forked from mfillpot/mathomatic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlist.c
1530 lines (1472 loc) · 36.9 KB
/
list.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Mathomatic expression and equation display routines.
* Color mode routines, too.
*
* Copyright (C) 1987-2012 George Gesslein II.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
The chief copyright holder can be contacted at gesslein@mathomatic.org, or
George Gesslein II, P.O. Box 224, Lansing, NY 14882-0224 USA.
*/
#include "includes.h"
#if WIN32_CONSOLE_COLORS
/* The WIN32_CONSOLE_COLORS code was contributed by Doug Snead for the MinGW C compiler. */
#include <windows.h>
#include <wincon.h>
#define FOREGROUND_BLACK 0
#define FOREGROUND_YELLOW (FOREGROUND_RED|FOREGROUND_GREEN)
#define FOREGROUND_MAGENTA (FOREGROUND_BLUE|FOREGROUND_RED)
#define FOREGROUND_CYAN (FOREGROUND_BLUE|FOREGROUND_GREEN)
#define FOREGROUND_WHITE (FOREGROUND_RED|FOREGROUND_GREEN|FOREGROUND_BLUE)
/* MS-Windows color array for coloring mathematical expressions, warnings, and errors. */
static short windows_carray[] = {
FOREGROUND_GREEN,
FOREGROUND_YELLOW, /* warning text color */
FOREGROUND_RED, /* error text color */
FOREGROUND_MAGENTA,
FOREGROUND_BLUE,
FOREGROUND_CYAN,
};
extern HANDLE hOut;
#endif
/* ANSI terminal color code array for 8 color ANSI; we don't use black or white */
/* because the background may be the same color, so there are only 6 colors here. */
static int carray[] = {
32, /* must be green (default color) */
33, /* must be yellow (for warnings) */
31, /* must be red (for errors) */
34, /* must be blue (for prompts) */
35, /* magenta */
36, /* cyan */
};
#define EQUATE_STRING " = " /* string displayed between the LHS and RHS of equations */
#define MODULUS_STRING " % " /* string displayed for the modulus operator */
static int flist_sub(token_type *p1, int n, int out_flag, char *string, int sbuffer_size, int pos, int *highp, int *lowp);
static int flist_recurse(token_type *p1, int n, int out_flag, char *string, int sbuffer_size, int line, int pos, int cur_level, int *highp, int *lowp);
/* Bright HTML color array. */
/* Used when HTML output and "set color" and "set bold" options are enabled. */
/* Good looking with a dark background. */
static char *bright_html_carray[] = {
"#00FF00", /* must be bright green (default color) */
"#FFFF00", /* must be bright yellow (for warnings) */
"#FF0000", /* must be bright red (for errors) */
"#0000FF", /* must be bright blue (for prompts) */
"#FF9000",
"#FF00FF",
"#00FFFF",
};
/* Dim HTML color array for color HTML output. */
/* Used for HTML output with "set color" and "set no bold" options. */
/* Good looking with a white background. */
static char *html_carray[] = {
"green",
"olive",
"red",
"navy",
"maroon",
"purple",
"teal",
};
/*
* Reset terminal attributes function.
* Turn color off if color mode is on.
* Subsequent output will have no color until the next call to set_color().
*/
void
reset_attr(void)
{
FILE *fp;
if (html_flag == 2) {
fp = gfp;
} else {
fp = stdout;
}
#if !LIBRARY
fflush(NULL); /* flush all output */
#endif
if (color_flag && cur_color >= 0) {
if (html_flag) {
fprintf(fp, "</font>");
} else {
#if WIN32_CONSOLE_COLORS
if (color_flag == 2) {
fprintf(fp, "\033[0m");
} else {
SetConsoleTextAttribute(hOut, FOREGROUND_WHITE);
}
#else
fprintf(fp, "\033[0m");
#endif
}
fflush(fp);
}
cur_color = -1;
}
/*
* Set the current color on the display.
* Subsequent output will have the color in carray[color % ARR_CNT(carray)] for ANSI color mode.
* Other color modes work similarly.
* Range for color is 0 to INT_MAX.
*
* Return actual color number displayed or -1 if no color.
*/
int
set_color(color)
int color;
{
int rv = -1;
if (html_flag != 2 && gfp != stdout) {
return rv;
}
if (color_flag) {
if (cur_color == color) /* color already set */
return rv;
if (html_flag) {
if (cur_color >= 0) {
fprintf(gfp, "</font>");
}
if (bold_colors) {
fprintf(gfp, "<font color=\"%s\">", bright_html_carray[rv = (color % ARR_CNT(bright_html_carray))]);
} else {
fprintf(gfp, "<font color=\"%s\">", html_carray[rv = (color % ARR_CNT(html_carray))]);
}
} else {
#if WIN32_CONSOLE_COLORS
if (color_flag == 2) {
fprintf(gfp, "\033[%d;%dm", bold_colors, carray[rv = (color % ARR_CNT(carray))]);
} else {
short attr = windows_carray[rv = (color % ARR_CNT(windows_carray))];
if (bold_colors)
attr |= FOREGROUND_INTENSITY;
SetConsoleTextAttribute(hOut, attr);
}
#else
fprintf(gfp, "\033[%d;%dm", bold_colors, carray[rv = (color % ARR_CNT(carray))]);
#endif
}
cur_color = color;
}
return rv;
}
/*
* Set normal text color for subsequent output.
*/
void
default_color(set_no_color_flag)
int set_no_color_flag; /* If true, set no color even if text_color is set. Normally this would be false. */
{
if (html_flag != 2 && gfp != stdout) {
return;
}
if (color_flag && cur_color >= 0) {
if (html_flag) {
fprintf(gfp, "</font>");
} else {
#if WIN32_CONSOLE_COLORS
if (color_flag == 2) {
fprintf(gfp, "\033[0m");
} else {
SetConsoleTextAttribute(hOut, FOREGROUND_WHITE);
}
#else
fprintf(gfp, "\033[0m");
#endif
}
}
cur_color = -1;
if (text_color >= 0 && !set_no_color_flag) {
set_color(text_color);
}
fflush(gfp);
}
/*
* Display all possible colors for this color mode.
*
* Return true if successful.
*/
int
display_all_colors(void)
{
int i, j;
i = 0;
default_color(true);
if (set_color(i) < 0) {
default_color(false);
return false;
}
do {
printf("#");
i++;
j = set_color(i);
} while (j > 0);
default_color(false);
return(j >= 0);
}
/*
* Trim the trailing zeros from a string, after the decimal point.
*/
static void
trim_zeros(buf)
char *buf;
{
int j;
j = strlen(buf) - 1;
for (; j >= 0; j--) {
if (buf[j] == '0')
continue;
if (buf[j] == '.') {
if (buf[j+1])
buf[j+2] = '\0';
} else {
break;
}
}
}
/*
* Display the expression or equation stored in equation space "n" in single-line format.
*
* Return length (number of screen columns) of output line.
*/
int
list1_sub(n, export_flag)
int n; /* equation space number */
int export_flag; /* non-zero for exportable format (readable by other math programs) */
/* 1 for Maxima, 2 for other, 3 for gnuplot, 4 for hexadecimal */
{
int len = 0;
if (empty_equation_space(n))
return 0;
if ((export_flag == 0 || export_flag == 4) && !high_prec) {
len += fprintf(gfp, "#%d: ", n + 1);
}
len += list_proc(lhs[n], n_lhs[n], export_flag);
if (n_rhs[n]) {
len += fprintf(gfp, EQUATE_STRING);
len += list_proc(rhs[n], n_rhs[n], export_flag);
}
if (export_flag == 1) {
len += fprintf(gfp, ";");
}
#if CYGWIN
fprintf(gfp, "\r\n"); /* might be redirecting to a Microsoft text file */
#else
fprintf(gfp, "\n");
#endif
return len;
}
/*
* Display the expression or equation stored in equation space "n".
*
* Return the total width of the output (number of screen columns)
* or zero on failure.
*/
int
list_sub(n)
int n; /* equation space number */
{
if (empty_equation_space(n))
return 0;
make_fractions_and_group(n);
if (factor_int_flag) {
factor_int_equation(n);
}
if (display2d) {
/* display in fraction format */
return flist_equation(n);
} else {
/* display in single-line format */
return list1_sub(n, false);
}
}
#if !SILENT
void
list_debug(level, p1, n1, p2, n2)
int level;
token_type *p1;
int n1;
token_type *p2;
int n2;
{
if (debug_level >= level) {
if (level >= -2) {
fprintf(gfp, _("level %d: "), level);
}
list_proc(p1, n1, false);
if (p2 && n2 > 0) {
fprintf(gfp, EQUATE_STRING);
list_proc(p2, n2, false);
}
fprintf(gfp, "\n");
}
}
#endif
/*
* Return the allocated string name of the given Mathomatic variable,
* or NULL if none.
*
* Does not return the actual variable name, use list_var() for that.
*/
char *
var_name(v)
long v; /* Mathomatic variable */
{
char *cp = NULL;
long l;
l = (labs(v) & VAR_MASK) - VAR_OFFSET;
if (l >= 0 && l < MAX_VAR_NAMES) {
cp = var_names[l];
}
return cp;
}
/*
* Convert the passed Mathomatic variable to an ASCII variable name.
* The ASCII variable name is stored in the global var_str[].
*
* Return the length of the variable name string in var_str[].
* Nothing is displayed.
*
* If (lang_code == 0), use standard Mathomatic format.
* If (lang_code > 0), make variable compatible with the language defined in the enumeration language_list defined in am.h
* If (lang_code < 0), create an exportable variable name: -1 for Maxima, -2 for other, -3 for gnuplot, -4 for hexadecimal,
* -5 for mathomatic-only variable format.
*/
int
list_var(v, lang_code)
long v; /* variable to convert */
int lang_code; /* language code */
{
int j;
int from_memory = false;
char *cp = NULL;
var_str[0] = '\0';
switch (labs(v) & VAR_MASK) {
case V_NULL:
return(strlen(var_str));
case SIGN:
cp = "sign";
break;
case IMAGINARY:
switch (lang_code) {
case -3:
cp = "{0,1}";
break;
case 0:
case -4:
case -2:
cp = "i";
break;
case -5:
cp = "i#";
break;
case -1:
cp = "%i";
break;
case PYTHON:
cp = "1j";
break;
default:
cp = "1.0i";
break;
}
break;
case V_E:
switch (lang_code) {
case -3:
cp = "exp(1.0)";
break;
case -1:
cp = "%e";
break;
case C:
cp ="M_E";
break;
case JAVA:
cp = "Math.E";
break;
case PYTHON:
cp = "math.e";
break;
case -5:
cp = "e#";
break;
default:
cp = "e";
break;
}
break;
case V_PI:
switch (lang_code) {
case -1:
cp = "%pi";
break;
case -5:
cp ="pi#";
break;
case C:
cp = "M_PI";
break;
case JAVA:
cp = "Math.PI";
break;
case PYTHON:
cp = "math.pi";
break;
default:
cp = "pi";
break;
}
break;
case MATCH_ANY:
cp = "all";
break;
default:
cp = var_name(v);
from_memory = true;
break;
}
if (cp) {
j = (labs(v) >> VAR_SHIFT) & SUBSCRIPT_MASK;
if (j) { /* for "sign" variables */
snprintf(var_str, sizeof(var_str), "%s%d", cp, j - 1);
} else {
my_strlcpy(var_str, cp, sizeof(var_str));
}
} else {
my_strlcpy(var_str, "bad_variable", sizeof(var_str));
}
/* Make valid C type variable if exporting or generating code: */
if (from_memory) {
switch (lang_code) {
case 0:
case -4:
case -5:
break;
default:
for (j = 0; var_str[j] && var_str[j] != '('; j++) {
if (strchr("_[]", var_str[j]) == NULL && !isalnum(var_str[j])) {
var_str[j] = '_';
}
}
break;
}
}
return(strlen(var_str));
}
/*
* Display an expression in single-line format.
* Use color if color mode is set.
*
* Return number of characters output (excluding escape sequences).
*/
int
list_proc(p1, n, export_flag)
token_type *p1; /* expression pointer */
int n; /* length of expression */
int export_flag; /* flag for exportable format (usually false) */
/* 1 for Maxima, 2 for other, 3 for gnuplot, 4 for hexadecimal */
{
return list_string_sub(p1, n, true, NULL, export_flag);
}
/*
* Store the expression from the specified equation space in a text string in single-line format.
* String should be freed with free() when done.
*
* Returns text string, or NULL if error.
*/
char *
list_equation(n, export_flag)
int n; /* equation space number */
int export_flag; /* flag for exportable format (usually false) */
{
int len;
char *cp;
if (empty_equation_space(n))
return NULL;
len = list_string(lhs[n], n_lhs[n], NULL, export_flag);
if (n_rhs[n]) {
len += strlen(EQUATE_STRING);
len += list_string(rhs[n], n_rhs[n], NULL, export_flag);
}
len += 2; /* for possible semicolon and terminating null character */
cp = (char *) malloc(len);
if (cp == NULL) {
error(_("Out of memory (can't malloc(3))."));
return NULL;
}
list_string(lhs[n], n_lhs[n], cp, export_flag);
if (n_rhs[n]) {
strcat(cp, EQUATE_STRING);
list_string(rhs[n], n_rhs[n], &cp[strlen(cp)], export_flag);
}
if (export_flag == 1) {
strcat(cp, ";");
}
return cp;
}
/*
* Store an expression in a text string.
* String should be freed with free() when done.
*
* Return string, or NULL if error.
*/
char *
list_expression(p1, n, export_flag)
token_type *p1; /* expression pointer */
int n; /* length of expression */
int export_flag;
{
int len;
char *cp;
if (n <= 0) {
return NULL;
}
len = list_string(p1, n, NULL, export_flag);
len++; /* for terminating null character */
cp = (char *) malloc(len);
if (cp == NULL) {
error(_("Out of memory (can't malloc(3))."));
return NULL;
}
list_string(p1, n, cp, export_flag);
return cp;
}
/*
* Convert an expression to a text string and store in "string" if
* "string" is not NULL. "string" need not be initialized,
* but must be long enough to contain the expression.
* To find the storage size needed, call with "string" set to NULL first.
*
* Return length (number of characters).
*/
int
list_string(p1, n, string, export_flag)
token_type *p1; /* expression pointer */
int n; /* length of expression */
char *string; /* buffer to save output to or NULL pointer */
int export_flag;
{
return list_string_sub(p1, n, false, string, export_flag);
}
#define APPEND(str) { if (string) { strcpy(&string[len], str); } if (outflag) { fprintf(gfp, "%s", str); } len += strlen(str); }
#define APPEND2(str) { if (string) { if ((sbuffer_size - current_len) > 0) my_strlcpy(&string[current_len], str, sbuffer_size - current_len); } else { fprintf(gfp, "%s", str); } current_len += strlen(str); }
int
list_string_sub(p1, n, outflag, string, export_flag)
token_type *p1; /* expression pointer */
int n; /* length of expression */
int outflag; /* if true, output to gfp */
char *string; /* buffer to save output to or NULL pointer */
int export_flag; /* flag for exportable format (usually false) */
/* 1 for Maxima, 2 for other, 3 for gnuplot, 4 for hexadecimal */
{
int i, j, k, i1;
int min1;
int cur_level;
char *cp;
int len = 0;
char buf[500], buf2[500];
int export_precision;
int cflag, power_flag;
cflag = (outflag && (export_flag == 0 || export_flag == 4));
if (cflag)
set_color(0);
if (string)
string[0] = '\0';
if (high_prec)
export_precision = 20;
else
export_precision = DBL_DIG;
cur_level = min1 = min_level(p1, n);
for (i = 0; i < n; i++) {
power_flag = false;
if (export_flag == 0 && !high_prec) {
for (j = i - 1; j <= (i + 1); j++) {
if ((j - 1) >= 0 && (j + 1) < n
&& p1[j].kind == OPERATOR && (p1[j].token.operatr == POWER || p1[j].token.operatr == FACTORIAL)
&& p1[j-1].level == p1[j].level
&& p1[j+1].level == p1[j].level
&& ((j + 2) >= n || p1[j+2].level != (p1[j].level - 1) || (p1[j+2].token.operatr < POWER))
&& ((j - 2) < 0 || p1[j-2].level != (p1[j].level - 1) || (p1[j-2].token.operatr < POWER))) {
power_flag = true;
break;
}
}
}
j = cur_level - p1[i].level;
if (power_flag)
k = abs(j) - 1;
else
k = abs(j);
for (i1 = 1; i1 <= k; i1++) {
if (j > 0) {
cur_level--;
APPEND(")");
if (cflag)
set_color(cur_level-min1);
} else {
cur_level++;
if (cflag)
set_color(cur_level-min1);
APPEND("(");
}
}
switch (p1[i].kind) {
case CONSTANT:
if (p1[i].token.constant == 0.0) {
p1[i].token.constant = 0.0; /* fix -0 */
}
if (export_flag == 4) {
snprintf(buf, sizeof(buf), "%a", p1[i].token.constant);
} else if (export_flag == 3) {
snprintf(buf, sizeof(buf), "%#.*g", DBL_DIG, p1[i].token.constant);
trim_zeros(buf);
} else if (export_flag || high_prec) {
snprintf(buf, sizeof(buf), "%.*g", export_precision, p1[i].token.constant);
} else if (finance_option >= 0) {
#if THOUSANDS_SEPARATOR /* Fails miserably in MinGW and possibly others, displaying nothing but the format string. */
snprintf(buf, sizeof(buf), "%'.*f", finance_option, p1[i].token.constant);
#else
snprintf(buf, sizeof(buf), "%.*f", finance_option, p1[i].token.constant);
#endif
} else {
if (p1[i].token.constant < 0.0 && (i + 1) < n && p1[i+1].level == p1[i].level
&& (p1[i+1].token.operatr >= POWER)) {
snprintf(buf, sizeof(buf), "(%.*g)", precision, p1[i].token.constant);
} else {
snprintf(buf, sizeof(buf), "%.*g", precision, p1[i].token.constant);
}
APPEND(buf);
break;
}
if (p1[i].token.constant < 0.0) {
snprintf(buf2, sizeof(buf2), "(%s)", buf);
APPEND(buf2);
} else {
APPEND(buf);
}
break;
case VARIABLE:
list_var(p1[i].token.variable, 0 - export_flag);
APPEND(var_str);
break;
case OPERATOR:
cp = _("(unknown operator)");
switch (p1[i].token.operatr) {
case PLUS:
cp = " + ";
break;
case MINUS:
cp = " - ";
break;
case TIMES:
cp = "*";
break;
case DIVIDE:
cp = "/";
break;
case IDIVIDE:
cp = "//";
break;
case MODULUS:
cp = MODULUS_STRING;
break;
case POWER:
if (power_starstar || export_flag == 3) {
cp = "**";
} else {
cp = "^";
}
break;
case FACTORIAL:
cp = "!";
i++;
break;
}
APPEND(cp);
break;
}
}
for (j = cur_level - min1; j > 0;) {
APPEND(")");
j--;
if (cflag)
set_color(j);
}
if (cflag)
default_color(false);
return len;
}
/*
* Return 1 (true) or -1 if expression is a valid integer expression for
* list_code().
* Return 0 if it is definitely a non-integer expression.
* Return -1 if it contains non-integer divide operators, but is OK otherwise.
*/
int
int_expr(p1, n)
token_type *p1; /* expression pointer */
int n; /* length of expression */
{
int i;
int rv = 1;
for (i = 0; i < n; i++) {
switch (p1[i].kind) {
case CONSTANT:
if (fmod(p1[i].token.constant, 1.0) != 0.0) {
return 0;
}
break;
case VARIABLE:
if (p1[i].token.variable < IMAGINARY) {
return 0;
}
break;
case OPERATOR:
if (p1[i].token.operatr == DIVIDE)
rv = -1;
break;
}
}
return rv;
}
/*
* Display an equation space as C, Java, or Python code.
*
* Return length of output (number of characters).
*/
int
list_code_equation(en, language, int_flag)
int en; /* equation space number */
enum language_list language;
int int_flag; /* integer arithmetic flag */
{
int len = 0;
if (empty_equation_space(en))
return 0;
len += list_code(lhs[en], &n_lhs[en], true, NULL, language, int_flag);
if (n_rhs[en]) {
len += fprintf(gfp, EQUATE_STRING);
len += list_code(rhs[en], &n_rhs[en], true, NULL, language, int_flag);
}
switch (language) {
case C:
case JAVA:
len += fprintf(gfp, ";");
break;
default:
break;
}
fprintf(gfp, "\n");
return len;
}
/*
* Convert the specified equation space to a string of C, Java, or Python code.
* String should be freed with free() when done.
*
* Return string, or NULL if error.
*/
char *
string_code_equation(en, language, int_flag)
int en; /* equation space number */
enum language_list language;
int int_flag; /* integer arithmetic flag */
{
int len;
char *cp;
if (empty_equation_space(en))
return NULL;
len = list_code(lhs[en], &n_lhs[en], false, NULL, language, int_flag);
if (n_rhs[en]) {
len += strlen(EQUATE_STRING);
len += list_code(rhs[en], &n_rhs[en], false, NULL, language, int_flag);
}
len += 2; /* for possible semicolon and terminating null character */
cp = (char *) malloc(len);
if (cp == NULL) {
error(_("Out of memory (can't malloc(3))."));
return NULL;
}
list_code(lhs[en], &n_lhs[en], false, cp, language, int_flag);
if (n_rhs[en]) {
strcat(cp, EQUATE_STRING);
list_code(rhs[en], &n_rhs[en], false, &cp[strlen(cp)], language, int_flag);
}
switch (language) {
case C:
case JAVA:
strcat(cp, ";");
break;
default:
break;
}
return cp;
}
/*
* Output C, Java, or Python code for an expression.
* Expression might be modified by this function, though it remains equivalent.
*
* Return length of output (number of characters).
*/
int
list_code(equation, np, outflag, string, language, int_flag)
token_type *equation; /* equation side pointer */
int *np; /* pointer to length of equation side */
int outflag; /* if true, output to gfp */
char *string; /* buffer to save output to or NULL pointer */
enum language_list language; /* see enumeration language_list in am.h */
int int_flag; /* integer arithmetic flag, should work with any language */
{
int i, j, k, i1, i2;
int min1;
int cur_level;
char *cp;
char buf[500], buf2[500];
int len = 0;
if (string)
string[0] = '\0';
min1 = min_level(equation, *np);
if (*np > 1)
min1--;
cur_level = min1;
for (i = 0; i < *np; i++) {
j = cur_level - equation[i].level;
k = abs(j);
for (i1 = 1; i1 <= k; i1++) {
if (j > 0) {
cur_level--;
APPEND(")");
} else {
cur_level++;
for (i2 = i + 1; i2 < *np && equation[i2].level >= cur_level; i2 += 2) {
if (equation[i2].level == cur_level) {
switch (equation[i2].token.operatr) {
case POWER:
if (equation[i2-1].level == cur_level
&& equation[i2+1].level == cur_level
&& equation[i2+1].kind == CONSTANT
&& equation[i2+1].token.constant == 2.0) {
equation[i2].token.operatr = TIMES;
equation[i2+1] = equation[i2-1];
} else {
if (!int_flag) {
switch (language) {
case C:
APPEND("pow");
break;
case JAVA:
APPEND("Math.pow");
break;
default:
break;
}
}
}
break;
case FACTORIAL:
APPEND("factorial");
break;
}
break;
}
}
APPEND("(");
}
}
switch (equation[i].kind) {
case CONSTANT:
if (equation[i].token.constant == 0.0) {
equation[i].token.constant = 0.0; /* fix -0 */
}
if (int_flag) {
snprintf(buf, sizeof(buf), "%.0f", equation[i].token.constant);
} else {
snprintf(buf, sizeof(buf), "%#.*g", DBL_DIG, equation[i].token.constant);
trim_zeros(buf);
}
/* Here we will need to parenthesize negative numbers to make -2**x work the same with Python: */
if (equation[i].token.constant < 0) {
snprintf(buf2, sizeof(buf2), "(%s)", buf);
APPEND(buf2);
} else {
APPEND(buf);
}
break;
case VARIABLE:
if (int_flag && (language == C || language == JAVA) && equation[i].token.variable == IMAGINARY) {
APPEND("1i");
} else {
list_var(equation[i].token.variable, language);
APPEND(var_str);
}
break;
case OPERATOR:
cp = _("(unknown operator)");
switch (equation[i].token.operatr) {
case PLUS:
cp = " + ";
break;
case MINUS:
cp = " - ";
break;
case TIMES:
cp = "*";
break;
case IDIVIDE:
if (language == PYTHON) {
cp = "//";
break;
}
case DIVIDE:
cp = "/";
break;
case MODULUS:
cp = MODULUS_STRING;
break;
case POWER:
if (int_flag || language == PYTHON) {
cp = "**";
} else {
cp = ", ";
}
break;
case FACTORIAL:
cp = "";
i++;
break;
}
APPEND(cp);
break;
}
}
for (j = cur_level - min1; j > 0; j--) {
APPEND(")");
}