec_c : decidable c]
{x y u v : A}
(h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) :
ite b x y = ite c u v :=
decidable.rec_on dec_b
(λ hp : b, calc
ite b x y = x : if_pos hp
... = u : h_t (iff.mp h_c hp)
... = ite c u v : if_pos (iff.mp h_c hp))
(λ hn : ¬b, calc
ite b x y = y : if_neg hn
... = v : h_e (iff.mp (not_iff_not_of_iff h_c) hn)
... = ite c u v : if_neg (iff.mp (not_iff_not_of_iff h_c) hn))
theorem if_congr [congr] {A : Type} {b c : Type} [dec_b : decidable b] [dec_c : decidable c]
{x y u v : A}
(h_c : b ↔ c) (h_t : x = u) (h_e : y = v) :
ite b x y = ite c u v :=
@if_ctx_congr A b c dec_b dec_c x y u v h_c (λ h, h_t) (λ h, h_e)
theorem if_ctx_simp_congr {A : Type} {b c : Type} [dec_b : decidable b] {x y u v : A}
(h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) :
ite b x y = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
@if_ctx_congr A b c dec_b (decidable_of_decidable_of_iff dec_b h_c) x y u v h_c h_t h_e
theorem if_simp_congr [congr] {A : Type} {b c : Type} [dec_b : decidable b] {x y u v : A}
(h_c : b ↔ c) (h_t : x = u) (h_e : y = v) :
ite b x y = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
@if_ctx_simp_congr A b c dec_b x y u v h_c (λ h, h_t) (λ h, h_e)
definition if_unit [simp] {A : Type} (t e : A) : (if unit then t else e) = t :=
if_pos star
definition if_empty [simp] {A : Type} (t e : A) : (if empty then t else e) = e :=
if_neg not_empty
theorem if_ctx_congr_prop {b c x y u v : Type} [dec_b : decidable b] [dec_c : decidable c]
(h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) :
ite b x y ↔ ite c u v :=
decidable.rec_on dec_b
(λ hp : b, calc
ite b x y ↔ x : iff.of_eq (if_pos hp)
... ↔ u : h_t (iff.mp h_c hp)
... ↔ ite c u v : iff.of_eq (if_pos (iff.mp h_c hp)))
(λ hn : ¬b, calc
ite b x y ↔ y : iff.of_eq (if_neg hn)
... ↔ v : h_e (iff.mp (not_iff_not_of_iff h_c) hn)
... ↔ ite c u v : iff.of_eq (if_neg (iff.mp (not_iff_not_of_iff h_c) hn)))
theorem if_congr_prop [congr] {b c x y u v : Type} [dec_b : decidable b] [dec_c : decidable c]
(h_c : b ↔ c) (h_t : x ↔ u) (h_e : y ↔ v) :
ite b x y ↔ ite c u v :=
if_ctx_congr_prop h_c (λ h, h_t) (λ h, h_e)
theorem if_ctx_simp_congr_prop {b c x y u v : Type} [dec_b : decidable b]
(h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) :
ite b x y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Type u v) :=
@if_ctx_congr_prop b c x y u v dec_b (decidable_of_decidable_of_iff dec_b h_c) h_c h_t h_e
theorem if_simp_congr_prop [congr] {b c x y u v : Type} [dec_b : decidable b]
(h_c : b ↔ c) (h_t : x ↔ u) (h_e : y ↔ v) :
ite b x y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Type u v) :=
@if_ctx_simp_congr_prop b c x y u v dec_b h_c (λ h, h_t) (λ h, h_e)
-- Remark: dite and ite are "definitionally equal" when we ignore the proofs.
theorem dite_ite_eq (c : Type) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e :=
rfl
definition is_unit (c : Type) [H : decidable c] : Type₀ :=
if c then unit else empty
definition is_empty (c : Type) [H : decidable c] : Type₀ :=
if c then empty else unit
definition of_is_unit {c : Type} [H₁ : decidable c] (H₂ : is_unit c) : c :=
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, empty.rec _ (if_neg Hnc ▸ H₂))
notation `dec_star` := of_is_unit star
theorem not_of_not_is_unit {c : Type} [H₁ : decidable c] (H₂ : ¬ is_unit c) : ¬ c :=
if Hc : c then absurd star (if_pos Hc ▸ H₂) else Hc
theorem not_of_is_empty {c : Type} [H₁ : decidable c] (H₂ : is_empty c) : ¬ c :=
if Hc : c then empty.rec _ (if_pos Hc ▸ H₂) else Hc
theorem of_not_is_empty {c : Type} [H₁ : decidable c] (H₂ : ¬ is_empty c) : c :=
if Hc : c then Hc else absurd star (if_neg Hc ▸ H₂)
-- The following symbols should not be considered in the pattern inference procedure used by
-- heuristic instantiation.
attribute prod sum not iff ite dite eq ne [no_pattern]
-- namespace used to collect congruence rules for "contextual simplification"
namespace contextual
attribute if_ctx_simp_congr [congr]
attribute if_ctx_simp_congr_prop [congr]
end contextual