forked from leanprover/lean2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreserved_notation.hlean
239 lines (192 loc) · 7.89 KB
/
reserved_notation.hlean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
-/
prelude
import init.datatypes
notation `assume` binders `,` r:(scoped f, f) := r
notation `take` binders `,` r:(scoped f, f) := r
structure has_zero [class] (A : Type) := (zero : A)
structure has_one [class] (A : Type) := (one : A)
structure has_add [class] (A : Type) := (add : A → A → A)
structure has_mul [class] (A : Type) := (mul : A → A → A)
structure has_inv [class] (A : Type) := (inv : A → A)
structure has_neg [class] (A : Type) := (neg : A → A)
structure has_sub [class] (A : Type) := (sub : A → A → A)
structure has_div [class] (A : Type) := (div : A → A → A)
structure has_mod [class] (A : Type) := (mod : A → A → A)
structure has_dvd.{l} [class] (A : Type.{l}) : Type.{l+1} := (dvd : A → A → Type.{l})
structure has_le.{l} [class] (A : Type.{l}) : Type.{l+1} := (le : A → A → Type.{l})
structure has_lt.{l} [class] (A : Type.{l}) : Type.{l+1} := (lt : A → A → Type.{l})
definition zero [reducible] {A : Type} [s : has_zero A] : A := has_zero.zero A
definition one [reducible] {A : Type} [s : has_one A] : A := has_one.one A
definition add [reducible] {A : Type} [s : has_add A] : A → A → A := has_add.add
definition mul {A : Type} [s : has_mul A] : A → A → A := has_mul.mul
definition sub {A : Type} [s : has_sub A] : A → A → A := has_sub.sub
definition div {A : Type} [s : has_div A] : A → A → A := has_div.div
definition dvd {A : Type} [s : has_dvd A] : A → A → Type := has_dvd.dvd
definition mod {A : Type} [s : has_mod A] : A → A → A := has_mod.mod
definition neg {A : Type} [s : has_neg A] : A → A := has_neg.neg
definition inv {A : Type} [s : has_inv A] : A → A := has_inv.inv
definition le {A : Type} [s : has_le A] : A → A → Type := has_le.le
definition lt {A : Type} [s : has_lt A] : A → A → Type := has_lt.lt
definition ge [reducible] {A : Type} [s : has_le A] (a b : A) : Type := le b a
definition gt [reducible] {A : Type} [s : has_lt A] (a b : A) : Type := lt b a
/-
bit0 and bit1 are two auxiliary definition used when parsing numerals such as 13, 0, 26.
The parser will generate the terms (bit1 (bit0 (bit1 one))), zero, and
(bit0 (bit1 (bit0 (bit1 one)))). This works in any type with an addition, a zero and a one.
More specifically, there must be type class instances for the classes for has_add, has_zero and
has_one
-/
definition bit0 [reducible] {A : Type} [s : has_add A] (a : A) : A := add a a
definition bit1 [reducible] {A : Type} [s₁ : has_one A] [s₂ : has_add A] (a : A) : A :=
add (bit0 a) one
definition num_has_zero [instance] : has_zero num :=
has_zero.mk num.zero
definition num_has_one [instance] : has_one num :=
has_one.mk (num.pos pos_num.one)
definition pos_num_has_one [instance] : has_one pos_num :=
has_one.mk (pos_num.one)
namespace pos_num
open bool
definition is_one (a : pos_num) : bool :=
pos_num.rec_on a tt (λn r, ff) (λn r, ff)
definition pred (a : pos_num) : pos_num :=
pos_num.rec_on a one (λn r, bit0 n) (λn r, bool.rec_on (is_one n) (bit1 r) one)
definition size (a : pos_num) : pos_num :=
pos_num.rec_on a one (λn r, succ r) (λn r, succ r)
definition add (a b : pos_num) : pos_num :=
pos_num.rec_on a
succ
(λn f b, pos_num.rec_on b
(succ (bit1 n))
(λm r, succ (bit1 (f m)))
(λm r, bit1 (f m)))
(λn f b, pos_num.rec_on b
(bit1 n)
(λm r, bit1 (f m))
(λm r, bit0 (f m)))
b
end pos_num
definition pos_num_has_add [instance] : has_add pos_num :=
has_add.mk pos_num.add
namespace num
open pos_num
definition add (a b : num) : num :=
num.rec_on a b (λpa, num.rec_on b (pos pa) (λpb, pos (pos_num.add pa pb)))
end num
definition num_has_add [instance] : has_add num :=
has_add.mk num.add
definition std.priority.default : num := 1000
definition std.priority.max : num := 4294967295
namespace nat
protected definition prio := num.add std.priority.default 100
protected definition add (a b : nat) : nat :=
nat.rec a (λ b₁ r, succ r) b
definition of_num (n : num) : nat :=
num.rec zero
(λ n, pos_num.rec (succ zero) (λ n r, nat.add (nat.add r r) (succ zero)) (λ n r, nat.add r r) n) n
end nat
attribute pos_num_has_add pos_num_has_one num_has_zero num_has_one num_has_add
[instance] [priority nat.prio]
definition nat_has_zero [instance] [priority nat.prio] : has_zero nat :=
has_zero.mk nat.zero
definition nat_has_one [instance] [priority nat.prio] : has_one nat :=
has_one.mk (nat.succ (nat.zero))
definition nat_has_add [instance] [priority nat.prio] : has_add nat :=
has_add.mk nat.add
/-
Global declarations of right binding strength
If a module reassigns these, it will be incompatible with other modules that adhere to these
conventions.
When hovering over a symbol, use "C-c C-k" to see how to input it.
-/
definition std.prec.max : num := 1024 -- the strength of application, identifiers, (, [, etc.
definition std.prec.arrow : num := 25
/-
The next definition is "max + 10". It can be used e.g. for postfix operations that should
be stronger than application.
-/
definition std.prec.max_plus :=
num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ
(num.succ std.prec.max)))))))))
/- Logical operations and relations -/
reserve prefix `¬`:40
reserve prefix `~`:40
reserve infixr ` ∧ `:35
reserve infixr ` /\ `:35
reserve infixr ` \/ `:30
reserve infixr ` ∨ `:30
reserve infix ` <-> `:20
reserve infix ` ↔ `:20
reserve infix ` = `:50
reserve infix ` ≠ `:50
reserve infix ` ≈ `:50
reserve infix ` ~ `:50
reserve infix ` ≡ `:50
reserve infixr ` ∘ `:60 -- input with \comp
reserve postfix `⁻¹`:std.prec.max_plus -- input with \sy or \-1 or \inv
reserve infixl ` ⬝ `:75
reserve infixr ` ▸ `:75
reserve infixr ` ▹ `:75
/- types and type constructors -/
reserve infixr ` ⊎ `:30
reserve infixr ` × `:35
/- arithmetic operations -/
reserve infixl ` + `:65
reserve infixl ` - `:65
reserve infixl ` * `:70
reserve infixl ` / `:70
reserve infixl ` % `:70
reserve prefix `-`:100
reserve infix ` ^ `:80
reserve infix ` <= `:50
reserve infix ` ≤ `:50
reserve infix ` < `:50
reserve infix ` >= `:50
reserve infix ` ≥ `:50
reserve infix ` > `:50
/- boolean operations -/
reserve infixl ` && `:70
reserve infixl ` || `:65
/- set operations -/
reserve infix ` ∈ `:50
reserve infix ` ∉ `:50
reserve infixl ` ∩ `:70
reserve infixl ` ∪ `:65
reserve infix ` ⊆ `:50
reserve infix ` ⊇ `:50
/- other symbols -/
reserve infix ` ∣ `:50
reserve infixl ` ++ `:65
reserve infixr ` :: `:67
/-
in the HoTT library we might not always want to overload the following notation,
so we put it in namespace algebra
-/
infix + := add
infix * := mul
infix - := sub
infix / := div
infix ∣ := dvd
infix % := mod
prefix - := neg
namespace algebra
postfix ⁻¹ := inv
end algebra
infix ≤ := le
infix ≥ := ge
infix < := lt
infix > := gt
notation [parsing_only] x ` +[`:65 A:0 `] `:0 y:65 := @add A _ x y
notation [parsing_only] x ` -[`:65 A:0 `] `:0 y:65 := @sub A _ x y
notation [parsing_only] x ` *[`:70 A:0 `] `:0 y:70 := @mul A _ x y
notation [parsing_only] x ` /[`:70 A:0 `] `:0 y:70 := @div A _ x y
notation [parsing_only] x ` ∣[`:70 A:0 `] `:0 y:70 := @dvd A _ x y
notation [parsing_only] x ` %[`:70 A:0 `] `:0 y:70 := @mod A _ x y
notation [parsing_only] x ` ≤[`:50 A:0 `] `:0 y:50 := @le A _ x y
notation [parsing_only] x ` ≥[`:50 A:0 `] `:0 y:50 := @ge A _ x y
notation [parsing_only] x ` <[`:50 A:0 `] `:0 y:50 := @lt A _ x y
notation [parsing_only] x ` >[`:50 A:0 `] `:0 y:50 := @gt A _ x y