-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnoise_class.py
271 lines (194 loc) · 7.15 KB
/
noise_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# -*- coding: utf-8 -*-
import math
import numpy
class GetNoiseClass():
def __init__(self, imgRGB):
self.imgRGB = imgRGB
#self.refRGB = refRGB
self.x_scale = self.get_x_axis()
#self.x_scale_d = self.get_x_axis_density()
'''
def get_x_axis_density(self):
y = []
for x in range(len(self.refRGB)):
D = float(self.refRGB[x]["D_VIS"])
y.append(D)
return y
'''
def get_x_axis(self):
y = []
for x in range(len(self.imgRGB)):
EV = self.luma_to_ev(self.imgRGB[x]["RGB_LUMA"])
y.append(round(EV,1))
return y
def new_order_by_list(self, dest,scale):
destino = numpy.array(dest)
origen = numpy.array(scale)
inds = numpy.argsort(-origen)
sortedList = destino[inds]
return sortedList.tolist()
def getRGB(self):
o = []
total = len(self.imgRGB)
for x in range(total):
r = self.imgRGB[x]["RGB"][0]
g = self.imgRGB[x]["RGB"][1]
b = self.imgRGB[x]["RGB"][2]
rstv = self.imgRGB[x]["RGB_DESV"][0]
gstv = self.imgRGB[x]["RGB_DESV"][1]
bstv = self.imgRGB[x]["RGB_DESV"][2]
rn = self.SNR(r, rstv)
gn = self.SNR(g, gstv)
bn = self.SNR(b, bstv)
o.append([rn, gn, bn])
s = self.stats(o, "RGB")
sorted(self.x_scale,reverse=True)
x_scale = []
for d in self.x_scale:
x_scale.append(str(d))
return {"curve": self.new_order_by_list(o,self.x_scale), "stats": s, "x_axis": x_scale}
def gain_modulation(self,sI, SI1, rI, rI1):
o = (sI - SI1) / (rI - rI1)
return o
def getCromaNoise(self):
o = []
total = len(self.imgRGB)
for x in range(total):
rDesv = self.imgRGB[x]["RGB_DESV"][0]
#gDesv = self.imgRGB[x]["RGB_DESV"][1]
bDesv = self.imgRGB[x]["RGB_DESV"][2]
Ydesv = self.imgRGB[x]["RGB_YDESV"]
desv = math.sqrt( math.pow(Ydesv, 2 ) + (0.64*math.pow(rDesv-Ydesv, 2 )) + (0.16*math.pow(bDesv-Ydesv, 2 )) )
o.append(desv)
s = self.stats(o, "cNoise")
#print(self.new_order_by_list(o,self.x_scale))
sorted(self.x_scale,reverse=True)
x_scale = []
for d in self.x_scale:
x_scale.append(str(d))
return {"curve": self.new_order_by_list(o,self.x_scale), "stats": s, "x_axis": x_scale}
def getSNR(self):
o = []
t = []
total = len(self.imgRGB)
for x in range(total):
mY = self.imgRGB[x]["RGB_LUMA"]
YSTV = self.mean(self.imgRGB[x]["RGB_DESV"])
o.append(self.SNR(mY, YSTV))
s = self.stats(o, "SNR")
#print(self.x_scale)
sorted(self.x_scale,reverse=True)
x_scale = []
for d in self.x_scale:
x_scale.append(str(d))
return {"curve": self.new_order_by_list(o,self.x_scale), "stats": s, "x_axis": x_scale}
'''
def getDR(self):
o = []
for x in range(len(self.imgRGB)):
#mSTV = self.mean(self.imgRGB[x]["RGB_DESV"])
maxR = self.imgRGB[x]["RGB_extrema"][0][1]
maxG = self.imgRGB[x]["RGB_extrema"][1][1]
maxB = self.imgRGB[x]["RGB_extrema"][2][1]
YSTV = self.mean(self.imgRGB[x]["RGB_DESV"])
#maxY = self.mean( [maxR, maxG, maxB])
mY = self.imgRGB[x]["RGB_LUMA"]
DR = math.log2(mY) - math.log2(YSTV)
o.append( DR )
s = self.stats(o, "RDEV")
return {"curve": o, "stats": s}
'''
def luma(self, RGB):
if len(RGB) > 1:
y = 0.2126 * RGB[0] + 0.7152 * RGB[1] + 0.0722 * RGB[2]
else:
y = RGB[0]
return y
def luma_to_ev(self, luma):
re = math.pow( luma/255, 2.2)
return math.log2(re)
def SNR(self, mean, desv):
#print("mean", mean )
#print("desv", desv )
if desv > 0: ### hay que ver que pasa si p es 0 o la desv es 0
snr = 20 * math.log10(mean / desv)
#print("snr", snr)
return snr
else:
return 20 * math.log10(mean)
def stats(self, arr, mode):
t = []
# print(arr)
for x in range(len(arr)):
# print(len(arr[x]) )
if type(arr[x]) is list:
# is OECF
# if len(arr[x]) == 2:
# d = abs(arr[x][0] - arr[x][1])
# t.append(d)
# is RGB
if len(arr[x]) == 3:
# print(self.stddev( arr[x], ddof=0))
t.append(self.stddev(arr[x], ddof=0))
else:
# is DEV
t.append(arr[x])
if mode == "RGB":
o = {
"Desv Avg": [str(round(self.mean(t), 2)), "db"],
"Desv Max": [str(round(max(t), 2)), "db"],
"Desv Min": [str(round(min(t), 2)), "db"]
}
elif mode == "SNR":
o = {
"Average": [str(round(self.mean(t), 2)), "db"],
"Max": [str(round(max(t), 2)), "db"],
"Min": [str(round(min(t), 2)), "db"],
"Desv": [str(round(self.stddev(t, ddof=0), 2)), "db"],
"EV": [str(round(self.mean(t) / 6, 2)), "EV"], #Para pasar de db a EV
"Contrast": [ str(int(math.pow(10, math.log10(2)* (self.mean(t)/ 6) )))+":1" ,""]
}
elif mode == "cNoise":
o = {
"Average": [str(round(self.mean(t), 2)), "σ"],
"Max": [str(round(max(t), 2)), "σ"],
"Min": [str(round(min(t), 2)), "σ"],
"Desv": [str(round(self.stddev(t, ddof=0), 2)), "σ"]
}
'''
elif mode == "DENSITY":
o = {"units": "D",
"Max": str(round(max(t), 2)),
"Min": str(round(min(t), 2))
}
elif mode == "RDEV":
o = {"units": "EV",
"Max": str(round(max(t), 2)),
"Min": str(round(min(t), 2)),
# "Contrast": "1:"+str( int(math.pow( 10, math.log10(2) * max(t) )) ),
# "Max Density": str( round( (max(t)/3.322) ,2) ),
# "Min Density": str( round( (min(t)/3.322) ,2) )
}
'''
return o
def mean(self, data):
if len(data) > 1:
mean = sum(data) / float(len(data))
else:
mean = [data]
return mean
def _ss(self, data):
"""Return sum of square deviations of sequence data."""
c = self.mean(data)
ss = sum((x - c) ** 2 for x in data)
return ss
def stddev(self, data, ddof=0):
"""Calculates the population standard deviation
by default; specify ddof=1 to compute the sample
standard deviation."""
n = len(data)
if n < 2:
raise ValueError('variance requires at least two data points')
ss = self._ss(data)
pvar = ss / (n - ddof)
return pvar ** 0.5