forked from leanprover/lean2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpathover.hlean
498 lines (380 loc) · 20.2 KB
/
pathover.hlean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Basic theorems about pathovers
-/
prelude
import .path .equiv
open equiv is_equiv function
variables {A A' : Type} {B B' : A → Type} {B'' : A' → Type} {C : Π⦃a⦄, B a → Type}
{a a₂ a₃ a₄ : A} {p p' : a = a₂} {p₂ : a₂ = a₃} {p₃ : a₃ = a₄} {p₁₃ : a = a₃}
{a' a₂' a₃' : A'} {b b' : B a} {b₂ b₂' : B a₂} {b₃ : B a₃} {b₄ : B a₄}
{c : C b} {c₂ : C b₂}
namespace eq
inductive pathover.{l} (B : A → Type.{l}) (b : B a) : Π{a₂ : A}, a = a₂ → B a₂ → Type.{l} :=
idpatho : pathover B b (refl a) b
notation b ` =[`:50 p:0 `] `:0 b₂:50 := pathover _ b p b₂
notation b ` =[`:50 p:0 `; `:0 B `] `:0 b₂:50 := pathover B b p b₂
definition idpo [reducible] [constructor] : b =[refl a] b :=
pathover.idpatho b
definition idpatho [reducible] [constructor] (b : B a) : b =[refl a] b :=
pathover.idpatho b
/- equivalences with equality using transport -/
definition pathover_of_tr_eq [unfold 5 8] (r : p ▸ b = b₂) : b =[p] b₂ :=
by cases p; cases r; constructor
definition pathover_of_eq_tr [unfold 5 8] (r : b = p⁻¹ ▸ b₂) : b =[p] b₂ :=
by cases p; cases r; constructor
definition tr_eq_of_pathover [unfold 8] (r : b =[p] b₂) : p ▸ b = b₂ :=
by cases r; reflexivity
definition eq_tr_of_pathover [unfold 8] (r : b =[p] b₂) : b = p⁻¹ ▸ b₂ :=
by cases r; reflexivity
definition pathover_equiv_tr_eq [constructor] (p : a = a₂) (b : B a) (b₂ : B a₂)
: (b =[p] b₂) ≃ (p ▸ b = b₂) :=
begin
fapply equiv.MK,
{ exact tr_eq_of_pathover},
{ exact pathover_of_tr_eq},
{ intro r, cases p, cases r, apply idp},
{ intro r, cases r, apply idp},
end
definition pathover_equiv_eq_tr [constructor] (p : a = a₂) (b : B a) (b₂ : B a₂)
: (b =[p] b₂) ≃ (b = p⁻¹ ▸ b₂) :=
begin
fapply equiv.MK,
{ exact eq_tr_of_pathover},
{ exact pathover_of_eq_tr},
{ intro r, cases p, cases r, apply idp},
{ intro r, cases r, apply idp},
end
definition pathover_tr [unfold 5] (p : a = a₂) (b : B a) : b =[p] p ▸ b :=
by cases p; constructor
definition tr_pathover [unfold 5] (p : a = a₂) (b : B a₂) : p⁻¹ ▸ b =[p] b :=
by cases p; constructor
definition concato [unfold 12] (r : b =[p] b₂) (r₂ : b₂ =[p₂] b₃) : b =[p ⬝ p₂] b₃ :=
by induction r₂; exact r
definition inverseo [unfold 8] (r : b =[p] b₂) : b₂ =[p⁻¹] b :=
by induction r; constructor
definition concato_eq [unfold 10] (r : b =[p] b₂) (q : b₂ = b₂') : b =[p] b₂' :=
by induction q; exact r
definition eq_concato [unfold 9] (q : b = b') (r : b' =[p] b₂) : b =[p] b₂ :=
by induction q; exact r
definition change_path [unfold 9] (q : p = p') (r : b =[p] b₂) : b =[p'] b₂ :=
q ▸ r
definition change_path_idp [unfold_full] (r : b =[p] b₂) : change_path idp r = r :=
by reflexivity
-- infix ` ⬝ ` := concato
infix ` ⬝o `:72 := concato
infix ` ⬝op `:73 := concato_eq
infix ` ⬝po `:74 := eq_concato
-- postfix `⁻¹` := inverseo
postfix `⁻¹ᵒ`:(max+10) := inverseo
definition pathover_cancel_right (q : b =[p ⬝ p₂] b₃) (r : b₃ =[p₂⁻¹] b₂) : b =[p] b₂ :=
change_path !con_inv_cancel_right (q ⬝o r)
definition pathover_cancel_right' (q : b =[p₁₃ ⬝ p₂⁻¹] b₂) (r : b₂ =[p₂] b₃) : b =[p₁₃] b₃ :=
change_path !inv_con_cancel_right (q ⬝o r)
definition pathover_cancel_left (q : b₂ =[p⁻¹] b) (r : b =[p ⬝ p₂] b₃) : b₂ =[p₂] b₃ :=
change_path !inv_con_cancel_left (q ⬝o r)
definition pathover_cancel_left' (q : b =[p] b₂) (r : b₂ =[p⁻¹ ⬝ p₁₃] b₃) : b =[p₁₃] b₃ :=
change_path !con_inv_cancel_left (q ⬝o r)
/- Some of the theorems analogous to theorems for = in init.path -/
definition cono_idpo (r : b =[p] b₂) : r ⬝o idpo = r :=
by reflexivity
definition idpo_cono (r : b =[p] b₂) : idpo ⬝o r =[idp_con p] r :=
by induction r; constructor
definition cono.assoc' (r : b =[p] b₂) (r₂ : b₂ =[p₂] b₃) (r₃ : b₃ =[p₃] b₄) :
r ⬝o (r₂ ⬝o r₃) =[!con.assoc'] (r ⬝o r₂) ⬝o r₃ :=
by induction r₃; constructor
definition cono.assoc (r : b =[p] b₂) (r₂ : b₂ =[p₂] b₃) (r₃ : b₃ =[p₃] b₄) :
(r ⬝o r₂) ⬝o r₃ =[!con.assoc] r ⬝o (r₂ ⬝o r₃) :=
by induction r₃; constructor
definition cono.right_inv (r : b =[p] b₂) : r ⬝o r⁻¹ᵒ =[!con.right_inv] idpo :=
by induction r; constructor
definition cono.left_inv (r : b =[p] b₂) : r⁻¹ᵒ ⬝o r =[!con.left_inv] idpo :=
by induction r; constructor
definition eq_of_pathover (q : a' =[p] a₂') : a' = a₂' :=
by cases q;reflexivity
definition pathover_of_eq [unfold 5 8] (p : a = a₂) (q : a' = a₂') : a' =[p] a₂' :=
by cases p;cases q;constructor
definition pathover_constant [constructor] (p : a = a₂) (a' a₂' : A') : a' =[p] a₂' ≃ a' = a₂' :=
begin
fapply equiv.MK,
{ exact eq_of_pathover},
{ exact pathover_of_eq p},
{ intro r, cases p, cases r, reflexivity},
{ intro r, cases r, reflexivity},
end
definition pathover_of_eq_tr_constant_inv (p : a = a₂) (a' : A')
: pathover_of_eq p (tr_constant p a')⁻¹ = pathover_tr p a' :=
by cases p; constructor
definition eq_of_pathover_idp [unfold 6] {b' : B a} (q : b =[idpath a] b') : b = b' :=
tr_eq_of_pathover q
--should B be explicit in the next two definitions?
definition pathover_idp_of_eq [unfold 6] {b' : B a} (q : b = b') : b =[idpath a] b' :=
pathover_of_tr_eq q
definition pathover_idp [constructor] (b : B a) (b' : B a) : b =[idpath a] b' ≃ b = b' :=
equiv.MK eq_of_pathover_idp
(pathover_idp_of_eq)
(to_right_inv !pathover_equiv_tr_eq)
(to_left_inv !pathover_equiv_tr_eq)
definition eq_of_pathover_idp_pathover_of_eq (a' : A') (p : a = a₂) :
eq_of_pathover_idp (pathover_of_eq (idpath a') p) = p :=
by induction p; reflexivity
variable (B)
definition idpo_concato_eq (r : b = b') : eq_of_pathover_idp (@idpo A B a b ⬝op r) = r :=
by induction r; reflexivity
variable {B}
-- definition pathover_idp (b : B a) (b' : B a) : b =[idpath a] b' ≃ b = b' :=
-- pathover_equiv_tr_eq idp b b'
-- definition eq_of_pathover_idp [reducible] {b' : B a} (q : b =[idpath a] b') : b = b' :=
-- to_fun !pathover_idp q
-- definition pathover_idp_of_eq [reducible] {b' : B a} (q : b = b') : b =[idpath a] b' :=
-- to_inv !pathover_idp q
definition idp_rec_on [recursor] [unfold 7] {P : Π⦃b₂ : B a⦄, b =[idpath a] b₂ → Type}
{b₂ : B a} (r : b =[idpath a] b₂) (H : P idpo) : P r :=
have H2 : P (pathover_idp_of_eq (eq_of_pathover_idp r)), from
eq.rec_on (eq_of_pathover_idp r) H,
proof left_inv !pathover_idp r ▸ H2 qed
definition rec_on_right [recursor] {P : Π⦃b₂ : B a₂⦄, b =[p] b₂ → Type}
{b₂ : B a₂} (r : b =[p] b₂) (H : P !pathover_tr) : P r :=
by cases r; exact H
definition rec_on_left [recursor] {P : Π⦃b : B a⦄, b =[p] b₂ → Type}
{b : B a} (r : b =[p] b₂) (H : P !tr_pathover) : P r :=
by cases r; exact H
--pathover with fibration B' ∘ f
definition pathover_ap [unfold 10] (B' : A' → Type) (f : A → A') {p : a = a₂}
{b : B' (f a)} {b₂ : B' (f a₂)} (q : b =[p] b₂) : b =[ap f p] b₂ :=
by cases q; constructor
definition pathover_of_pathover_ap (B' : A' → Type) (f : A → A') {p : a = a₂}
{b : B' (f a)} {b₂ : B' (f a₂)} (q : b =[ap f p] b₂) : b =[p] b₂ :=
by cases p; apply (idp_rec_on q); apply idpo
definition pathover_compose [constructor] (B' : A' → Type) (f : A → A') (p : a = a₂)
(b : B' (f a)) (b₂ : B' (f a₂)) : b =[p] b₂ ≃ b =[ap f p] b₂ :=
begin
fapply equiv.MK,
{ exact pathover_ap B' f},
{ exact pathover_of_pathover_ap B' f},
{ intro q, cases p, esimp, apply (idp_rec_on q), apply idp},
{ intro q, cases q, reflexivity},
end
definition pathover_of_pathover_tr (q : b =[p ⬝ p₂] p₂ ▸ b₂) : b =[p] b₂ :=
pathover_cancel_right q !pathover_tr⁻¹ᵒ
definition pathover_tr_of_pathover (q : b =[p₁₃ ⬝ p₂⁻¹] b₂) : b =[p₁₃] p₂ ▸ b₂ :=
pathover_cancel_right' q !pathover_tr
definition pathover_of_tr_pathover (q : p ▸ b =[p⁻¹ ⬝ p₁₃] b₃) : b =[p₁₃] b₃ :=
pathover_cancel_left' !pathover_tr q
definition tr_pathover_of_pathover (q : b =[p ⬝ p₂] b₃) : p ▸ b =[p₂] b₃ :=
pathover_cancel_left !pathover_tr⁻¹ᵒ q
definition pathover_tr_of_eq (q : b = b') : b =[p] p ▸ b' :=
by cases q;apply pathover_tr
definition tr_pathover_of_eq (q : b₂ = b₂') : p⁻¹ ▸ b₂ =[p] b₂' :=
by cases q;apply tr_pathover
definition eq_of_parallel_po_right (q : b =[p] b₂) (q' : b =[p] b₂') : b₂ = b₂' :=
begin
apply @eq_of_pathover_idp A B, apply change_path (con.left_inv p),
exact q⁻¹ᵒ ⬝o q'
end
definition eq_of_parallel_po_left (q : b =[p] b₂) (q' : b' =[p] b₂) : b = b' :=
begin
apply @eq_of_pathover_idp A B, apply change_path (con.right_inv p),
exact q ⬝o q'⁻¹ᵒ
end
variable (C)
definition transporto [unfold 9] (r : b =[p] b₂) (c : C b) : C b₂ :=
by induction r;exact c
infix ` ▸o `:75 := transporto _
definition fn_tro_eq_tro_fn {C' : Π ⦃a : A⦄, B a → Type} (q : b =[p] b₂)
(f : Π⦃a : A⦄ (b : B a), C b → C' b) (c : C b) : f b₂ (q ▸o c) = q ▸o (f b c) :=
by induction q; reflexivity
variable {C}
/- various variants of ap for pathovers -/
definition apd [unfold 6] (f : Πa, B a) (p : a = a₂) : f a =[p] f a₂ :=
by induction p; constructor
definition apd_idp [unfold_full] (f : Πa, B a) : apd f idp = @idpo A B a (f a) :=
by reflexivity
definition apo [unfold 12] {f : A → A'} (g : Πa, B a → B'' (f a)) (q : b =[p] b₂) :
g a b =[p] g a₂ b₂ :=
by induction q; constructor
definition apd011 [unfold 10] (f : Πa, B a → A') (Ha : a = a₂) (Hb : b =[Ha] b₂)
: f a b = f a₂ b₂ :=
by cases Hb; reflexivity
definition apd0111 [unfold 13 14] (f : Πa b, C b → A') (Ha : a = a₂) (Hb : b =[Ha] b₂)
(Hc : c =[apd011 C Ha Hb] c₂) : f a b c = f a₂ b₂ c₂ :=
by cases Hb; apply (idp_rec_on Hc); apply idp
definition apod11 {f : Πb, C b} {g : Πb₂, C b₂} (r : f =[p] g)
{b : B a} {b₂ : B a₂} (q : b =[p] b₂) : f b =[apd011 C p q] g b₂ :=
by cases r; apply (idp_rec_on q); constructor
definition apdo10 {f : Πb, C b} {g : Πb₂, C b₂} (r : f =[p] g)
(b : B a) : f b =[apd011 C p !pathover_tr] g (p ▸ b) :=
by cases r; constructor
definition apo10 [unfold 9] {f : B a → B' a} {g : B a₂ → B' a₂} (r : f =[p] g)
(b : B a) : f b =[p] g (p ▸ b) :=
by cases r; constructor
definition apo10_constant_right [unfold 9] {f : B a → A'} {g : B a₂ → A'} (r : f =[p] g)
(b : B a) : f b = g (p ▸ b) :=
by cases r; constructor
definition apo10_constant_left [unfold 9] {f : A' → B a} {g : A' → B a₂} (r : f =[p] g)
(a' : A') : f a' =[p] g a' :=
by cases r; constructor
definition apo11 {f : B a → B' a} {g : B a₂ → B' a₂} (r : f =[p] g)
(q : b =[p] b₂) : f b =[p] g b₂ :=
by induction q; exact apo10 r b
definition apo011 {A : Type} {B C D : A → Type} {a a' : A} {p : a = a'} {b : B a} {b' : B a'}
{c : C a} {c' : C a'} (f : Π⦃a⦄, B a → C a → D a) (q : b =[p] b') (r : c =[p] c') :
f b c =[p] f b' c' :=
begin induction q, induction r using idp_rec_on, exact idpo end
definition apdo011 {A : Type} {B : A → Type} {C : Π⦃a⦄, B a → Type}
(f : Π⦃a⦄ (b : B a), C b) {a a' : A} (p : a = a') {b : B a} {b' : B a'} (q : b =[p] b')
: f b =[apd011 C p q] f b' :=
by cases q; constructor
definition apdo0111 {A : Type} {B : A → Type} {C C' : Π⦃a⦄, B a → Type}
(f : Π⦃a⦄ {b : B a}, C b → C' b) {a a' : A} (p : a = a') {b : B a} {b' : B a'} (q : b =[p] b')
{c : C b} {c' : C b'} (r : c =[apd011 C p q] c')
: f c =[apd011 C' p q] f c' :=
begin
induction q, esimp at r, induction r using idp_rec_on, constructor
end
definition apo11_constant_right [unfold 12] {f : B a → A'} {g : B a₂ → A'}
(q : f =[p] g) (r : b =[p] b₂) : f b = g b₂ :=
eq_of_pathover (apo11 q r)
definition apd02 [unfold 8] (f : Πa, B a) {a a' : A} {p q : a = a'}
(r : p = q) : change_path r (apd f p) = apd f q :=
by induction r; reflexivity
/- properties about these "ap"s, transporto and pathover_ap -/
definition apd_con (f : Πa, B a) (p : a = a₂) (q : a₂ = a₃)
: apd f (p ⬝ q) = apd f p ⬝o apd f q :=
by cases p; cases q; reflexivity
definition apd_inv (f : Πa, B a) (p : a = a₂) : apd f p⁻¹ = (apd f p)⁻¹ᵒ :=
by cases p; reflexivity
/- probably more useful: apd_eq_ap -/
definition apd_eq_pathover_of_eq_ap (f : A → A') (p : a = a₂) :
apd f p = pathover_of_eq p (ap f p) :=
eq.rec_on p idp
definition apo_invo (f : Πa, B a → B' a) {Ha : a = a₂} (Hb : b =[Ha] b₂)
: (apo f Hb)⁻¹ᵒ = apo f Hb⁻¹ᵒ :=
by induction Hb; reflexivity
definition apd011_inv (f : Πa, B a → A') (Ha : a = a₂) (Hb : b =[Ha] b₂)
: (apd011 f Ha Hb)⁻¹ = (apd011 f Ha⁻¹ Hb⁻¹ᵒ) :=
by induction Hb; reflexivity
definition cast_apd011 (q : b =[p] b₂) (c : C b) : cast (apd011 C p q) c = q ▸o c :=
by induction q; reflexivity
definition apd_compose1 (g : Πa, B a → B' a) (f : Πa, B a) (p : a = a₂)
: apd (g ∘' f) p = apo g (apd f p) :=
by induction p; reflexivity
definition apd_compose2 (g : Πa', B'' a') (f : A → A') (p : a = a₂)
: apd (λa, g (f a)) p = pathover_of_pathover_ap B'' f (apd g (ap f p)) :=
by induction p; reflexivity
definition apo_tro (C : Π⦃a⦄, B' a → Type) (f : Π⦃a⦄, B a → B' a) (q : b =[p] b₂)
(c : C (f b)) : apo f q ▸o c = q ▸o c :=
by induction q; reflexivity
definition pathover_ap_tro {B' : A' → Type} (C : Π⦃a'⦄, B' a' → Type) (f : A → A')
{b : B' (f a)} {b₂ : B' (f a₂)} (q : b =[p] b₂) (c : C b) : pathover_ap B' f q ▸o c = q ▸o c :=
by induction q; reflexivity
definition pathover_ap_invo_tro {B' : A' → Type} (C : Π⦃a'⦄, B' a' → Type) (f : A → A')
{b : B' (f a)} {b₂ : B' (f a₂)} (q : b =[p] b₂) (c : C b₂)
: (pathover_ap B' f q)⁻¹ᵒ ▸o c = q⁻¹ᵒ ▸o c :=
by induction q; reflexivity
definition pathover_tro (q : b =[p] b₂) (c : C b) : c =[apd011 C p q] q ▸o c :=
by induction q; constructor
definition pathover_ap_invo {B' : A' → Type} (f : A → A') {p : a = a₂}
{b : B' (f a)} {b₂ : B' (f a₂)} (q : b =[p] b₂)
: pathover_ap B' f q⁻¹ᵒ =[ap_inv f p] (pathover_ap B' f q)⁻¹ᵒ :=
by induction q; exact idpo
definition tro_invo_tro {A : Type} {B : A → Type} (C : Π⦃a⦄, B a → Type)
{a a' : A} {p : a = a'} {b : B a} {b' : B a'} (q : b =[p] b') (c : C b') :
q ▸o (q⁻¹ᵒ ▸o c) = c :=
by induction q; reflexivity
definition invo_tro_tro {A : Type} {B : A → Type} (C : Π⦃a⦄, B a → Type)
{a a' : A} {p : a = a'} {b : B a} {b' : B a'} (q : b =[p] b') (c : C b) :
q⁻¹ᵒ ▸o (q ▸o c) = c :=
by induction q; reflexivity
definition cono_tro {A : Type} {B : A → Type} (C : Π⦃a⦄, B a → Type)
{a₁ a₂ a₃ : A} {p₁ : a₁ = a₂} {p₂ : a₂ = a₃} {b₁ : B a₁} {b₂ : B a₂} {b₃ : B a₃}
(q₁ : b₁ =[p₁] b₂) (q₂ : b₂ =[p₂] b₃) (c : C b₁) :
transporto C (q₁ ⬝o q₂) c = transporto C q₂ (transporto C q₁ c) :=
by induction q₂; reflexivity
definition is_equiv_transporto [constructor] {A : Type} {B : A → Type} (C : Π⦃a⦄, B a → Type)
{a a' : A} {p : a = a'} {b : B a} {b' : B a'} (q : b =[p] b') : is_equiv (transporto C q) :=
begin
fapply adjointify,
{ exact transporto C q⁻¹ᵒ},
{ exact tro_invo_tro C q},
{ exact invo_tro_tro C q}
end
definition equiv_apd011 [constructor] {A : Type} {B : A → Type} (C : Π⦃a⦄, B a → Type)
{a a' : A} {p : a = a'} {b : B a} {b' : B a'} (q : b =[p] b') : C b ≃ C b' :=
equiv.mk (transporto C q) !is_equiv_transporto
/- some cancellation laws for concato_eq an variants -/
definition cono.right_inv_eq (q : b = b') :
pathover_idp_of_eq q ⬝op q⁻¹ = (idpo : b =[refl a] b) :=
by induction q; constructor
definition cono.right_inv_eq' (q : b = b') :
q ⬝po (pathover_idp_of_eq q⁻¹) = (idpo : b =[refl a] b) :=
by induction q; constructor
definition cono.left_inv_eq (q : b = b') :
pathover_idp_of_eq q⁻¹ ⬝op q = (idpo : b' =[refl a] b') :=
by induction q; constructor
definition cono.left_inv_eq' (q : b = b') :
q⁻¹ ⬝po pathover_idp_of_eq q = (idpo : b' =[refl a] b') :=
by induction q; constructor
definition pathover_of_fn_pathover_fn (f : Π{a}, B a ≃ B' a) (r : f b =[p] f b₂) : b =[p] b₂ :=
(left_inv f b)⁻¹ ⬝po apo (λa, f⁻¹ᵉ) r ⬝op left_inv f b₂
/- a pathover in a pathover type where the only thing which varies is the path is the same as
an equality with a change_path -/
definition change_path_of_pathover (s : p = p') (r : b =[p] b₂) (r' : b =[p'] b₂)
(q : r =[s] r') : change_path s r = r' :=
by induction s; eapply idp_rec_on q; reflexivity
definition pathover_of_change_path (s : p = p') (r : b =[p] b₂) (r' : b =[p'] b₂)
(q : change_path s r = r') : r =[s] r' :=
by induction s; induction q; constructor
definition pathover_pathover_path [constructor] (s : p = p') (r : b =[p] b₂) (r' : b =[p'] b₂) :
(r =[s] r') ≃ change_path s r = r' :=
begin
fapply equiv.MK,
{ apply change_path_of_pathover},
{ apply pathover_of_change_path},
{ intro q, induction s, induction q, reflexivity},
{ intro q, induction s, eapply idp_rec_on q, reflexivity},
end
/- variants of inverse2 and concat2 -/
definition inverseo2 [unfold 10] {r r' : b =[p] b₂} (s : r = r') : r⁻¹ᵒ = r'⁻¹ᵒ :=
by induction s; reflexivity
definition concato2 [unfold 15 16] {r r' : b =[p] b₂} {r₂ r₂' : b₂ =[p₂] b₃}
(s : r = r') (s₂ : r₂ = r₂') : r ⬝o r₂ = r' ⬝o r₂' :=
by induction s; induction s₂; reflexivity
infixl ` ◾o `:79 := concato2
postfix [parsing_only] `⁻²ᵒ`:(max+10) := inverseo2 --this notation is abusive, should we use it?
-- find a better name for this
definition fn_tro_eq_tro_fn2 (q : b =[p] b₂)
{k : A → A} {l : Π⦃a⦄, B a → B (k a)} (m : Π⦃a⦄ {b : B a}, C b → C (l b))
(c : C b) :
m (q ▸o c) = (pathover_ap B k (apo l q)) ▸o (m c) :=
by induction q; reflexivity
definition apd0111_precompose (f : Π⦃a⦄ {b : B a}, C b → A')
{k : A → A} {l : Π⦃a⦄, B a → B (k a)} (m : Π⦃a⦄ {b : B a}, C b → C (l b))
{q : b =[p] b₂} (c : C b)
: apd0111 (λa b c, f (m c)) p q (pathover_tro q c) ⬝ ap (@f _ _) (fn_tro_eq_tro_fn2 q m c) =
apd0111 f (ap k p) (pathover_ap B k (apo l q)) (pathover_tro _ (m c)) :=
by induction q; reflexivity
/- some properties about eq_of_pathover -/
definition apd_eq_ap (f : A → A') (p : a = a₂) : eq_of_pathover (apd f p) = ap f p :=
begin induction p, reflexivity end
definition eq_of_pathover_idp_constant (p : a' =[idpath a] a₂') :
eq_of_pathover_idp p = eq_of_pathover p :=
begin induction p using idp_rec_on, reflexivity end
definition eq_of_pathover_change_path (r : p = p') (q : a' =[p] a₂') :
eq_of_pathover (change_path r q) = eq_of_pathover q :=
begin induction r, reflexivity end
definition eq_of_pathover_cono (q : a' =[p] a₂') (q₂ : a₂' =[p₂] a₃') :
eq_of_pathover (q ⬝o q₂) = eq_of_pathover q ⬝ eq_of_pathover q₂ :=
begin induction q₂, reflexivity end
definition eq_of_pathover_invo (q : a' =[p] a₂') :
eq_of_pathover q⁻¹ᵒ = (eq_of_pathover q)⁻¹ :=
begin induction q, reflexivity end
definition eq_of_pathover_concato_eq (q : a' =[p] a₂') (q₂ : a₂' = a₃') :
eq_of_pathover (q ⬝op q₂) = eq_of_pathover q ⬝ q₂ :=
begin induction q₂, reflexivity end
definition eq_of_pathover_eq_concato (q : a' = a₂') (q₂ : a₂' =[p₂] a₃') :
eq_of_pathover (q ⬝po q₂) = q ⬝ eq_of_pathover q₂ :=
begin induction q, induction q₂, reflexivity end
end eq