-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoruga_wordnet.py
216 lines (177 loc) · 7.03 KB
/
oruga_wordnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# -*- coding: utf-8 -*-
"""
ORUGA: Optimizing Readability Using Genetic Algorithms
[Martinez-Gil2023a] J. Martinez-Gil, "Optimizing Readability Using Genetic Algorithms", arXiv preprint arXiv:2301.00374, 2023
@author: Jorge Martinez-Gil
"""
#print(r.flesch_kincaid().score)
#print(r.flesch().score)
#print(r.gunning_fog())
#print(r.coleman_liau())
#print(r.dale_chall())
#print(r.ari())
#print(r.linsear_write())
#print(r.spache())
#Coding of individuals
#-2, candidate but not synonym
#-1, special character (if necessary)
#0, not candidate
#1, replaced by 1st option
#2, replaced by 2nd option
#N, replaced by Nth option
# Modules
import pygad
import language_tool_python
from readability import Readability
from nltk.corpus import wordnet
text_array = []
index_array = []
#Text
text = 'Niagara Falls is a group of three waterfalls at the southern end of Niagara Gorge, spanning the border between the province of Ontario in Canada and the state of New York in the United States. The largest of the three is Horseshoe Falls, which straddles the international border of the two countries. It is also known as the Canadian Falls. The smaller American Falls and Bridal Veil Falls lie within the United States. Bridal Veil Falls is separated from Horseshoe Falls by Goat Island and from American Falls by Luna Island, with both islands situated in New York. Formed by the Niagara River, which drains Lake Erie into Lake Ontario, the combined falls have the highest flow rate of any waterfall in North America that has a vertical drop of more than 50 m (160 ft). During peak daytime tourist hours, more than 168,000 m3 (5.9 million cu ft) of water goes over the crest of the falls every minute.'
r = Readability(text)
initial_score = r.flesch_kincaid().score
def listToString(s):
str1 = ""
for ele in s:
str1 += str(ele)
str1 += " "
str1 = str1.replace(' ,', ',')
str1 = str1.replace('_', ' ')
return str1
def Synonym(word, number):
synonyms = []
for syn in wordnet.synsets(word):
for lm in syn.lemmas():
synonyms.append(lm.name())
if (not synonyms):
return -2, word
elif number >= len(synonyms):
return len(synonyms)-1, synonyms[len(synonyms)-1]
else:
return int(number), synonyms[int(number-1)]
def obtain_text (solution):
res2 = text.split()
text_converted = []
index=0
for i in res2:
if solution[index] < 1:
text_converted.append (i)
elif solution[index] >= 1:
number, word = Synonym(i,solution[index])
text_converted.append (word.upper())
else:
print ('Error')
index += 1
result = listToString(text_converted)
return result
def correct_mistakes (text):
my_tool = language_tool_python.LanguageTool('en-US')
my_text = text
my_matches = my_tool.check(my_text)
myMistakes = []
myCorrections = []
startPositions = []
endPositions = []
# using the for-loop
for rules in my_matches:
if len(rules.replacements) > 0:
startPositions.append(rules.offset)
endPositions.append(rules.errorLength + rules.offset)
myMistakes.append(my_text[rules.offset : rules.errorLength + rules.offset])
myCorrections.append(rules.replacements[0])
# creating new object
my_NewText = list(my_text)
# rewriting the correct passage
for n in range(len(startPositions)):
for i in range(len(my_text)):
my_NewText[startPositions[n]] = myCorrections[n]
if (i > startPositions[n] and i < endPositions[n]):
my_NewText[i] = ""
my_NewText = "".join(my_NewText)
return my_NewText
def fitness_func(solution, solution_idx):
#preprocessing
a = 0
for i in index_array:
if index_array[a] <= 0:
solution[a] = 0
a += 1
res2 = text.split()
text_converted = []
index=0
for i in res2:
if solution[index] < 1:
text_converted.append (i)
elif solution[index] >= 1:
number, word = Synonym(i,solution[index])
text_converted.append (word)
else:
print ('Error')
index += 1
result = listToString(text_converted)
r = Readability(result)
return r.flesch_kincaid().score * -1
print (text)
res = text.split()
for i in res:
flag = 0
if ',' in i:
i = i.replace(',', '')
flag = 1
if '.' in i:
i = i.replace('.', '')
flag = 2
if (not i[0].isupper() and len(i) > 3):
number, word = Synonym(i,6)
text_array.append (word)
index_array.append (number)
else:
text_array.append (i)
index_array.append (0)
if flag == 1:
cad = text_array[-1]
text_array.pop()
cad = cad + str(',')
text_array.append (cad)
flag = 0
if flag == 2:
cad = text_array[-1]
text_array.pop()
cad = cad + str('.')
text_array.append (cad)
flag = 0
newText = listToString(text_array)
print(newText)
print(index_array)
# Parameters for the GA
function_inputs = index_array
num_generations = 100 # Number of generations
num_parents_mating = 10 # Number of solutions to be selected as parents in the mating pool
sol_per_pop = 20 # Number of solutions in the population
num_genes = len(function_inputs) # Number of genes
# Initialize the GA instance without the 'on_generation' argument
ga_instance = pygad.GA(num_generations=1, # Set to 1 because we are controlling the generations manually
num_parents_mating=num_parents_mating,
sol_per_pop=sol_per_pop,
num_genes=num_genes,
fitness_func=fitness_func)
last_fitness = 0 # Initialize last fitness for comparison
# Manually iterate through generations
for generation in range(num_generations):
ga_instance.run() # Run GA for one generation
# Getting the best solution after the current generation
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print("Generation = {}".format(generation + 1))
print("Fitness = {}".format(solution_fitness))
print("Change = {}".format(solution_fitness - last_fitness))
last_fitness = solution_fitness # Update the last fitness value
# At this point, the GA has completed all generations
# You can directly get the best solution details without passing any arguments
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print("Parameters of the best solution : {solution}".format(solution=solution))
print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness))
print("Index of the best solution : {solution_idx}".format(solution_idx=solution_idx))
new_text = correct_mistakes(obtain_text(solution))
rr = Readability(new_text)
print(new_text)
print("Difference " + str(initial_score - rr.flesch_kincaid().score))