forked from leanprover/lean2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrunc.hlean
1259 lines (1050 loc) · 46.4 KB
/
trunc.hlean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/-
Copyright (c) 2015 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Properties of trunc_index, is_trunc, trunctype, trunc, and the pointed versions of these
-/
-- NOTE: the fact that (is_trunc n A) is a mere proposition is proved in .prop_trunc
import .pointed2 ..function algebra.order types.nat.order types.unit types.int.hott
open eq sigma sigma.ops pi function equiv trunctype
is_equiv prod pointed nat is_trunc algebra unit
/- basic computation with ℕ₋₂, its operations and its order -/
namespace trunc_index
definition minus_one_le_succ (n : ℕ₋₂) : -1 ≤ n.+1 :=
succ_le_succ (minus_two_le n)
definition zero_le_of_nat (n : ℕ) : 0 ≤ of_nat n :=
succ_le_succ !minus_one_le_succ
open decidable
protected definition has_decidable_eq [instance] : Π(n m : ℕ₋₂), decidable (n = m)
| has_decidable_eq -2 -2 := inl rfl
| has_decidable_eq (n.+1) -2 := inr (by contradiction)
| has_decidable_eq -2 (m.+1) := inr (by contradiction)
| has_decidable_eq (n.+1) (m.+1) :=
match has_decidable_eq n m with
| inl xeqy := inl (by rewrite xeqy)
| inr xney := inr (λ h : succ n = succ m, by injection h with xeqy; exact absurd xeqy xney)
end
definition not_succ_le_minus_two {n : ℕ₋₂} (H : n .+1 ≤ -2) : empty :=
by cases H
protected definition le_trans {n m k : ℕ₋₂} (H1 : n ≤ m) (H2 : m ≤ k) : n ≤ k :=
begin
induction H2 with k H2 IH,
{ exact H1},
{ exact le.step IH}
end
definition le_of_succ_le_succ {n m : ℕ₋₂} (H : n.+1 ≤ m.+1) : n ≤ m :=
begin
cases H with m H',
{ apply le.tr_refl},
{ exact trunc_index.le_trans (le.step !le.tr_refl) H'}
end
theorem not_succ_le_self {n : ℕ₋₂} : ¬n.+1 ≤ n :=
begin
induction n with n IH: intro H,
{ exact not_succ_le_minus_two H},
{ exact IH (le_of_succ_le_succ H)}
end
protected definition le_antisymm {n m : ℕ₋₂} (H1 : n ≤ m) (H2 : m ≤ n) : n = m :=
begin
induction H2 with n H2 IH,
{ reflexivity},
{ exfalso, apply @not_succ_le_self n, exact trunc_index.le_trans H1 H2}
end
protected definition le_succ {n m : ℕ₋₂} (H1 : n ≤ m) : n ≤ m.+1 :=
le.step H1
protected definition self_le_succ (n : ℕ₋₂) : n ≤ n.+1 :=
le.step (trunc_index.le.tr_refl n)
-- the order is total
open sum
protected theorem le_sum_le (n m : ℕ₋₂) : n ≤ m ⊎ m ≤ n :=
begin
induction m with m IH,
{ exact inr !minus_two_le},
{ cases IH with H H,
{ exact inl (trunc_index.le_succ H)},
{ cases H with n' H,
{ exact inl !trunc_index.self_le_succ},
{ exact inr (succ_le_succ H)}}}
end
end trunc_index open trunc_index
definition linear_weak_order_trunc_index [trans_instance] [reducible] :
linear_weak_order trunc_index :=
linear_weak_order.mk le trunc_index.le.tr_refl @trunc_index.le_trans @trunc_index.le_antisymm
trunc_index.le_sum_le
namespace trunc_index
/- more theorems about truncation indices -/
definition zero_add (n : ℕ₋₂) : (0 : ℕ₋₂) + n = n :=
begin
cases n with n, reflexivity,
cases n with n, reflexivity,
induction n with n IH, reflexivity, exact ap succ IH
end
definition add_zero (n : ℕ₋₂) : n + (0 : ℕ₋₂) = n :=
by reflexivity
definition succ_add_nat (n : ℕ₋₂) (m : ℕ) : n.+1 + m = (n + m).+1 :=
by induction m with m IH; reflexivity; exact ap succ IH
definition nat_add_succ (n : ℕ) (m : ℕ₋₂) : n + m.+1 = (n + m).+1 :=
begin
cases m with m, reflexivity,
cases m with m, reflexivity,
induction m with m IH, reflexivity, exact ap succ IH
end
definition add_nat_succ (n : ℕ₋₂) (m : ℕ) : n + (nat.succ m) = (n + m).+1 :=
by reflexivity
definition nat_succ_add (n : ℕ) (m : ℕ₋₂) : (nat.succ n) + m = (n + m).+1 :=
begin
cases m with m, reflexivity,
cases m with m, reflexivity,
induction m with m IH, reflexivity, exact ap succ IH
end
definition sub_two_add_two (n : ℕ₋₂) : sub_two (add_two n) = n :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap succ IH}
end
definition add_two_sub_two (n : ℕ) : add_two (sub_two n) = n :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap nat.succ IH}
end
definition of_nat_add_plus_two_of_nat (n m : ℕ) : n +2+ m = of_nat (n + m + 2) :=
begin
induction m with m IH,
{ reflexivity},
{ exact ap succ IH}
end
definition of_nat_add_of_nat (n m : ℕ) : of_nat n + of_nat m = of_nat (n + m) :=
begin
induction m with m IH,
{ reflexivity},
{ exact ap succ IH}
end
definition succ_add_plus_two (n m : ℕ₋₂) : n.+1 +2+ m = (n +2+ m).+1 :=
begin
induction m with m IH,
{ reflexivity},
{ exact ap succ IH}
end
definition add_plus_two_succ (n m : ℕ₋₂) : n +2+ m.+1 = (n +2+ m).+1 :=
idp
definition add_succ_succ (n m : ℕ₋₂) : n + m.+2 = n +2+ m :=
idp
definition succ_add_succ (n m : ℕ₋₂) : n.+1 + m.+1 = n +2+ m :=
begin
cases m with m IH,
{ reflexivity},
{ apply succ_add_plus_two}
end
definition succ_succ_add (n m : ℕ₋₂) : n.+2 + m = n +2+ m :=
begin
cases m with m IH,
{ reflexivity},
{ exact !succ_add_succ ⬝ !succ_add_plus_two}
end
definition succ_sub_two (n : ℕ) : (nat.succ n).-2 = n.-2 .+1 := rfl
definition sub_two_succ_succ (n : ℕ) : n.-2.+1.+1 = n := rfl
definition succ_sub_two_succ (n : ℕ) : (nat.succ n).-2.+1 = n := rfl
definition of_nat_add_two (n : ℕ₋₂) : of_nat (add_two n) = n.+2 :=
begin induction n with n IH, reflexivity, exact ap succ IH end
lemma minus_two_add_plus_two (n : ℕ₋₂) : -2+2+n = n :=
by induction n with n p; reflexivity; exact ap succ p
lemma add_plus_two_comm (n k : ℕ₋₂) : n +2+ k = k +2+ n :=
begin
induction n with n IH,
{ exact minus_two_add_plus_two k },
{ exact !succ_add_plus_two ⬝ ap succ IH}
end
lemma sub_one_add_plus_two_sub_one (n m : ℕ) : n.-1 +2+ m.-1 = of_nat (n + m) :=
begin
induction m with m IH,
{ reflexivity },
{ exact ap succ IH }
end
definition of_nat_le_of_nat {n m : ℕ} (H : n ≤ m) : (of_nat n ≤ of_nat m) :=
begin
induction H with m H IH,
{ apply le.refl},
{ exact trunc_index.le_succ IH}
end
definition sub_two_le_sub_two {n m : ℕ} (H : n ≤ m) : n.-2 ≤ m.-2 :=
begin
induction H with m H IH,
{ apply le.refl},
{ exact trunc_index.le_succ IH}
end
definition add_two_le_add_two {n m : ℕ₋₂} (H : n ≤ m) : add_two n ≤ add_two m :=
begin
induction H with m H IH,
{ reflexivity},
{ constructor, exact IH},
end
definition le_of_sub_two_le_sub_two {n m : ℕ} (H : n.-2 ≤ m.-2) : n ≤ m :=
begin
rewrite [-add_two_sub_two n, -add_two_sub_two m],
exact add_two_le_add_two H,
end
definition le_of_of_nat_le_of_nat {n m : ℕ} (H : of_nat n ≤ of_nat m) : n ≤ m :=
begin
apply le_of_sub_two_le_sub_two,
exact le_of_succ_le_succ (le_of_succ_le_succ H)
end
protected definition of_nat_monotone {n k : ℕ} : n ≤ k → of_nat n ≤ of_nat k :=
begin
intro H, induction H with k H K,
{ apply le.tr_refl },
{ apply le.step K }
end
protected theorem succ_le_of_not_le {n m : ℕ₋₂} (H : ¬ n ≤ m) : m.+1 ≤ n :=
begin
cases (le.total n m) with H2 H2,
{ exfalso, exact H H2},
{ cases H2 with n' H2',
{ exfalso, exact H !le.refl},
{ exact succ_le_succ H2'}}
end
definition trunc_index.decidable_le [instance] : Π(n m : ℕ₋₂), decidable (n ≤ m) :=
begin
intro n, induction n with n IH: intro m,
{ left, apply minus_two_le},
cases m with m,
{ right, apply not_succ_le_minus_two},
cases IH m with H H,
{ left, apply succ_le_succ H},
right, intro H2, apply H, exact le_of_succ_le_succ H2
end
protected definition pred [unfold 1] (n : ℕ₋₂) : ℕ₋₂ :=
begin cases n with n, exact -2, exact n end
definition trunc_index_equiv_nat [constructor] : ℕ₋₂ ≃ ℕ :=
equiv.MK add_two sub_two add_two_sub_two sub_two_add_two
definition is_set_trunc_index [instance] : is_set ℕ₋₂ :=
is_trunc_equiv_closed_rev 0 trunc_index_equiv_nat _
end trunc_index open trunc_index
namespace is_trunc
variables {A B : Type} {n : ℕ₋₂}
/- closure properties of truncatedness -/
theorem is_trunc_is_embedding_closed (f : A → B) [Hf : is_embedding f] [HB : is_trunc n B]
(Hn : -1 ≤ n) : is_trunc n A :=
begin
induction n with n,
{exfalso, exact not_succ_le_minus_two Hn},
{apply is_trunc_succ_intro, intro a a',
exact is_trunc_is_equiv_closed_rev n (ap f) _ _ }
end
theorem is_trunc_is_retraction_closed (f : A → B) [Hf : is_retraction f]
(n : ℕ₋₂) [HA : is_trunc n A] : is_trunc n B :=
begin
revert A B f Hf HA,
induction n with n IH,
{ intro A B f Hf HA, induction Hf with g ε, fapply is_contr.mk,
{ exact f (center A)},
{ intro b, apply concat,
{ apply (ap f), exact (center_eq (g b))},
{ apply ε}}},
{ intro A B f Hf HA, induction Hf with g ε,
apply is_trunc_succ_intro, intro b b',
fapply (IH (g b = g b')),
{ intro q, exact ((ε b)⁻¹ ⬝ ap f q ⬝ ε b')},
{ apply (is_retraction.mk (ap g)),
{ intro p, induction p, {rewrite [↑ap, con.left_inv]}}},
{ apply is_trunc_eq}}
end
definition is_embedding_to_fun (A B : Type) : is_embedding (@to_fun A B) :=
λf f', !is_equiv_ap_to_fun
/- theorems about trunctype -/
protected definition trunctype.sigma_char.{l} [constructor] (n : ℕ₋₂) :
(trunctype.{l} n) ≃ (Σ (A : Type.{l}), is_trunc n A) :=
begin
fapply equiv.MK,
{ intro A, exact (⟨carrier A, struct A⟩)},
{ intro S, exact (trunctype.mk S.1 S.2)},
{ intro S, induction S with S1 S2, reflexivity},
{ intro A, induction A with A1 A2, reflexivity},
end
definition trunctype_eq_equiv [constructor] (n : ℕ₋₂) (A B : n-Type) :
(A = B) ≃ (carrier A = carrier B) :=
calc
(A = B) ≃ (to_fun (trunctype.sigma_char n) A = to_fun (trunctype.sigma_char n) B)
: eq_equiv_fn_eq
... ≃ ((to_fun (trunctype.sigma_char n) A).1 = (to_fun (trunctype.sigma_char n) B).1)
: equiv.symm (!equiv_subtype)
... ≃ (carrier A = carrier B) : equiv.refl
theorem is_trunc_trunctype [instance] (n : ℕ₋₂) : is_trunc n.+1 (n-Type) :=
begin
apply is_trunc_succ_intro, intro X Y,
apply is_trunc_equiv_closed_rev _ !trunctype_eq_equiv,
apply is_trunc_equiv_closed_rev _ !eq_equiv_equiv,
induction n,
{ apply is_contr_of_inhabited_prop,
{ exact equiv_of_is_contr_of_is_contr _ _ },
{ apply is_trunc_equiv }},
{ apply is_trunc_equiv }
end
/- univalence for truncated types -/
definition teq_equiv_equiv {n : ℕ₋₂} {A B : n-Type} : (A = B) ≃ (A ≃ B) :=
trunctype_eq_equiv n A B ⬝e eq_equiv_equiv A B
definition tua {n : ℕ₋₂} {A B : n-Type} (f : A ≃ B) : A = B :=
(trunctype_eq_equiv n A B)⁻¹ᶠ (ua f)
definition tua_refl {n : ℕ₋₂} (A : n-Type) : tua (@erfl A) = idp :=
begin
refine ap (trunctype_eq_equiv n A A)⁻¹ᶠ (ua_refl A) ⬝ _,
refine ap (inj _) _ ⬝ !inj'_idp ,
apply ap (dpair_eq_dpair idp), apply is_prop.elim
end
definition tua_trans {n : ℕ₋₂} {A B C : n-Type} (f : A ≃ B) (g : B ≃ C)
: tua (f ⬝e g) = tua f ⬝ tua g :=
begin
refine ap (trunctype_eq_equiv n A C)⁻¹ᶠ (ua_trans f g) ⬝ _,
refine ap (inj _) _ ⬝ !inj'_con,
refine _ ⬝ !dpair_eq_dpair_con,
apply ap (dpair_eq_dpair _), esimp, apply is_prop.elim
end
definition tua_symm {n : ℕ₋₂} {A B : n-Type} (f : A ≃ B) : tua f⁻¹ᵉ = (tua f)⁻¹ :=
begin
apply eq_inv_of_con_eq_idp',
refine !tua_trans⁻¹ ⬝ _,
refine ap tua _ ⬝ !tua_refl,
apply equiv_eq, exact to_right_inv f
end
definition tcast [unfold 4] {n : ℕ₋₂} {A B : n-Type} (p : A = B) (a : A) : B :=
cast (ap trunctype.carrier p) a
definition ptcast [constructor] {n : ℕ₋₂} {A B : n-Type*} (p : A = B) : A →* B :=
pcast (ap ptrunctype.to_pType p)
theorem tcast_tua_fn {n : ℕ₋₂} {A B : n-Type} (f : A ≃ B) : tcast (tua f) = to_fun f :=
begin
cases A with A HA, cases B with B HB, esimp at *,
induction f using rec_on_ua_idp, esimp,
have HA = HB, from !is_prop.elim, cases this,
exact ap tcast !tua_refl
end
/- theorems about decidable equality and axiom K -/
theorem is_set_of_axiom_K {A : Type} (K : Π{a : A} (p : a = a), p = idp) : is_set A :=
is_set.mk _ (λa b p q, eq.rec K q p)
theorem is_set_of_relation.{u} {A : Type.{u}} (R : A → A → Type.{u})
(mere : Π(a b : A), is_prop (R a b)) (refl : Π(a : A), R a a)
(imp : Π{a b : A}, R a b → a = b) : is_set A :=
is_set_of_axiom_K
(λa p,
have H2 : transport (λx, R a x → a = x) p (@imp a a) = @imp a a, from !apdt,
have H3 : Π(r : R a a), transport (λx, a = x) p (imp r)
= imp (transport (λx, R a x) p r), from
to_fun (equiv.symm !heq_pi) H2,
have H4 : imp (refl a) ⬝ p = imp (refl a), from
calc
imp (refl a) ⬝ p = transport (λx, a = x) p (imp (refl a)) : eq_transport_r
... = imp (transport (λx, R a x) p (refl a)) : H3
... = imp (refl a) : is_prop.elim,
cancel_left (imp (refl a)) H4)
definition relation_equiv_eq {A : Type} (R : A → A → Type)
(mere : Π(a b : A), is_prop (R a b)) (refl : Π(a : A), R a a)
(imp : Π{a b : A}, R a b → a = b) (a b : A) : R a b ≃ a = b :=
have is_set A, from is_set_of_relation R mere refl @imp,
equiv_of_is_prop imp (λp, p ▸ refl a) _ _
local attribute not [reducible]
theorem is_set_of_double_neg_elim {A : Type} (H : Π(a b : A), ¬¬a = b → a = b)
: is_set A :=
is_set_of_relation (λa b, ¬¬a = b) _ (λa n, n idp) H
section
open decidable
--this is proven differently in init.hedberg
theorem is_set_of_decidable_eq (A : Type) [H : decidable_eq A] : is_set A :=
is_set_of_double_neg_elim (λa b, by_contradiction)
end
theorem is_trunc_of_axiom_K_of_le {A : Type} {n : ℕ₋₂} (H : -1 ≤ n)
(K : Π(a : A), is_trunc n (a = a)) : is_trunc (n.+1) A :=
@is_trunc_succ_intro _ _ (λa b, is_trunc_of_imp_is_trunc_of_le H (λp, eq.rec_on p !K))
theorem is_trunc_succ_of_is_trunc_loop (Hn : -1 ≤ n) (Hp : Π(a : A), is_trunc n (a = a))
: is_trunc (n.+1) A :=
begin
apply is_trunc_succ_intro, intros a a',
apply is_trunc_of_imp_is_trunc_of_le Hn, intro p,
induction p, apply Hp
end
theorem is_prop_iff_is_contr {A : Type} (a : A) :
is_prop A ↔ is_contr A :=
iff.intro (λH, is_contr.mk a (is_prop.elim a)) _
theorem is_trunc_succ_iff_is_trunc_loop (A : Type) (Hn : -1 ≤ n) :
is_trunc (n.+1) A ↔ Π(a : A), is_trunc n (a = a) :=
iff.intro _ (is_trunc_succ_of_is_trunc_loop Hn)
-- use loopn in name
theorem is_trunc_iff_is_contr_loop_succ (n : ℕ) (A : Type)
: is_trunc n A ↔ Π(a : A), is_contr (Ω[succ n](pointed.Mk a)) :=
begin
revert A, induction n with n IH,
{ intro A, esimp [loopn], transitivity _,
{ apply is_trunc_succ_iff_is_trunc_loop, apply le.refl},
{ apply pi_iff_pi, intro a, esimp, apply is_prop_iff_is_contr, reflexivity}},
{ intro A, esimp [loopn],
transitivity _,
{ apply @is_trunc_succ_iff_is_trunc_loop @n, esimp, apply minus_one_le_succ},
apply pi_iff_pi, intro a, transitivity _, apply IH,
transitivity _, apply pi_iff_pi, intro p,
rewrite [loopn_space_loop_irrel n p], apply iff.refl, esimp,
apply imp_iff, reflexivity}
end
-- use loopn in name
theorem is_trunc_iff_is_contr_loop (n : ℕ) (A : Type)
: is_trunc (n.-2.+1) A ↔ (Π(a : A), is_contr (Ω[n](pointed.Mk a))) :=
begin
induction n with n,
{ esimp [sub_two,loopn], apply iff.intro,
intro H a, exact is_contr_of_inhabited_prop a _,
intro H, apply is_prop_of_imp_is_contr, exact H},
{ apply is_trunc_iff_is_contr_loop_succ},
end
-- rename to is_contr_loopn_of_is_trunc
theorem is_contr_loop_of_is_trunc (n : ℕ) (A : Type*) [H : is_trunc (n.-2.+1) A] :
is_contr (Ω[n] A) :=
begin
induction A,
apply iff.mp !is_trunc_iff_is_contr_loop H
end
theorem is_trunc_loopn_of_is_trunc (n : ℕ₋₂) (k : ℕ) (A : Type*) [H : is_trunc n A] :
is_trunc n (Ω[k] A) :=
begin
induction k with k IH,
{ exact H},
{ apply is_trunc_eq}
end
definition is_trunc_loopn (k : ℕ₋₂) (n : ℕ) (A : Type*) [H : is_trunc (k+n) A]
: is_trunc k (Ω[n] A) :=
begin
revert k H, induction n with n IH: intro k H, exact _,
apply is_trunc_eq, apply IH, rewrite [succ_add_nat, add_nat_succ at H], exact H
end
lemma is_trunc_loopn_nat (n m : ℕ) (A : Type*) [H : is_trunc (n + m) A] :
is_trunc n (Ω[m] A) :=
@is_trunc_loopn n m A (transport (λk, is_trunc k _) (of_nat_add_of_nat n m)⁻¹ H)
definition is_set_loopn (n : ℕ) (A : Type*) [is_trunc n A] : is_set (Ω[n] A) :=
have is_trunc (0+n) A, by rewrite [zero_add]; exact _,
is_trunc_loopn_nat 0 n A
lemma is_trunc_loop_nat (n : ℕ) (A : Type*) [H : is_trunc (n + 1) A] :
is_trunc n (Ω A) :=
is_trunc_loop A n
definition is_trunc_of_eq {n m : ℕ₋₂} (p : n = m) {A : Type} (H : is_trunc n A) : is_trunc m A :=
transport (λk, is_trunc k A) p H
definition pequiv_punit_of_is_contr [constructor] (A : Type*) (H : is_contr A) : A ≃* punit :=
pequiv_of_equiv (equiv_unit_of_is_contr A _) (@is_prop.elim unit _ _ _)
definition pequiv_punit_of_is_contr' [constructor] (A : Type) (H : is_contr A)
: pointed.MK A (center A) ≃* punit :=
pequiv_punit_of_is_contr (pointed.MK A (center A)) H
definition is_trunc_is_contr_fiber (n : ℕ₋₂) {A B : Type} (f : A → B)
(b : B) [is_trunc n A] [is_trunc n B] : is_trunc n (is_contr (fiber f b)) :=
begin
cases n,
{ refine is_contr_of_inhabited_prop _ _, apply is_contr_fun_of_is_equiv,
exact is_equiv_of_is_contr _ _ _ },
{ exact is_trunc_succ_of_is_prop _ _ _ }
end
end is_trunc open is_trunc
namespace trunc
universe variable u
variables {n : ℕ₋₂} {A : Type.{u}} {B : Type} {a₁ a₂ a₃ a₄ : A}
definition trunc_functor2 [unfold 6 7] {n : ℕ₋₂} {A B C : Type} (f : A → B → C)
(x : trunc n A) (y : trunc n B) : trunc n C :=
by induction x with a; induction y with b; exact tr (f a b)
definition tconcat [unfold 6 7] (p : trunc n (a₁ = a₂)) (q : trunc n (a₂ = a₃)) :
trunc n (a₁ = a₃) :=
trunc_functor2 concat p q
definition tinverse [unfold 5] (p : trunc n (a₁ = a₂)) : trunc n (a₂ = a₁) :=
trunc_functor _ inverse p
definition tidp [reducible] [constructor] : trunc n (a₁ = a₁) :=
tr idp
definition tassoc (p : trunc n (a₁ = a₂)) (q : trunc n (a₂ = a₃))
(r : trunc n (a₃ = a₄)) : tconcat (tconcat p q) r = tconcat p (tconcat q r) :=
by induction p; induction q; induction r; exact ap tr !con.assoc
definition tidp_tcon (p : trunc n (a₁ = a₂)) : tconcat tidp p = p :=
by induction p; exact ap tr !idp_con
definition tcon_tidp (p : trunc n (a₁ = a₂)) : tconcat p tidp = p :=
by induction p; reflexivity
definition left_tinv (p : trunc n (a₁ = a₂)) : tconcat (tinverse p) p = tidp :=
by induction p; exact ap tr !con.left_inv
definition right_tinv (p : trunc n (a₁ = a₂)) : tconcat p (tinverse p) = tidp :=
by induction p; exact ap tr !con.right_inv
definition tap [unfold 7] (f : A → B) (p : trunc n (a₁ = a₂)) : trunc n (f a₁ = f a₂) :=
trunc_functor _ (ap f) p
definition tap_tidp (f : A → B) : tap f (@tidp n A a₁) = tidp := idp
definition tap_tcon (f : A → B) (p : trunc n (a₁ = a₂)) (q : trunc n (a₂ = a₃)) :
tap f (tconcat p q) = tconcat (tap f p) (tap f q) :=
by induction p; induction q; exact ap tr !ap_con
/- characterization of equality in truncated types -/
protected definition code [unfold 3 4] (n : ℕ₋₂) (aa aa' : trunc n.+1 A) : trunctype.{u} n :=
by induction aa with a; induction aa' with a'; exact trunctype.mk' n (trunc n (a = a'))
protected definition encode [unfold 3 5] {n : ℕ₋₂} {aa aa' : trunc n.+1 A}
: aa = aa' → trunc.code n aa aa' :=
begin
intro p, induction p, induction aa with a, esimp, exact (tr idp)
end
protected definition decode [unfold 3 4 5] {n : ℕ₋₂} (aa aa' : trunc n.+1 A) :
trunc.code n aa aa' → aa = aa' :=
begin
induction aa' with a', induction aa with a,
esimp [trunc.code, trunc.rec_on], intro x,
induction x with p, exact ap tr p,
end
definition trunc_eq_equiv [constructor] (n : ℕ₋₂) (aa aa' : trunc n.+1 A)
: aa = aa' ≃ trunc.code n aa aa' :=
begin
fapply equiv.MK,
{ apply trunc.encode},
{ apply trunc.decode},
{ eapply (trunc.rec_on aa'), eapply (trunc.rec_on aa),
intro a a' x, esimp [trunc.code, trunc.rec_on] at x,
refine (@trunc.rec_on n _ _ x _ _),
intro x, apply is_trunc_eq,
intro p, induction p, reflexivity},
{ intro p, induction p, apply (trunc.rec_on aa), intro a, exact idp},
end
definition tr_eq_tr_equiv [constructor] (n : ℕ₋₂) (a a' : A)
: (tr a = tr a' :> trunc n.+1 A) ≃ trunc n (a = a') :=
!trunc_eq_equiv
definition trunc_eq {n : ℕ₋₂} {a a' : A} (p : trunc n (a = a')) :tr a = tr a' :> trunc n.+1 A :=
!tr_eq_tr_equiv⁻¹ᵉ p
definition code_mul {n : ℕ₋₂} {aa₁ aa₂ aa₃ : trunc n.+1 A}
(g : trunc.code n aa₁ aa₂) (h : trunc.code n aa₂ aa₃) : trunc.code n aa₁ aa₃ :=
begin
induction aa₁ with a₁, induction aa₂ with a₂, induction aa₃ with a₃,
esimp at *, apply tconcat g h,
end
/- encode preserves concatenation -/
definition encode_con' {n : ℕ₋₂} {aa₁ aa₂ aa₃ : trunc n.+1 A} (p : aa₁ = aa₂) (q : aa₂ = aa₃)
: trunc.encode (p ⬝ q) = code_mul (trunc.encode p) (trunc.encode q) :=
begin
induction p, induction q, induction aa₁ with a₁, reflexivity
end
definition encode_con {n : ℕ₋₂} {a₁ a₂ a₃ : A} (p : tr a₁ = tr a₂ :> trunc (n.+1) A)
(q : tr a₂ = tr a₃ :> trunc (n.+1) A)
: trunc.encode (p ⬝ q) = tconcat (trunc.encode p) (trunc.encode q) :=
encode_con' p q
/- the principle of unique choice -/
definition unique_choice {P : A → Type} [H : Πa, is_prop (P a)] (f : Πa, ∥ P a ∥) (a : A)
: P a :=
!trunc_equiv (f a)
/- transport over a truncated family -/
definition trunc_transport {a a' : A} {P : A → Type} (p : a = a') (n : ℕ₋₂) (x : P a)
: transport (λa, trunc n (P a)) p (tr x) = tr (p ▸ x) :=
by induction p; reflexivity
/- pathover over a truncated family -/
definition trunc_pathover {A : Type} {B : A → Type} {n : ℕ₋₂} {a a' : A} {p : a = a'}
{b : B a} {b' : B a'} (q : b =[p] b') : @tr n _ b =[p] @tr n _ b' :=
by induction q; constructor
/- truncations preserve truncatedness -/
definition is_trunc_trunc_of_is_trunc [instance] [priority 500] (A : Type)
(n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (trunc m A) :=
begin
revert A m H, eapply (trunc_index.rec_on n),
{ clear n, intro A m H, refine is_contr_equiv_closed_rev _ H,
{ apply trunc_equiv, exact is_trunc_of_is_contr _ _ _ } },
{ clear n, intro n IH A m H, induction m with m,
{ exact is_trunc_of_is_contr _ _ _ },
{ apply is_trunc_succ_intro, intro aa aa',
apply (@trunc.rec_on _ _ _ aa (λy, is_trunc_succ_of_is_prop _ _ _)),
eapply (@trunc.rec_on _ _ _ aa' (λy, is_trunc_succ_of_is_prop _ _ _)),
intro a a', apply is_trunc_equiv_closed_rev _ !tr_eq_tr_equiv (IH _ _ _) }}
end
/- equivalences between truncated types (see also hit.trunc) -/
definition trunc_trunc_equiv_left [constructor] (A : Type) {n m : ℕ₋₂} (H : n ≤ m)
: trunc n (trunc m A) ≃ trunc n A :=
begin
note H2 := is_trunc_of_le (trunc n A) H _,
fapply equiv.MK,
{ intro x, induction x with x, induction x with x, exact tr x },
{ exact trunc_functor n tr },
{ intro x, induction x with x, reflexivity},
{ intro x, induction x with x, induction x with x, reflexivity}
end
definition trunc_trunc_equiv_right [constructor] (A : Type) {n m : ℕ₋₂} (H : n ≤ m)
: trunc m (trunc n A) ≃ trunc n A :=
begin
apply trunc_equiv,
exact is_trunc_of_le _ H _,
end
definition trunc_equiv_trunc_of_le {n m : ℕ₋₂} {A B : Type} (H : n ≤ m)
(f : trunc m A ≃ trunc m B) : trunc n A ≃ trunc n B :=
(trunc_trunc_equiv_left A H)⁻¹ᵉ ⬝e trunc_equiv_trunc n f ⬝e trunc_trunc_equiv_left B H
definition trunc_trunc_equiv_trunc_trunc [constructor] (n m : ℕ₋₂) (A : Type)
: trunc n (trunc m A) ≃ trunc m (trunc n A) :=
begin
fapply equiv.MK: intro x; induction x with x; induction x with x,
{ exact tr (tr x)},
{ exact tr (tr x)},
{ reflexivity},
{ reflexivity}
end
theorem is_trunc_trunc_of_le (A : Type)
(n : ℕ₋₂) {m k : ℕ₋₂} (H : m ≤ k) [is_trunc n (trunc k A)] : is_trunc n (trunc m A) :=
is_trunc_equiv_closed _ (trunc_trunc_equiv_left _ H) _
definition trunc_functor_homotopy [unfold 7] {X Y : Type} (n : ℕ₋₂) {f g : X → Y}
(p : f ~ g) (x : trunc n X) : trunc_functor n f x = trunc_functor n g x :=
begin
induction x with x, esimp, exact ap tr (p x)
end
section hsquare
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type}
{f₁₀ : A₀₀ → A₂₀} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₁₂ : A₀₂ → A₂₂}
definition trunc_functor_hsquare (n : ℕ₋₂) (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
hsquare (trunc_functor n f₁₀) (trunc_functor n f₁₂)
(trunc_functor n f₀₁) (trunc_functor n f₂₁) :=
λa, !trunc_functor_compose⁻¹ ⬝ trunc_functor_homotopy n h a ⬝ !trunc_functor_compose
end hsquare
definition trunc_functor_homotopy_of_le {n k : ℕ₋₂} {A B : Type} (f : A → B) (H : n ≤ k) :
to_fun (trunc_trunc_equiv_left B H) ∘
trunc_functor n (trunc_functor k f) ∘
to_fun (trunc_trunc_equiv_left A H)⁻¹ᵉ ~
trunc_functor n f :=
begin
intro x, induction x with x, reflexivity
end
definition is_equiv_trunc_functor_of_le {n k : ℕ₋₂} {A B : Type} (f : A → B) (H : n ≤ k)
(H' : is_equiv (trunc_functor k f)) : is_equiv (trunc_functor n f) :=
is_equiv_of_equiv_of_homotopy (trunc_equiv_trunc_of_le H (equiv.mk (trunc_functor k f) _))
(trunc_functor_homotopy_of_le f H)
/- trunc_functor preserves surjectivity -/
definition is_surjective_trunc_functor {A B : Type} (n : ℕ₋₂) (f : A → B) [H : is_surjective f]
: is_surjective (trunc_functor n f) :=
begin
cases n with n: intro b,
{ exact tr (fiber.mk !center !is_prop.elim)},
{ refine @trunc.rec _ _ _ _ _ b, {intro x, exact is_trunc_of_le _ !minus_one_le_succ _ },
clear b, intro b, induction H b with a p,
exact tr (fiber.mk (tr a) (ap tr p))}
end
/- truncation of pointed types -/
definition ptrunc [constructor] (n : ℕ₋₂) (X : Type*) : n-Type* :=
ptrunctype.mk (trunc n X) _ (tr pt)
definition is_trunc_ptrunc_of_is_trunc [instance] [priority 500] (A : Type*)
(n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (ptrunc m A) :=
is_trunc_trunc_of_is_trunc A n m
definition is_contr_ptrunc_minus_one (A : Type*) : is_contr (ptrunc -1 A) :=
is_contr_of_inhabited_prop pt _
/- pointed maps involving ptrunc -/
definition ptrunc_functor [constructor] {X Y : Type*} (n : ℕ₋₂) (f : X →* Y)
: ptrunc n X →* ptrunc n Y :=
pmap.mk (trunc_functor n f) (ap tr (respect_pt f))
definition ptr [constructor] (n : ℕ₋₂) (A : Type*) : A →* ptrunc n A :=
pmap.mk tr idp
definition puntrunc [constructor] (n : ℕ₋₂) (A : Type*) [is_trunc n A] : ptrunc n A →* A :=
pmap.mk untrunc_of_is_trunc idp
definition ptrunc.elim [constructor] (n : ℕ₋₂) {X Y : Type*} [is_trunc n Y] (f : X →* Y) :
ptrunc n X →* Y :=
pmap.mk (trunc.elim f) (respect_pt f)
definition ptrunc_functor_le {k l : ℕ₋₂} (p : l ≤ k) (X : Type*)
: ptrunc k X →* ptrunc l X :=
have is_trunc k (ptrunc l X), from is_trunc_of_le _ p _,
ptrunc.elim _ (ptr l X)
/- pointed equivalences involving ptrunc -/
definition ptrunc_pequiv_ptrunc [constructor] (n : ℕ₋₂) {X Y : Type*} (H : X ≃* Y)
: ptrunc n X ≃* ptrunc n Y :=
pequiv_of_equiv (trunc_equiv_trunc n H) (ap tr (respect_pt H))
definition ptrunc_pequiv [constructor] (n : ℕ₋₂) (X : Type*) [H : is_trunc n X]
: ptrunc n X ≃* X :=
pequiv_of_equiv (trunc_equiv n X) idp
definition ptrunc_ptrunc_pequiv_left [constructor] (A : Type*) {n m : ℕ₋₂} (H : n ≤ m)
: ptrunc n (ptrunc m A) ≃* ptrunc n A :=
pequiv_of_equiv (trunc_trunc_equiv_left A H) idp
definition ptrunc_ptrunc_pequiv_right [constructor] (A : Type*) {n m : ℕ₋₂} (H : n ≤ m)
: ptrunc m (ptrunc n A) ≃* ptrunc n A :=
pequiv_of_equiv (trunc_trunc_equiv_right A H) idp
definition ptrunc_pequiv_ptrunc_of_le {n m : ℕ₋₂} {A B : Type*} (H : n ≤ m)
(f : ptrunc m A ≃* ptrunc m B) : ptrunc n A ≃* ptrunc n B :=
(ptrunc_ptrunc_pequiv_left A H)⁻¹ᵉ* ⬝e*
ptrunc_pequiv_ptrunc n f ⬝e*
ptrunc_ptrunc_pequiv_left B H
definition ptrunc_ptrunc_pequiv_ptrunc_ptrunc [constructor] (n m : ℕ₋₂) (A : Type*)
: ptrunc n (ptrunc m A) ≃* ptrunc m (ptrunc n A) :=
pequiv_of_equiv (trunc_trunc_equiv_trunc_trunc n m A) idp
definition ptrunc_change_index {k l : ℕ₋₂} (p : k = l) (X : Type*)
: ptrunc k X ≃* ptrunc l X :=
pequiv_ap (λ n, ptrunc n X) p
definition loop_ptrunc_pequiv [constructor] (n : ℕ₋₂) (A : Type*) :
Ω (ptrunc (n+1) A) ≃* ptrunc n (Ω A) :=
pequiv_of_equiv !tr_eq_tr_equiv idp
definition loop_ptrunc_pequiv_con {n : ℕ₋₂} {A : Type*} (p q : Ω (ptrunc (n+1) A)) :
loop_ptrunc_pequiv n A (p ⬝ q) =
tconcat (loop_ptrunc_pequiv n A p) (loop_ptrunc_pequiv n A q) :=
encode_con p q
definition loopn_ptrunc_pequiv (n : ℕ₋₂) (k : ℕ) (A : Type*) :
Ω[k] (ptrunc (n+k) A) ≃* ptrunc n (Ω[k] A) :=
begin
revert n, induction k with k IH: intro n,
{ reflexivity},
{ refine _ ⬝e* loop_ptrunc_pequiv n (Ω[k] A),
change Ω (Ω[k] (ptrunc (n + succ k) A)) ≃* Ω (ptrunc (n + 1) (Ω[k] A)),
apply loop_pequiv_loop,
refine _ ⬝e* IH (n.+1),
exact loopn_pequiv_loopn k (pequiv_of_eq (ap (λn, ptrunc n A) !succ_add_nat⁻¹)) }
end
definition loopn_ptrunc_pequiv_nat (n k : ℕ) (A : Type*) :
Ω[k] (ptrunc (n + k) A) ≃* ptrunc n (Ω[k] A) :=
loopn_pequiv_loopn k (ptrunc_change_index (of_nat_add_of_nat n k)⁻¹ A) ⬝e* loopn_ptrunc_pequiv n k A
definition loopn_ptrunc_pequiv_con {n : ℕ₋₂} {k : ℕ} {A : Type*}
(p q : Ω[succ k] (ptrunc (n+succ k) A)) :
loopn_ptrunc_pequiv n (succ k) A (p ⬝ q) =
tconcat (loopn_ptrunc_pequiv n (succ k) A p)
(loopn_ptrunc_pequiv n (succ k) A q) :=
begin
refine _ ⬝ loop_ptrunc_pequiv_con _ _,
exact ap !loop_ptrunc_pequiv !loop_pequiv_loop_con
end
definition loopn_ptrunc_pequiv_inv_con {n : ℕ₋₂} {k : ℕ} {A : Type*}
(p q : ptrunc n (Ω[succ k] A)) :
(loopn_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* (tconcat p q) =
(loopn_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* p ⬝
(loopn_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* q :=
equiv.inv_preserve_binary (loopn_ptrunc_pequiv n (succ k) A) concat tconcat
(@loopn_ptrunc_pequiv_con n k A) p q
/- pointed homotopies involving ptrunc -/
definition ptrunc_functor_pcompose [constructor] {X Y Z : Type*} (n : ℕ₋₂) (g : Y →* Z)
(f : X →* Y) : ptrunc_functor n (g ∘* f) ~* ptrunc_functor n g ∘* ptrunc_functor n f :=
begin
fapply phomotopy.mk,
{ apply trunc_functor_compose},
{ esimp, refine !idp_con ⬝ _, refine whisker_right _ !ap_compose' ⬝ _,
esimp, refine whisker_right _ (ap_compose tr g _) ⬝ _, exact !ap_con⁻¹},
end
definition ptrunc_functor_pid [constructor] (X : Type*) (n : ℕ₋₂) :
ptrunc_functor n (pid X) ~* pid (ptrunc n X) :=
begin
fapply phomotopy.mk,
{ apply trunc_functor_id},
{ reflexivity},
end
definition ptrunc_functor_pcast [constructor] {X Y : Type*} (n : ℕ₋₂) (p : X = Y) :
ptrunc_functor n (pcast p) ~* pcast (ap (ptrunc n) p) :=
begin
fapply phomotopy.mk,
{ intro x, esimp, refine !trunc_functor_cast ⬝ _, refine ap010 cast _ x,
refine !ap_compose' ⬝ !ap_compose },
{ induction p, reflexivity},
end
definition ptrunc_functor_phomotopy [constructor] {X Y : Type*} (n : ℕ₋₂) {f g : X →* Y}
(p : f ~* g) : ptrunc_functor n f ~* ptrunc_functor n g :=
begin
fapply phomotopy.mk,
{ exact trunc_functor_homotopy n p},
{ esimp, refine !ap_con⁻¹ ⬝ _, exact ap02 tr !to_homotopy_pt},
end
definition ptrunc_functor_pconst [constructor] (n : ℕ₋₂) (X Y : Type*) :
ptrunc_functor n (pconst X Y) ~* pconst (ptrunc n X) (ptrunc n Y) :=
begin
fapply phomotopy.mk,
{ intro x, induction x with x, reflexivity },
{ reflexivity }
end
definition pcast_ptrunc [constructor] (n : ℕ₋₂) {A B : Type*} (p : A = B) :
pcast (ap (ptrunc n) p) ~* ptrunc_functor n (pcast p) :=
begin
fapply phomotopy.mk,
{ intro a, induction p, esimp, exact !trunc_functor_id⁻¹},
{ induction p, reflexivity}
end
definition ptrunc_elim_ptr [constructor] (n : ℕ₋₂) {X Y : Type*} [is_trunc n Y] (f : X →* Y) :
ptrunc.elim n f ∘* ptr n X ~* f :=
begin
fapply phomotopy.mk,
{ reflexivity },
{ reflexivity }
end
definition ptrunc_elim_phomotopy (n : ℕ₋₂) {X Y : Type*} [is_trunc n Y] {f g : X →* Y}
(H : f ~* g) : ptrunc.elim n f ~* ptrunc.elim n g :=
begin
fapply phomotopy.mk,
{ intro x, induction x with x, exact H x },
{ exact to_homotopy_pt H }
end
definition ap1_ptrunc_functor (n : ℕ₋₂) {A B : Type*} (f : A →* B) :
Ω→ (ptrunc_functor (n.+1) f) ∘* (loop_ptrunc_pequiv n A)⁻¹ᵉ* ~*
(loop_ptrunc_pequiv n B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→ f) :=
begin
fapply phomotopy.mk,
{ intro p, induction p with p,
refine (!ap_inv⁻¹ ◾ !ap_compose⁻¹ ◾ idp) ⬝ _ ⬝ !ap_con⁻¹,
apply whisker_right, refine _ ⬝ !ap_con⁻¹, exact whisker_left _ !ap_compose },
{ induction B with B b, induction f with f p, esimp at f, esimp at p, induction p, reflexivity }
end
definition ap1_ptrunc_elim (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc (n.+1) B] :
Ω→ (ptrunc.elim (n.+1) f) ∘* (loop_ptrunc_pequiv n A)⁻¹ᵉ* ~*
ptrunc.elim n (Ω→ f) :=
begin
fapply phomotopy.mk,
{ intro p, induction p with p, exact idp ◾ !ap_compose⁻¹ ◾ idp },
{ reflexivity }
end
definition ap1_ptr (n : ℕ₋₂) (A : Type*) :
Ω→ (ptr (n.+1) A) ~* (loop_ptrunc_pequiv n A)⁻¹ᵉ* ∘* ptr n (Ω A) :=
begin
fapply phomotopy.mk,
{ intro p, apply idp_con },
{ reflexivity }
end
definition ptrunc_elim_ptrunc_functor (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B)
[is_trunc n C] :
ptrunc.elim n g ∘* ptrunc_functor n f ~* ptrunc.elim n (g ∘* f) :=
begin
fapply phomotopy.mk,
{ intro x, induction x with a, reflexivity },
{ esimp, exact !idp_con ⬝ whisker_right _ !ap_compose },
end
definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A]
[is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f :=
begin
fapply phomotopy.mk,
{ intro a, induction a with a, reflexivity },
{ refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose' ⬝ _, apply ap_id }
end
definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) :
ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f :=
begin
fapply phomotopy.mk,
{ intro a, reflexivity },
{ reflexivity }
end
definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B]
[is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f :=
begin
fapply phomotopy.mk,
{ intro a, induction a with a, reflexivity },
{ apply idp_con }
end
definition ptrunc_elim_ptr_phomotopy_pid (n : ℕ₋₂) (A : Type*):
ptrunc.elim n (ptr n A) ~* pid (ptrunc n A) :=
begin
fapply phomotopy.mk,
{ intro a, induction a with a, reflexivity },
{ apply idp_con }
end
section psquare
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*}
{f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂}
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂}
definition ptrunc_functor_psquare (n : ℕ₋₂) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
psquare (ptrunc_functor n f₁₀) (ptrunc_functor n f₁₂)
(ptrunc_functor n f₀₁) (ptrunc_functor n f₂₁) :=
!ptrunc_functor_pcompose⁻¹* ⬝* ptrunc_functor_phomotopy n p ⬝* !ptrunc_functor_pcompose
end psquare
definition is_equiv_ptrunc_functor_ptr [constructor] (A : Type*) {n m : ℕ₋₂} (H : n ≤ m)
: is_equiv (ptrunc_functor n (ptr m A)) :=
to_is_equiv (trunc_trunc_equiv_left A H)⁻¹ᵉ
-- The following pointed equivalence can be defined more easily, but now we get the right maps definitionally