-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_sim_data.R
204 lines (160 loc) · 5.97 KB
/
process_sim_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
## Process and combine exceedence data to use for plotting.
library(dplyr)
library(tidyr)
library(reshape2)
library(scales)
library(fitdistrplus)
library(ggplot2)
# Collect data ------------------------------------------------------------
nam <- "data/exceed_dat_s"
s_1 <- seq(1,4,0.5)
tau <- seq(0,4,0.5)
N <- 5000
## Track number of ranks randomized at each treshold
rand_arr <- array(0, dim = c(7,11,9)) # (s1 x s2 x tau)
## Compute rank of an observation's mean in the distribution
## of the ensemble means
rank_obs <- function(means, idx) {
# means: observation and ensemble means with obs listed first
# idx: current idx of rand_arr
# glob_arr (global): 3d array for counting randomized ranks
if(length(unique(means)) == 1) {
# mark as random
rand_arr[idx[1],idx[2],idx[3]] <<- rand_arr[idx[1],idx[2],idx[3]] + 1
return(NA)
}
r <- rank(means, ties.method = "random")[[1]]
return(r)
}
rank_arr <- array(dim = c(N, 11, 9, 7))
## loop over s_1
for (ii in 1:length(s_1)) {
print(paste("s1 = ", s_1[ii]))
s_2 <- seq(0.5*s_1[ii],1.5*s_1[ii],0.1*s_1[ii])
## init rank_cube array
rank_cube <- array(dim = c(N, 11, 9))
## read in data
load(paste(nam, s_1[ii], ".RData", sep=""))
## loop over s_2
for (jj in 1:length(s_2)) {
## loop over tau
for (t in 1:length(tau)) {
## rank each realization
rank_cube[,jj,t] <- apply(arr_dat[,,t,jj], 1, rank_obs, idx=c(ii,jj,t))
}
}
## fill in ranks array
rank_arr[,,,ii] <- rank_cube
rm(arr_dat, rank_cube)
}
# Reformat data -----------------------------------------------------------
## flatten data
rank_tab <- melt(rank_arr, value.name='rank',
varnames=c('N', 's2_idx', 'tau_idx', 's1_idx')) %>%
mutate(.,
s1=rescale(s1_idx, to=c(1,4)),
s2=rescale(s2_idx, to=c(0.5,1.5))*s1,
tau=rescale(tau_idx, to=c(0,4))
) %>%
dplyr::select(., s1, s2, tau, N, rank)
rand_count_tab <- melt(rand_arr, value.name='count',
varnames=c('s1_idx', 's2_idx', 'tau_idx')) %>%
mutate(.,
s1=rescale(s1_idx, to=c(1,4)),
s2=rescale(s2_idx, to=c(0.5,1.5))*s1,
tau=rescale(tau_idx, to=c(0,4))
) %>%
dplyr::select(., s1, s2, tau, count) %>%
mutate(., r_percent=(count/N)*100)
## fit beta parameters to rank hists
fit_tab <- rank_tab %>%
mutate(rank = (rank-0.5)/12,
ratio=s2/s1) %>%
group_by(s1,ratio,tau) %>%
summarise(params=paste(fitdist(rank,'beta')$estimate, collapse=" ")) %>%
separate(params, c('a', 'b'), sep=" ") %>%
mutate(a=as.numeric(a), b=as.numeric(b))
## fit beta parameters to rank hists after spreading
set.seed(10)
spread_rank <- function(r) {
return(runif(1, r-1/24, r+1/24))
}
cont_fit_tab <- rank_tab %>%
drop_na() %>%
mutate(rank = (rank-0.5)/12,
ratio=s2/s1) %>%
mutate(rank = sapply(rank, spread_rank)) %>%
group_by(s1,ratio,tau) %>%
summarise(params=paste(fitdist(rank,'beta')$estimate, collapse=" ")) %>%
separate(params, c('a', 'b'), sep=" ") %>%
mutate(a=as.numeric(a), b=as.numeric(b))
# Save/Load ---------------------------------------------------------------
write.table(rank_tab, file='data/rank_tab.RData')
write.table(rand_count_tab, file='data/rand_count_tab.RData')
write.table(fit_tab, file='data/fit_tab.RData')
write.table(cont_fit_tab, file='data/cont_fit_tab.RData')
rank_tab <- read.table('data/rank_tab.RData')
rand_count_tab <- read.table('data/rand_count_tab.RData')
fit_tab <- read.table('data/fit_tab.RData')
cont_fit_tab <- read.table('data/cont_fit_tab.RData')
# Visualizations ----------------------------------------------------------
source("~/GitHub/random-fields/functions/plot_scheuerer_s1.R")
source("~/GitHub/random-fields/functions/plot_ranks.R")
source("~/GitHub/random-fields/functions/plot_ranks_beta.R")
## scheuerer stats
pdf("~/GitHub/random-fields/images/scheuerer_charts_s1.pdf")
for (t in tau){
plot_scheuerer_s1(t, ss_tab)
}
dev.off()
## rank hists
pdf("~/GitHub/random-fields/images/rank_hists.pdf")
for (s1 in s_1){
for (t in tau){
print(paste("s1 =", s1, ", tau =", t))
plot_ranks(s1, t, rank_tab, rand_count_tab)
}
}
dev.off()
## beta params
pdf("~/GitHub/random-fields/images/beta_params_cont_12.pdf")
for (t in tau){
df <- cont_fit_tab %>% filter(tau==t & s1==1 | tau==t & s1==2)
param_a <- df %>% dplyr::select(s1, ratio, a) %>% mutate(value = a, param='a')
param_b <- df %>% dplyr::select(s1, ratio, b) %>% mutate(value = b, param='b')
p <- ggplot(data=NULL, aes(x=log(ratio), y=value, color=param)) +
geom_line(data=param_a, size=0.8, aes(linetype=factor(s1))) +
geom_line(data=param_b, size=0.8, aes(linetype=factor(s1))) +
scale_colour_manual(values=c(a="salmon", b="steelblue")) +
ylim(0.5,1.75) +
labs(x="log ratio (s2/s1)", y="parameter",
title=paste("Beta parameters at tau=", t, sep = "")) +
theme_minimal()
print(p)
}
dev.off()
pdf("~/GitHub/random-fields/images/beta_params_cont_14.pdf")
for (t in tau){
df <- cont_fit_tab %>% filter(tau==t & s1==1 | tau==t & s1==4)
param_a <- df %>% dplyr::select(s1, ratio, a) %>% mutate(value = a, param='a')
param_b <- df %>% dplyr::select(s1, ratio, b) %>% mutate(value = b, param='b')
p <- ggplot(data=NULL, aes(x=log(ratio), y=value, color=param)) +
geom_line(data=param_a, size=0.8, aes(linetype=factor(s1))) +
geom_line(data=param_b, size=0.8, aes(linetype=factor(s1))) +
scale_colour_manual(values=c(a="salmon", b="steelblue")) +
ylim(0.5,1.75) +
labs(x="log ratio (s2/s1)", y="parameter",
title=paste("Beta parameters at tau=", t, sep = "")) +
theme_minimal()
print(p)
}
dev.off()
## beta dist
pdf("~/GitHub/random-fields/images/rank_hists_cont_beta.pdf")
for (s1 in s_1){
for (t in tau){
print(paste("s1 =", s1, ", tau =", t))
plot_ranks_beta(s1, t, rank_tab, cont_fit_tab, rand_count_tab)
}
}
dev.off()