forked from explosion/spaCy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_scorer.py
537 lines (475 loc) · 17.1 KB
/
test_scorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import pytest
from numpy.testing import assert_almost_equal, assert_array_almost_equal
from pytest import approx
from spacy.lang.en import English
from spacy.scorer import PRFScore, ROCAUCScore, Scorer, _roc_auc_score, _roc_curve
from spacy.tokens import Doc, Span
from spacy.training import Example
from spacy.training.iob_utils import offsets_to_biluo_tags
test_las_apple = [
[
"Apple is looking at buying U.K. startup for $ 1 billion",
{
"heads": [2, 2, 2, 2, 3, 6, 4, 4, 10, 10, 7],
"deps": [
"nsubj",
"aux",
"ROOT",
"prep",
"pcomp",
"compound",
"dobj",
"prep",
"quantmod",
"compound",
"pobj",
],
},
]
]
test_ner_cardinal = [
["100 - 200", {"entities": [[0, 3, "CARDINAL"], [6, 9, "CARDINAL"]]}]
]
test_ner_apple = [
[
"Apple is looking at buying U.K. startup for $1 billion",
{"entities": [(0, 5, "ORG"), (27, 31, "GPE"), (44, 54, "MONEY")]},
]
]
@pytest.fixture
def tagged_doc():
text = "Sarah's sister flew to Silicon Valley via London."
tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
pos = [
"PROPN",
"PART",
"NOUN",
"VERB",
"ADP",
"PROPN",
"PROPN",
"ADP",
"PROPN",
"PUNCT",
]
morphs = [
"NounType=prop|Number=sing",
"Poss=yes",
"Number=sing",
"Tense=past|VerbForm=fin",
"",
"NounType=prop|Number=sing",
"NounType=prop|Number=sing",
"",
"NounType=prop|Number=sing",
"PunctType=peri",
]
nlp = English()
doc = nlp(text)
for i in range(len(tags)):
doc[i].tag_ = tags[i]
doc[i].pos_ = pos[i]
doc[i].set_morph(morphs[i])
if i > 0:
doc[i].is_sent_start = False
return doc
@pytest.fixture
def sented_doc():
text = "One sentence. Two sentences. Three sentences."
nlp = English()
doc = nlp(text)
for i in range(len(doc)):
if i % 3 == 0:
doc[i].is_sent_start = True
else:
doc[i].is_sent_start = False
return doc
def test_tokenization(sented_doc):
scorer = Scorer()
gold = {"sent_starts": [t.sent_start for t in sented_doc]}
example = Example.from_dict(sented_doc, gold)
scores = scorer.score([example])
assert scores["token_acc"] == 1.0
nlp = English()
example.predicted = Doc(
nlp.vocab,
words=["One", "sentence.", "Two", "sentences.", "Three", "sentences."],
spaces=[True, True, True, True, True, False],
)
example.predicted[1].is_sent_start = False
scores = scorer.score([example])
assert scores["token_acc"] == 0.5
assert scores["token_p"] == 0.5
assert scores["token_r"] == approx(0.33333333)
assert scores["token_f"] == 0.4
# per-component scoring
scorer = Scorer()
scores = scorer.score([example], per_component=True)
assert scores["tokenizer"]["token_acc"] == 0.5
assert scores["tokenizer"]["token_p"] == 0.5
assert scores["tokenizer"]["token_r"] == approx(0.33333333)
assert scores["tokenizer"]["token_f"] == 0.4
def test_sents(sented_doc):
scorer = Scorer()
gold = {"sent_starts": [t.sent_start for t in sented_doc]}
example = Example.from_dict(sented_doc, gold)
scores = scorer.score([example])
assert scores["sents_f"] == 1.0
# One sentence start is moved
gold["sent_starts"][3] = 0
gold["sent_starts"][4] = 1
example = Example.from_dict(sented_doc, gold)
scores = scorer.score([example])
assert scores["sents_f"] == approx(0.3333333)
def test_las_per_type(en_vocab):
# Gold and Doc are identical
scorer = Scorer()
examples = []
for input_, annot in test_las_apple:
doc = Doc(
en_vocab, words=input_.split(" "), heads=annot["heads"], deps=annot["deps"]
)
gold = {"heads": annot["heads"], "deps": annot["deps"]}
example = Example.from_dict(doc, gold)
examples.append(example)
results = scorer.score(examples)
assert results["dep_uas"] == 1.0
assert results["dep_las"] == 1.0
assert results["dep_las_per_type"]["nsubj"]["p"] == 1.0
assert results["dep_las_per_type"]["nsubj"]["r"] == 1.0
assert results["dep_las_per_type"]["nsubj"]["f"] == 1.0
assert results["dep_las_per_type"]["compound"]["p"] == 1.0
assert results["dep_las_per_type"]["compound"]["r"] == 1.0
assert results["dep_las_per_type"]["compound"]["f"] == 1.0
# One dep is incorrect in Doc
scorer = Scorer()
examples = []
for input_, annot in test_las_apple:
doc = Doc(
en_vocab, words=input_.split(" "), heads=annot["heads"], deps=annot["deps"]
)
gold = {"heads": annot["heads"], "deps": annot["deps"]}
doc[0].dep_ = "compound"
example = Example.from_dict(doc, gold)
examples.append(example)
results = scorer.score(examples)
assert results["dep_uas"] == 1.0
assert_almost_equal(results["dep_las"], 0.9090909)
assert results["dep_las_per_type"]["nsubj"]["p"] == 0
assert results["dep_las_per_type"]["nsubj"]["r"] == 0
assert results["dep_las_per_type"]["nsubj"]["f"] == 0
assert_almost_equal(results["dep_las_per_type"]["compound"]["p"], 0.666666666)
assert results["dep_las_per_type"]["compound"]["r"] == 1.0
assert results["dep_las_per_type"]["compound"]["f"] == 0.8
def test_ner_per_type(en_vocab):
# Gold and Doc are identical
scorer = Scorer()
examples = []
for input_, annot in test_ner_cardinal:
doc = Doc(
en_vocab, words=input_.split(" "), ents=["B-CARDINAL", "O", "B-CARDINAL"]
)
entities = offsets_to_biluo_tags(doc, annot["entities"])
example = Example.from_dict(doc, {"entities": entities})
# a hack for sentence boundaries
example.predicted[1].is_sent_start = False
example.reference[1].is_sent_start = False
examples.append(example)
results = scorer.score(examples)
assert results["ents_p"] == 1.0
assert results["ents_r"] == 1.0
assert results["ents_f"] == 1.0
assert results["ents_per_type"]["CARDINAL"]["p"] == 1.0
assert results["ents_per_type"]["CARDINAL"]["r"] == 1.0
assert results["ents_per_type"]["CARDINAL"]["f"] == 1.0
# Doc has one missing and one extra entity
# Entity type MONEY is not present in Doc
scorer = Scorer()
examples = []
for input_, annot in test_ner_apple:
doc = Doc(
en_vocab,
words=input_.split(" "),
ents=["B-ORG", "O", "O", "O", "O", "B-GPE", "B-ORG", "O", "O", "O"],
)
entities = offsets_to_biluo_tags(doc, annot["entities"])
example = Example.from_dict(doc, {"entities": entities})
# a hack for sentence boundaries
example.predicted[1].is_sent_start = False
example.reference[1].is_sent_start = False
examples.append(example)
results = scorer.score(examples)
assert results["ents_p"] == approx(0.6666666)
assert results["ents_r"] == approx(0.6666666)
assert results["ents_f"] == approx(0.6666666)
assert "GPE" in results["ents_per_type"]
assert "MONEY" in results["ents_per_type"]
assert "ORG" in results["ents_per_type"]
assert results["ents_per_type"]["GPE"]["p"] == 1.0
assert results["ents_per_type"]["GPE"]["r"] == 1.0
assert results["ents_per_type"]["GPE"]["f"] == 1.0
assert results["ents_per_type"]["MONEY"]["p"] == 0
assert results["ents_per_type"]["MONEY"]["r"] == 0
assert results["ents_per_type"]["MONEY"]["f"] == 0
assert results["ents_per_type"]["ORG"]["p"] == 0.5
assert results["ents_per_type"]["ORG"]["r"] == 1.0
assert results["ents_per_type"]["ORG"]["f"] == approx(0.6666666)
def test_tag_score(tagged_doc):
# Gold and Doc are identical
scorer = Scorer()
gold = {
"tags": [t.tag_ for t in tagged_doc],
"pos": [t.pos_ for t in tagged_doc],
"morphs": [str(t.morph) for t in tagged_doc],
"sent_starts": [1 if t.is_sent_start else -1 for t in tagged_doc],
}
example = Example.from_dict(tagged_doc, gold)
results = scorer.score([example])
assert results["tag_acc"] == 1.0
assert results["pos_acc"] == 1.0
assert results["morph_acc"] == 1.0
assert results["morph_micro_f"] == 1.0
assert results["morph_per_feat"]["NounType"]["f"] == 1.0
# Gold annotation is modified
scorer = Scorer()
tags = [t.tag_ for t in tagged_doc]
tags[0] = "NN"
pos = [t.pos_ for t in tagged_doc]
pos[1] = "X"
morphs = [str(t.morph) for t in tagged_doc]
morphs[1] = "Number=sing"
morphs[2] = "Number=plur"
gold = {
"tags": tags,
"pos": pos,
"morphs": morphs,
"sent_starts": gold["sent_starts"],
}
example = Example.from_dict(tagged_doc, gold)
results = scorer.score([example])
assert results["tag_acc"] == 0.9
assert results["pos_acc"] == 0.9
assert results["morph_acc"] == approx(0.8)
assert results["morph_micro_f"] == approx(0.8461538)
assert results["morph_per_feat"]["NounType"]["f"] == 1.0
assert results["morph_per_feat"]["Poss"]["f"] == 0.0
assert results["morph_per_feat"]["Number"]["f"] == approx(0.72727272)
# per-component scoring
scorer = Scorer()
results = scorer.score([example], per_component=True)
assert results["tagger"]["tag_acc"] == 0.9
assert results["morphologizer"]["pos_acc"] == 0.9
assert results["morphologizer"]["morph_acc"] == approx(0.8)
def test_partial_annotation(en_tokenizer):
pred_doc = en_tokenizer("a b c d e")
pred_doc[0].tag_ = "A"
pred_doc[0].pos_ = "X"
pred_doc[0].set_morph("Feat=Val")
pred_doc[0].dep_ = "dep"
# unannotated reference
ref_doc = en_tokenizer("a b c d e")
ref_doc.has_unknown_spaces = True
example = Example(pred_doc, ref_doc)
scorer = Scorer()
scores = scorer.score([example])
for key in scores:
# cats doesn't have an unset state
if key.startswith("cats"):
continue
assert scores[key] is None
# partially annotated reference, not overlapping with predicted annotation
ref_doc = en_tokenizer("a b c d e")
ref_doc.has_unknown_spaces = True
ref_doc[1].tag_ = "A"
ref_doc[1].pos_ = "X"
ref_doc[1].set_morph("Feat=Val")
ref_doc[1].dep_ = "dep"
example = Example(pred_doc, ref_doc)
scorer = Scorer()
scores = scorer.score([example])
assert scores["token_acc"] is None
assert scores["tag_acc"] == 0.0
assert scores["pos_acc"] == 0.0
assert scores["morph_acc"] == 0.0
assert scores["dep_uas"] == 1.0
assert scores["dep_las"] == 0.0
assert scores["sents_f"] is None
# partially annotated reference, overlapping with predicted annotation
ref_doc = en_tokenizer("a b c d e")
ref_doc.has_unknown_spaces = True
ref_doc[0].tag_ = "A"
ref_doc[0].pos_ = "X"
ref_doc[1].set_morph("Feat=Val")
ref_doc[1].dep_ = "dep"
example = Example(pred_doc, ref_doc)
scorer = Scorer()
scores = scorer.score([example])
assert scores["token_acc"] is None
assert scores["tag_acc"] == 1.0
assert scores["pos_acc"] == 1.0
assert scores["morph_acc"] == 0.0
assert scores["dep_uas"] == 1.0
assert scores["dep_las"] == 0.0
assert scores["sents_f"] is None
def test_roc_auc_score():
# Binary classification, toy tests from scikit-learn test suite
y_true = [0, 1]
y_score = [0, 1]
tpr, fpr, _ = _roc_curve(y_true, y_score)
roc_auc = _roc_auc_score(y_true, y_score)
assert_array_almost_equal(tpr, [0, 0, 1])
assert_array_almost_equal(fpr, [0, 1, 1])
assert_almost_equal(roc_auc, 1.0)
y_true = [0, 1]
y_score = [1, 0]
tpr, fpr, _ = _roc_curve(y_true, y_score)
roc_auc = _roc_auc_score(y_true, y_score)
assert_array_almost_equal(tpr, [0, 1, 1])
assert_array_almost_equal(fpr, [0, 0, 1])
assert_almost_equal(roc_auc, 0.0)
y_true = [1, 0]
y_score = [1, 1]
tpr, fpr, _ = _roc_curve(y_true, y_score)
roc_auc = _roc_auc_score(y_true, y_score)
assert_array_almost_equal(tpr, [0, 1])
assert_array_almost_equal(fpr, [0, 1])
assert_almost_equal(roc_auc, 0.5)
y_true = [1, 0]
y_score = [1, 0]
tpr, fpr, _ = _roc_curve(y_true, y_score)
roc_auc = _roc_auc_score(y_true, y_score)
assert_array_almost_equal(tpr, [0, 0, 1])
assert_array_almost_equal(fpr, [0, 1, 1])
assert_almost_equal(roc_auc, 1.0)
y_true = [1, 0]
y_score = [0.5, 0.5]
tpr, fpr, _ = _roc_curve(y_true, y_score)
roc_auc = _roc_auc_score(y_true, y_score)
assert_array_almost_equal(tpr, [0, 1])
assert_array_almost_equal(fpr, [0, 1])
assert_almost_equal(roc_auc, 0.5)
# same result as above with ROCAUCScore wrapper
score = ROCAUCScore()
score.score_set(0.5, 1)
score.score_set(0.5, 0)
assert_almost_equal(score.score, 0.5)
# check that errors are raised in undefined cases and score is -inf
y_true = [0, 0]
y_score = [0.25, 0.75]
with pytest.raises(ValueError):
_roc_auc_score(y_true, y_score)
score = ROCAUCScore()
score.score_set(0.25, 0)
score.score_set(0.75, 0)
with pytest.raises(ValueError):
_ = score.score # noqa: F841
y_true = [1, 1]
y_score = [0.25, 0.75]
with pytest.raises(ValueError):
_roc_auc_score(y_true, y_score)
score = ROCAUCScore()
score.score_set(0.25, 1)
score.score_set(0.75, 1)
with pytest.raises(ValueError):
_ = score.score # noqa: F841
def test_score_spans():
nlp = English()
text = "This is just a random sentence."
key = "my_spans"
gold = nlp.make_doc(text)
pred = nlp.make_doc(text)
spans = []
spans.append(gold.char_span(0, 4, label="PERSON"))
spans.append(gold.char_span(0, 7, label="ORG"))
spans.append(gold.char_span(8, 12, label="ORG"))
gold.spans[key] = spans
def span_getter(doc, span_key):
return doc.spans[span_key]
# Predict exactly the same, but overlapping spans will be discarded
pred.spans[key] = gold.spans[key].copy(doc=pred)
eg = Example(pred, gold)
scores = Scorer.score_spans([eg], attr=key, getter=span_getter)
assert scores[f"{key}_p"] == 1.0
assert scores[f"{key}_r"] < 1.0
# Allow overlapping, now both precision and recall should be 100%
pred.spans[key] = gold.spans[key].copy(doc=pred)
eg = Example(pred, gold)
scores = Scorer.score_spans([eg], attr=key, getter=span_getter, allow_overlap=True)
assert scores[f"{key}_p"] == 1.0
assert scores[f"{key}_r"] == 1.0
# Change the predicted labels
new_spans = [Span(pred, span.start, span.end, label="WRONG") for span in spans]
pred.spans[key] = new_spans
eg = Example(pred, gold)
scores = Scorer.score_spans([eg], attr=key, getter=span_getter, allow_overlap=True)
assert scores[f"{key}_p"] == 0.0
assert scores[f"{key}_r"] == 0.0
assert f"{key}_per_type" in scores
# Discard labels from the evaluation
scores = Scorer.score_spans(
[eg], attr=key, getter=span_getter, allow_overlap=True, labeled=False
)
assert scores[f"{key}_p"] == 1.0
assert scores[f"{key}_r"] == 1.0
assert f"{key}_per_type" not in scores
def test_prf_score():
cand = {"hi", "ho"}
gold1 = {"yo", "hi"}
gold2 = set()
a = PRFScore()
a.score_set(cand=cand, gold=gold1)
assert (a.precision, a.recall, a.fscore) == approx((0.5, 0.5, 0.5))
b = PRFScore()
b.score_set(cand=cand, gold=gold2)
assert (b.precision, b.recall, b.fscore) == approx((0.0, 0.0, 0.0))
c = a + b
assert (c.precision, c.recall, c.fscore) == approx((0.25, 0.5, 0.33333333))
a += b
assert (a.precision, a.recall, a.fscore) == approx(
(c.precision, c.recall, c.fscore)
)
def test_score_cats(en_tokenizer):
text = "some text"
gold_doc = en_tokenizer(text)
gold_doc.cats = {"POSITIVE": 1.0, "NEGATIVE": 0.0}
pred_doc = en_tokenizer(text)
pred_doc.cats = {"POSITIVE": 0.75, "NEGATIVE": 0.25}
example = Example(pred_doc, gold_doc)
# threshold is ignored for multi_label=False
scores1 = Scorer.score_cats(
[example],
"cats",
labels=list(gold_doc.cats.keys()),
multi_label=False,
positive_label="POSITIVE",
threshold=0.1,
)
scores2 = Scorer.score_cats(
[example],
"cats",
labels=list(gold_doc.cats.keys()),
multi_label=False,
positive_label="POSITIVE",
threshold=0.9,
)
assert scores1["cats_score"] == 1.0
assert scores2["cats_score"] == 1.0
assert scores1 == scores2
# threshold is relevant for multi_label=True
scores = Scorer.score_cats(
[example],
"cats",
labels=list(gold_doc.cats.keys()),
multi_label=True,
threshold=0.9,
)
assert scores["cats_macro_f"] == 0.0
# threshold is relevant for multi_label=True
scores = Scorer.score_cats(
[example],
"cats",
labels=list(gold_doc.cats.keys()),
multi_label=True,
threshold=0.1,
)
assert scores["cats_macro_f"] == 0.5