forked from cure-lab/LTSF-Linear
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweight_plot.py
29 lines (25 loc) · 1007 Bytes
/
weight_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import torch
import numpy as np
import os
import matplotlib.pyplot as plt
model_name = ''
for root, dirs, files in os.walk("checkpoints"):
for name in files:
model_path = os.path.join(root, name)
if model_name not in model_path:
continue
weights = torch.load(model_path,map_location=torch.device('cpu'))
weights_list = {}
weights_list['seasonal'] = weights['Linear_Seasonal.weight'].numpy()
weights_list['trend'] = weights['Linear_Trend.weight'].numpy()
save_root = 'weights_plot/%s'%root.split('/')[1]
if not os.path.exists('weights_plot'):
os.mkdir('weights_plot')
if not os.path.exists(save_root):
os.mkdir(save_root)
for w_name,weight in weights_list.items():
fig,ax=plt.subplots()
im=ax.imshow(weight,cmap='plasma_r')
fig.colorbar(im,pad=0.03)
plt.savefig(os.path.join(save_root,w_name + '.pdf'),dpi=500)
plt.close()