forked from explosion/spaCy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_vectors.py
677 lines (552 loc) · 23 KB
/
test_vectors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
import numpy
import pytest
from numpy.testing import assert_allclose, assert_almost_equal, assert_equal
from thinc.api import NumpyOps, get_current_ops
from spacy.lang.en import English
from spacy.strings import hash_string # type: ignore
from spacy.tokenizer import Tokenizer
from spacy.tokens import Doc
from spacy.training.initialize import convert_vectors
from spacy.vectors import Vectors
from spacy.vocab import Vocab
from ..util import add_vecs_to_vocab, get_cosine, make_tempdir
OPS = get_current_ops()
@pytest.fixture
def strings():
return ["apple", "orange"]
@pytest.fixture
def vectors():
return [
("apple", OPS.asarray([1, 2, 3])),
("orange", OPS.asarray([-1, -2, -3])),
("and", OPS.asarray([-1, -1, -1])),
("juice", OPS.asarray([5, 5, 10])),
("pie", OPS.asarray([7, 6.3, 8.9])),
]
@pytest.fixture
def data():
return numpy.asarray([[0.0, 1.0, 2.0], [3.0, -2.0, 4.0]], dtype="f")
@pytest.fixture
def most_similar_vectors_data():
return numpy.asarray(
[[0.0, 1.0, 2.0], [1.0, -2.0, 4.0], [1.0, 1.0, -1.0], [2.0, 3.0, 1.0]],
dtype="f",
)
@pytest.fixture
def most_similar_vectors_keys():
return ["a", "b", "c", "d"]
@pytest.fixture
def resize_data():
return numpy.asarray([[0.0, 1.0], [2.0, 3.0]], dtype="f")
@pytest.fixture()
def vocab(en_vocab, vectors):
add_vecs_to_vocab(en_vocab, vectors)
return en_vocab
@pytest.fixture()
def tokenizer_v(vocab):
return Tokenizer(vocab, {}, None, None, None)
@pytest.mark.issue(1518)
def test_issue1518():
"""Test vectors.resize() works."""
vectors = Vectors(shape=(10, 10))
vectors.add("hello", row=2)
vectors.resize((5, 9))
@pytest.mark.issue(1539)
def test_issue1539():
"""Ensure vectors.resize() doesn't try to modify dictionary during iteration."""
v = Vectors(shape=(10, 10), keys=[5, 3, 98, 100])
v.resize((100, 100))
@pytest.mark.issue(1807)
def test_issue1807():
"""Test vocab.set_vector also adds the word to the vocab."""
vocab = Vocab()
assert "hello" not in vocab
vocab.set_vector("hello", numpy.ones((50,), dtype="f"))
assert "hello" in vocab
@pytest.mark.issue(2871)
def test_issue2871():
"""Test that vectors recover the correct key for spaCy reserved words."""
words = ["dog", "cat", "SUFFIX"]
vocab = Vocab()
vocab.vectors.resize(shape=(3, 10))
vector_data = numpy.zeros((3, 10), dtype="f")
for word in words:
_ = vocab[word] # noqa: F841
vocab.set_vector(word, vector_data[0])
assert vocab["dog"].rank == 0
assert vocab["cat"].rank == 1
assert vocab["SUFFIX"].rank == 2
assert vocab.vectors.find(key="dog") == 0
assert vocab.vectors.find(key="cat") == 1
assert vocab.vectors.find(key="SUFFIX") == 2
@pytest.mark.issue(3412)
def test_issue3412():
data = numpy.asarray([[0, 0, 0], [1, 2, 3], [9, 8, 7]], dtype="f")
vectors = Vectors(data=data, keys=["A", "B", "C"])
keys, best_rows, scores = vectors.most_similar(
numpy.asarray([[9, 8, 7], [0, 0, 0]], dtype="f")
)
assert best_rows[0] == 2
@pytest.mark.issue(4725)
def test_issue4725_2():
if isinstance(get_current_ops, NumpyOps):
# ensures that this runs correctly and doesn't hang or crash because of the global vectors
# if it does crash, it's usually because of calling 'spawn' for multiprocessing (e.g. on Windows),
# or because of issues with pickling the NER (cf test_issue4725_1)
vocab = Vocab()
data = numpy.ndarray((5, 3), dtype="f")
data[0] = 1.0
data[1] = 2.0
vocab.set_vector("cat", data[0])
vocab.set_vector("dog", data[1])
nlp = English(vocab=vocab)
nlp.add_pipe("ner")
nlp.initialize()
docs = ["Kurt is in London."] * 10
for _ in nlp.pipe(docs, batch_size=2, n_process=2):
pass
def test_init_vectors_with_resize_shape(strings, resize_data):
v = Vectors(shape=(len(strings), 3))
v.resize(shape=resize_data.shape)
assert v.shape == resize_data.shape
assert v.shape != (len(strings), 3)
def test_init_vectors_with_resize_data(data, resize_data):
v = Vectors(data=data)
v.resize(shape=resize_data.shape)
assert v.shape == resize_data.shape
assert v.shape != data.shape
def test_get_vector_resize(strings, data):
strings = [hash_string(s) for s in strings]
# decrease vector dimension (truncate)
v = Vectors(data=data)
resized_dim = v.shape[1] - 1
v.resize(shape=(v.shape[0], resized_dim))
for i, string in enumerate(strings):
v.add(string, row=i)
assert list(v[strings[0]]) == list(data[0, :resized_dim])
assert list(v[strings[1]]) == list(data[1, :resized_dim])
# increase vector dimension (pad with zeros)
v = Vectors(data=data)
resized_dim = v.shape[1] + 1
v.resize(shape=(v.shape[0], resized_dim))
for i, string in enumerate(strings):
v.add(string, row=i)
assert list(v[strings[0]]) == list(data[0]) + [0]
assert list(v[strings[1]]) == list(data[1]) + [0]
def test_init_vectors_with_data(strings, data):
v = Vectors(data=data)
assert v.shape == data.shape
def test_init_vectors_with_shape(strings):
v = Vectors(shape=(len(strings), 3))
assert v.shape == (len(strings), 3)
assert v.is_full is False
def test_get_vector(strings, data):
v = Vectors(data=data)
strings = [hash_string(s) for s in strings]
for i, string in enumerate(strings):
v.add(string, row=i)
assert list(v[strings[0]]) == list(data[0])
assert list(v[strings[0]]) != list(data[1])
assert list(v[strings[1]]) != list(data[0])
def test_set_vector(strings, data):
orig = data.copy()
v = Vectors(data=data)
strings = [hash_string(s) for s in strings]
for i, string in enumerate(strings):
v.add(string, row=i)
assert list(v[strings[0]]) == list(orig[0])
assert list(v[strings[0]]) != list(orig[1])
v[strings[0]] = data[1]
assert list(v[strings[0]]) == list(orig[1])
assert list(v[strings[0]]) != list(orig[0])
def test_vectors_most_similar(most_similar_vectors_data, most_similar_vectors_keys):
v = Vectors(data=most_similar_vectors_data, keys=most_similar_vectors_keys)
_, best_rows, _ = v.most_similar(v.data, batch_size=2, n=2, sort=True)
assert all(row[0] == i for i, row in enumerate(best_rows))
with pytest.raises(ValueError):
v.most_similar(v.data, batch_size=2, n=10, sort=True)
def test_vectors_most_similar_identical():
"""Test that most similar identical vectors are assigned a score of 1.0."""
data = numpy.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f")
v = Vectors(data=data, keys=["A", "B", "C"])
keys, _, scores = v.most_similar(numpy.asarray([[4, 2, 2, 2]], dtype="f"))
assert scores[0][0] == 1.0 # not 1.0000002
data = numpy.asarray([[1, 2, 3], [1, 2, 3], [1, 1, 1]], dtype="f")
v = Vectors(data=data, keys=["A", "B", "C"])
keys, _, scores = v.most_similar(numpy.asarray([[1, 2, 3]], dtype="f"))
assert scores[0][0] == 1.0 # not 0.9999999
@pytest.mark.parametrize("text", ["apple and orange"])
def test_vectors_token_vector(tokenizer_v, vectors, text):
doc = tokenizer_v(text)
assert vectors[0][0] == doc[0].text
assert all([a == b for a, b in zip(vectors[0][1], doc[0].vector)])
assert vectors[1][0] == doc[2].text
assert all([a == b for a, b in zip(vectors[1][1], doc[2].vector)])
@pytest.mark.parametrize("text", ["apple", "orange"])
def test_vectors_lexeme_vector(vocab, text):
lex = vocab[text]
assert list(lex.vector)
assert lex.vector_norm
@pytest.mark.parametrize("text", [["apple", "and", "orange"]])
def test_vectors_doc_vector(vocab, text):
doc = Doc(vocab, words=text)
assert list(doc.vector)
assert doc.vector_norm
@pytest.mark.parametrize("text", [["apple", "and", "orange"]])
def test_vectors_span_vector(vocab, text):
span = Doc(vocab, words=text)[0:2]
assert list(span.vector)
assert span.vector_norm
@pytest.mark.parametrize("text", ["apple orange"])
def test_vectors_token_token_similarity(tokenizer_v, text):
doc = tokenizer_v(text)
assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0])
assert -1.0 < doc[0].similarity(doc[1]) < 1.0
@pytest.mark.parametrize("text1,text2", [("apple", "orange")])
def test_vectors_token_lexeme_similarity(tokenizer_v, vocab, text1, text2):
token = tokenizer_v(text1)
lex = vocab[text2]
assert token.similarity(lex) == lex.similarity(token)
assert -1.0 < token.similarity(lex) < 1.0
@pytest.mark.parametrize("text", [["apple", "orange", "juice"]])
def test_vectors_token_span_similarity(vocab, text):
doc = Doc(vocab, words=text)
assert doc[0].similarity(doc[1:3]) == doc[1:3].similarity(doc[0])
assert -1.0 < doc[0].similarity(doc[1:3]) < 1.0
@pytest.mark.parametrize("text", [["apple", "orange", "juice"]])
def test_vectors_token_doc_similarity(vocab, text):
doc = Doc(vocab, words=text)
assert doc[0].similarity(doc) == doc.similarity(doc[0])
assert -1.0 < doc[0].similarity(doc) < 1.0
@pytest.mark.parametrize("text", [["apple", "orange", "juice"]])
def test_vectors_lexeme_span_similarity(vocab, text):
doc = Doc(vocab, words=text)
lex = vocab[text[0]]
assert lex.similarity(doc[1:3]) == doc[1:3].similarity(lex)
assert -1.0 < doc.similarity(doc[1:3]) < 1.0
@pytest.mark.parametrize("text1,text2", [("apple", "orange")])
def test_vectors_lexeme_lexeme_similarity(vocab, text1, text2):
lex1 = vocab[text1]
lex2 = vocab[text2]
assert lex1.similarity(lex2) == lex2.similarity(lex1)
assert -1.0 < lex1.similarity(lex2) < 1.0
@pytest.mark.parametrize("text", [["apple", "orange", "juice"]])
def test_vectors_lexeme_doc_similarity(vocab, text):
doc = Doc(vocab, words=text)
lex = vocab[text[0]]
assert lex.similarity(doc) == doc.similarity(lex)
assert -1.0 < lex.similarity(doc) < 1.0
@pytest.mark.parametrize("text", [["apple", "orange", "juice"]])
def test_vectors_span_span_similarity(vocab, text):
doc = Doc(vocab, words=text)
assert doc[0:2].similarity(doc[1:3]) == doc[1:3].similarity(doc[0:2])
assert -1.0 < doc[0:2].similarity(doc[1:3]) < 1.0
@pytest.mark.parametrize("text", [["apple", "orange", "juice"]])
def test_vectors_span_doc_similarity(vocab, text):
doc = Doc(vocab, words=text)
assert doc[0:2].similarity(doc) == doc.similarity(doc[0:2])
assert -1.0 < doc[0:2].similarity(doc) < 1.0
@pytest.mark.parametrize(
"text1,text2", [(["apple", "and", "apple", "pie"], ["orange", "juice"])]
)
def test_vectors_doc_doc_similarity(vocab, text1, text2):
doc1 = Doc(vocab, words=text1)
doc2 = Doc(vocab, words=text2)
assert doc1.similarity(doc2) == doc2.similarity(doc1)
assert -1.0 < doc1.similarity(doc2) < 1.0
def test_vocab_add_vector():
vocab = Vocab()
data = OPS.xp.ndarray((5, 3), dtype="f")
data[0] = 1.0
data[1] = 2.0
vocab.set_vector("cat", data[0])
vocab.set_vector("dog", data[1])
cat = vocab["cat"]
assert list(cat.vector) == [1.0, 1.0, 1.0]
dog = vocab["dog"]
assert list(dog.vector) == [2.0, 2.0, 2.0]
with pytest.raises(ValueError):
vocab.vectors.add(vocab["hamster"].orth, row=1000000)
def test_vocab_prune_vectors():
vocab = Vocab()
_ = vocab["cat"] # noqa: F841
_ = vocab["dog"] # noqa: F841
_ = vocab["kitten"] # noqa: F841
data = OPS.xp.ndarray((5, 3), dtype="f")
data[0] = OPS.asarray([1.0, 1.2, 1.1])
data[1] = OPS.asarray([0.3, 1.3, 1.0])
data[2] = OPS.asarray([0.9, 1.22, 1.05])
vocab.set_vector("cat", data[0])
vocab.set_vector("dog", data[1])
vocab.set_vector("kitten", data[2])
remap = vocab.prune_vectors(2, batch_size=2)
assert list(remap.keys()) == ["kitten"]
neighbour, similarity = list(remap.values())[0]
assert neighbour == "cat", remap
cosine = get_cosine(data[0], data[2])
assert_allclose(float(similarity), cosine, atol=1e-4, rtol=1e-3)
def test_vectors_serialize():
data = OPS.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f")
v = Vectors(data=data, keys=["A", "B", "C"])
b = v.to_bytes()
v_r = Vectors()
v_r.from_bytes(b)
assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data))
assert v.key2row == v_r.key2row
v.resize((5, 4))
v_r.resize((5, 4))
row = v.add("D", vector=OPS.asarray([1, 2, 3, 4], dtype="f"))
row_r = v_r.add("D", vector=OPS.asarray([1, 2, 3, 4], dtype="f"))
assert row == row_r
assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data))
assert v.is_full == v_r.is_full
with make_tempdir() as d:
v.to_disk(d)
v_r.from_disk(d)
assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data))
assert v.key2row == v_r.key2row
v.resize((5, 4))
v_r.resize((5, 4))
row = v.add("D", vector=OPS.asarray([10, 20, 30, 40], dtype="f"))
row_r = v_r.add("D", vector=OPS.asarray([10, 20, 30, 40], dtype="f"))
assert row == row_r
assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data))
assert v.attr == v_r.attr
def test_vector_is_oov():
vocab = Vocab()
data = OPS.xp.ndarray((5, 3), dtype="f")
data[0] = 1.0
data[1] = 2.0
vocab.set_vector("cat", data[0])
vocab.set_vector("dog", data[1])
assert vocab["cat"].is_oov is False
assert vocab["dog"].is_oov is False
assert vocab["hamster"].is_oov is True
def test_init_vectors_unset():
v = Vectors(shape=(10, 10))
assert v.is_full is False
assert v.shape == (10, 10)
with pytest.raises(ValueError):
v = Vectors(shape=(10, 10), mode="floret")
v = Vectors(data=OPS.xp.zeros((10, 10)), mode="floret", hash_count=1)
assert v.is_full is True
def test_vectors_clear():
data = OPS.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f")
v = Vectors(data=data, keys=["A", "B", "C"])
assert v.is_full is True
assert hash_string("A") in v
v.clear()
# no keys
assert v.key2row == {}
assert list(v) == []
assert v.is_full is False
assert "A" not in v
with pytest.raises(KeyError):
v["A"]
def test_vectors_get_batch():
data = OPS.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f")
v = Vectors(data=data, keys=["A", "B", "C"])
# check with mixed int/str keys
words = ["C", "B", "A", v.strings["B"]]
rows = v.find(keys=words)
vecs = OPS.as_contig(v.data[rows])
assert_equal(OPS.to_numpy(vecs), OPS.to_numpy(v.get_batch(words)))
def test_vectors_deduplicate():
data = OPS.asarray([[1, 1], [2, 2], [3, 4], [1, 1], [3, 4]], dtype="f")
v = Vectors(data=data, keys=["a1", "b1", "c1", "a2", "c2"])
vocab = Vocab()
vocab.vectors = v
# duplicate vectors do not use the same keys
assert (
vocab.vectors.key2row[v.strings["a1"]] != vocab.vectors.key2row[v.strings["a2"]]
)
assert (
vocab.vectors.key2row[v.strings["c1"]] != vocab.vectors.key2row[v.strings["c2"]]
)
vocab.deduplicate_vectors()
# there are three unique vectors
assert vocab.vectors.shape[0] == 3
# the uniqued data is the same as the deduplicated data
assert_equal(
numpy.unique(OPS.to_numpy(vocab.vectors.data), axis=0),
OPS.to_numpy(vocab.vectors.data),
)
# duplicate vectors use the same keys now
assert (
vocab.vectors.key2row[v.strings["a1"]] == vocab.vectors.key2row[v.strings["a2"]]
)
assert (
vocab.vectors.key2row[v.strings["c1"]] == vocab.vectors.key2row[v.strings["c2"]]
)
# deduplicating again makes no changes
vocab_b = vocab.to_bytes()
vocab.deduplicate_vectors()
assert vocab_b == vocab.to_bytes()
@pytest.fixture()
def floret_vectors_hashvec_str():
"""The full hashvec table from floret with the settings:
bucket 10, dim 10, minn 2, maxn 3, hash count 2, hash seed 2166136261,
bow <, eow >"""
return """10 10 2 3 2 2166136261 < >
0 -2.2611 3.9302 2.6676 -11.233 0.093715 -10.52 -9.6463 -0.11853 2.101 -0.10145
1 -3.12 -1.7981 10.7 -6.171 4.4527 10.967 9.073 6.2056 -6.1199 -2.0402
2 9.5689 5.6721 -8.4832 -1.2249 2.1871 -3.0264 -2.391 -5.3308 -3.2847 -4.0382
3 3.6268 4.2759 -1.7007 1.5002 5.5266 1.8716 -12.063 0.26314 2.7645 2.4929
4 -11.683 -7.7068 2.1102 2.214 7.2202 0.69799 3.2173 -5.382 -2.0838 5.0314
5 -4.3024 8.0241 2.0714 -1.0174 -0.28369 1.7622 7.8797 -1.7795 6.7541 5.6703
6 8.3574 -5.225 8.6529 8.5605 -8.9465 3.767 -5.4636 -1.4635 -0.98947 -0.58025
7 -10.01 3.3894 -4.4487 1.1669 -11.904 6.5158 4.3681 0.79913 -6.9131 -8.687
8 -5.4576 7.1019 -8.8259 1.7189 4.955 -8.9157 -3.8905 -0.60086 -2.1233 5.892
9 8.0678 -4.4142 3.6236 4.5889 -2.7611 2.4455 0.67096 -4.2822 2.0875 4.6274
"""
@pytest.fixture()
def floret_vectors_vec_str():
"""The top 10 rows from floret with the settings above, to verify
that the spacy floret vectors are equivalent to the fasttext static
vectors."""
return """10 10
, -5.7814 2.6918 0.57029 -3.6985 -2.7079 1.4406 1.0084 1.7463 -3.8625 -3.0565
. 3.8016 -1.759 0.59118 3.3044 -0.72975 0.45221 -2.1412 -3.8933 -2.1238 -0.47409
der 0.08224 2.6601 -1.173 1.1549 -0.42821 -0.097268 -2.5589 -1.609 -0.16968 0.84687
die -2.8781 0.082576 1.9286 -0.33279 0.79488 3.36 3.5609 -0.64328 -2.4152 0.17266
und 2.1558 1.8606 -1.382 0.45424 -0.65889 1.2706 0.5929 -2.0592 -2.6949 -1.6015
" -1.1242 1.4588 -1.6263 1.0382 -2.7609 -0.99794 -0.83478 -1.5711 -1.2137 1.0239
in -0.87635 2.0958 4.0018 -2.2473 -1.2429 2.3474 1.8846 0.46521 -0.506 -0.26653
von -0.10589 1.196 1.1143 -0.40907 -1.0848 -0.054756 -2.5016 -1.0381 -0.41598 0.36982
( 0.59263 2.1856 0.67346 1.0769 1.0701 1.2151 1.718 -3.0441 2.7291 3.719
) 0.13812 3.3267 1.657 0.34729 -3.5459 0.72372 0.63034 -1.6145 1.2733 0.37798
"""
def test_floret_vectors(floret_vectors_vec_str, floret_vectors_hashvec_str):
nlp = English()
nlp_plain = English()
# load both vec and hashvec tables
with make_tempdir() as tmpdir:
p = tmpdir / "test.hashvec"
with open(p, "w") as fileh:
fileh.write(floret_vectors_hashvec_str)
convert_vectors(nlp, p, truncate=0, prune=-1, mode="floret")
p = tmpdir / "test.vec"
with open(p, "w") as fileh:
fileh.write(floret_vectors_vec_str)
convert_vectors(nlp_plain, p, truncate=0, prune=-1)
word = "der"
# ngrams: full padded word + padded 2-grams + padded 3-grams
ngrams = nlp.vocab.vectors._get_ngrams(word)
assert ngrams == ["<der>", "<d", "de", "er", "r>", "<de", "der", "er>"]
# rows: 2 rows per ngram
rows = OPS.xp.asarray(
[
h % nlp.vocab.vectors.shape[0]
for ngram in ngrams
for h in nlp.vocab.vectors._get_ngram_hashes(ngram)
],
dtype="uint32",
)
assert_equal(
OPS.to_numpy(rows),
numpy.asarray([5, 6, 7, 5, 8, 2, 8, 9, 3, 3, 4, 6, 7, 3, 0, 2]),
)
assert len(rows) == len(ngrams) * nlp.vocab.vectors.hash_count
# all vectors are equivalent for plain static table vs. hash ngrams
for word in nlp_plain.vocab.vectors:
word = nlp_plain.vocab.strings.as_string(word)
assert_almost_equal(
nlp.vocab[word].vector, nlp_plain.vocab[word].vector, decimal=3
)
# every word has a vector
assert nlp.vocab[word * 5].has_vector
# n_keys is -1 for floret
assert nlp_plain.vocab.vectors.n_keys > 0
assert nlp.vocab.vectors.n_keys == -1
# check that single and batched vector lookups are identical
words = [s for s in nlp_plain.vocab.vectors]
single_vecs = OPS.to_numpy(OPS.asarray([nlp.vocab[word].vector for word in words]))
batch_vecs = OPS.to_numpy(nlp.vocab.vectors.get_batch(words))
assert_equal(single_vecs, batch_vecs)
# an empty key returns 0s
assert_equal(
OPS.to_numpy(nlp.vocab[""].vector),
numpy.zeros((nlp.vocab.vectors.shape[0],)),
)
# an empty batch returns 0s
assert_equal(
OPS.to_numpy(nlp.vocab.vectors.get_batch([""])),
numpy.zeros((1, nlp.vocab.vectors.shape[0])),
)
# an empty key within a batch returns 0s
assert_equal(
OPS.to_numpy(nlp.vocab.vectors.get_batch(["a", "", "b"])[1]),
numpy.zeros((nlp.vocab.vectors.shape[0],)),
)
# the loaded ngram vector table cannot be modified
# except for clear: warning, then return without modifications
vector = list(range(nlp.vocab.vectors.shape[1]))
orig_bytes = nlp.vocab.vectors.to_bytes(exclude=["strings"])
with pytest.warns(UserWarning):
nlp.vocab.set_vector("the", vector)
assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"])
with pytest.warns(UserWarning):
nlp.vocab[word].vector = vector
assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"])
with pytest.warns(UserWarning):
nlp.vocab.vectors.add("the", row=6)
assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"])
with pytest.warns(UserWarning):
nlp.vocab.vectors.resize(shape=(100, 10))
assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"])
with pytest.raises(ValueError):
nlp.vocab.vectors.clear()
# data and settings are serialized correctly
with make_tempdir() as d:
nlp.vocab.to_disk(d)
vocab_r = Vocab()
vocab_r.from_disk(d)
assert nlp.vocab.vectors.to_bytes() == vocab_r.vectors.to_bytes()
assert_equal(
OPS.to_numpy(nlp.vocab.vectors.data), OPS.to_numpy(vocab_r.vectors.data)
)
assert_equal(nlp.vocab.vectors._get_cfg(), vocab_r.vectors._get_cfg())
assert_almost_equal(
OPS.to_numpy(nlp.vocab[word].vector),
OPS.to_numpy(vocab_r[word].vector),
decimal=6,
)
def test_equality():
vectors1 = Vectors(shape=(10, 10))
vectors2 = Vectors(shape=(10, 8))
assert vectors1 != vectors2
vectors2 = Vectors(shape=(10, 10))
assert vectors1 == vectors2
vectors1.add("hello", row=2)
assert vectors1 != vectors2
vectors2.add("hello", row=2)
assert vectors1 == vectors2
vectors1.resize((5, 9))
vectors2.resize((5, 9))
assert vectors1 == vectors2
def test_vectors_attr():
data = numpy.asarray([[0, 0, 0], [1, 2, 3], [9, 8, 7]], dtype="f")
# default ORTH
nlp = English()
nlp.vocab.vectors = Vectors(data=data, keys=["A", "B", "C"])
assert nlp.vocab.strings["A"] in nlp.vocab.vectors.key2row
assert nlp.vocab.strings["a"] not in nlp.vocab.vectors.key2row
assert nlp.vocab["A"].has_vector is True
assert nlp.vocab["a"].has_vector is False
assert nlp("A")[0].has_vector is True
assert nlp("a")[0].has_vector is False
# custom LOWER
nlp = English()
nlp.vocab.vectors = Vectors(data=data, keys=["a", "b", "c"], attr="LOWER")
assert nlp.vocab.strings["A"] not in nlp.vocab.vectors.key2row
assert nlp.vocab.strings["a"] in nlp.vocab.vectors.key2row
assert nlp.vocab["A"].has_vector is True
assert nlp.vocab["a"].has_vector is True
assert nlp("A")[0].has_vector is True
assert nlp("a")[0].has_vector is True
# add a new vectors entry
assert nlp.vocab["D"].has_vector is False
assert nlp.vocab["d"].has_vector is False
nlp.vocab.set_vector("D", numpy.asarray([4, 5, 6]))
assert nlp.vocab["D"].has_vector is True
assert nlp.vocab["d"].has_vector is True