-
Notifications
You must be signed in to change notification settings - Fork 0
/
Maths.cpp
243 lines (184 loc) · 4.96 KB
/
Maths.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
// Copyright (C) Kevin Suffern 2000-2007.
// Revised by mp77 at 2012
// This C++ code is for non-commercial purposes only.
// This C++ code is licensed under the GNU General Public License Version 2.
// See the file COPYING.txt for the full license.
/*
* Roots3And4.c
*
* Utility functions to find cubic and quartic roots,
* coefficients are passed like this:
*
* c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0
*
* The functions return the number of non-complex roots and
* put the values into the s array.
*
* Author: Jochen Schwarze (schwarze@isa.de)
*
* Jan 26, 1990 Version for Graphics Gems
* Oct 11, 1990 Fixed sign problem for negative q's in SolveQuartic
* (reported by Mark Podlipec),
* Old-style function definitions,
* IsZero() as a macro
* Nov 23, 1990 Some systems do not declare acos() and cbrt() in
* <math.h>, though the functions exist in the library.
* If large coefficients are used, EQN_EPS should be
* reduced considerably (e.g. to 1E-30), results will be
* correct but multiple roots might be reported more
* than once.
*/
#include "Maths.h"
#include <math.h>
#ifndef M_PI
#define M_PI PI
#endif
// You may have to experiment with EQN_EPS
// The original was 1e-9, but I use 1e-90 KS Dec 3, 2007
//#define EQN_EPS 1e-9
//#define EQN_EPS 1e-30
//#define EQN_EPS 1e-60
#define EQN_EPS 1e-90
#define IsZero(x) ((x) > -EQN_EPS && (x) < EQN_EPS)
#ifndef CBRT
#define cbrt(x) ((x) > 0.0 ? pow((double)(x), 1.0/3.0) : \
((x) < 0.0 ? -pow((double)-(x), 1.0/3.0) : 0.0))
#endif
int
SolveQuadric(double c[3], double s[2]) {
double p, q, D;
/* normal form: x^2 + px + q = 0 */
p = c[ 1 ] / (2 * c[ 2 ]);
q = c[ 0 ] / c[ 2 ];
D = p * p - q;
if (IsZero(D)) {
s[ 0 ] = - p;
return 1;
}
else if (D > 0) {
double sqrt_D = sqrt(D);
s[ 0 ] = sqrt_D - p;
s[ 1 ] = - sqrt_D - p;
return 2;
}
else /* if (D < 0) */
return 0;
}
int
SolveCubic(double c[4], double s[3]) {
int i, num;
double sub;
double A, B, C;
double sq_A, p, q;
double cb_p, D;
/* normal form: x^3 + Ax^2 + Bx + C = 0 */
A = c[ 2 ] / c[ 3 ];
B = c[ 1 ] / c[ 3 ];
C = c[ 0 ] / c[ 3 ];
/* substitute x = y - A/3 to eliminate quadric term:
x^3 +px + q = 0 */
sq_A = A * A;
p = 1.0/3 * (- 1.0/3 * sq_A + B);
q = 1.0/2 * (2.0/27 * A * sq_A - 1.0/3 * A * B + C);
/* use Cardano's formula */
cb_p = p * p * p;
D = q * q + cb_p;
if (IsZero(D)) {
if (IsZero(q)) { /* one triple solution */
s[ 0 ] = 0;
num = 1;
}
else { /* one single and one double solution */
double u = cbrt(-q);
s[ 0 ] = 2 * u;
s[ 1 ] = - u;
num = 2;
}
}
else if (D < 0) { /* Casus irreducibilis: three real solutions */
double phi = 1.0/3 * acos(-q / sqrt(-cb_p));
double t = 2 * sqrt(-p);
s[ 0 ] = t * cos(phi);
s[ 1 ] = - t * cos(phi + M_PI / 3);
s[ 2 ] = - t * cos(phi - M_PI / 3);
num = 3;
}
else { /* one real solution */
double sqrt_D = sqrt(D);
double u = cbrt(sqrt_D - q);
double v = - cbrt(sqrt_D + q);
s[ 0 ] = u + v;
num = 1;
}
/* resubstitute */
sub = 1.0/3 * A;
for (i = 0; i < num; ++i)
s[ i ] -= sub;
return num;
}
int
SolveQuartic(double c[5], double s[4]) {
double coeffs[4];
double z, u, v, sub;
double A, B, C, D;
double sq_A, p, q, r;
int i, num;
/* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */
A = c[ 3 ] / c[ 4 ];
B = c[ 2 ] / c[ 4 ];
C = c[ 1 ] / c[ 4 ];
D = c[ 0 ] / c[ 4 ];
/* substitute x = y - A/4 to eliminate cubic term:
x^4 + px^2 + qx + r = 0 */
sq_A = A * A;
p = - 3.0/8 * sq_A + B;
q = 1.0/8 * sq_A * A - 1.0/2 * A * B + C;
r = - 3.0/256*sq_A*sq_A + 1.0/16*sq_A*B - 1.0/4*A*C + D;
if (IsZero(r)) {
/* no absolute term: y(y^3 + py + q) = 0 */
coeffs[ 0 ] = q;
coeffs[ 1 ] = p;
coeffs[ 2 ] = 0;
coeffs[ 3 ] = 1;
num = SolveCubic(coeffs, s);
s[ num++ ] = 0;
}
else {
/* solve the resolvent cubic ... */
coeffs[ 0 ] = 1.0/2 * r * p - 1.0/8 * q * q;
coeffs[ 1 ] = - r;
coeffs[ 2 ] = - 1.0/2 * p;
coeffs[ 3 ] = 1;
(void) SolveCubic(coeffs, s);
/* ... and take the one real solution ... */
z = s[ 0 ];
/* ... to build two quadric equations */
u = z * z - r;
v = 2 * z - p;
if (IsZero(u))
u = 0;
else if (u > 0)
u = sqrt(u);
else
return 0;
if (IsZero(v))
v = 0;
else if (v > 0)
v = sqrt(v);
else
return 0;
coeffs[ 0 ] = z - u;
coeffs[ 1 ] = q < 0 ? -v : v;
coeffs[ 2 ] = 1;
num = SolveQuadric(coeffs, s);
coeffs[ 0 ]= z + u;
coeffs[ 1 ] = q < 0 ? v : -v;
coeffs[ 2 ] = 1;
num += SolveQuadric(coeffs, s + num);
}
/* resubstitute */
sub = 1.0/4 * A;
for (i = 0; i < num; ++i)
s[ i ] -= sub;
return num;
}