-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbstree.go
307 lines (256 loc) · 5.46 KB
/
bstree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
package bstree
import (
"errors"
"math/rand"
"time"
"github.com/jpfuentes2/algorithms-and-datastructures/util"
)
var (
// ErrDuplicateKey is an error when a duplicate key is inserted
ErrDuplicateKey = errors.New("Cannot insert duplicate key")
// ErrNodeNotFound is an error when the node is not found in the tree
ErrNodeNotFound = errors.New("Cannot find node in tree")
)
func init() {
rand.Seed(time.Now().UTC().UnixNano())
}
// Visitor is a type alias for an anon fn receiving a node
type Visitor func(*Node)
// Node is a binary search tree node
type Node struct {
left *Node
Key int
right *Node
}
// Tree is a binary search tree
type Tree struct {
root *Node
size int
}
// Insert inserts the key into this sub-tree. error if the key is a duplicate
func (n *Node) Insert(key int) error {
if key == n.Key {
// do not allow duplicates
return ErrDuplicateKey
} else if key < n.Key {
// if key is < n.key then insert to left
if n.left == nil {
n.left = &Node{Key: key}
} else {
n.left.Insert(key)
}
} else {
// if key is > n.key then insert to right
if n.right == nil {
n.right = &Node{Key: key}
} else {
n.right.Insert(key)
}
}
return nil
}
// IsLeaf returns true if this node has no children
func (n *Node) IsLeaf() bool {
return n.left == nil && n.right == nil
}
// New creates a new BinarySearchTree
func New() *Tree {
return &Tree{}
}
// IsEmpty returns true if the root is nil
func (t *Tree) IsEmpty() bool {
return t.Len() == 0
}
// Len is the number of nodes in this tree
func (t *Tree) Len() int {
return t.size
}
// PreOrder walks the tree pre-order
func (t *Tree) PreOrder(fn Visitor) {
if t.IsEmpty() {
return
}
var recurse Visitor
recurse = func(n *Node) {
if n == nil {
return
}
fn(n)
recurse(n.left)
recurse(n.right)
}
recurse(t.root)
}
// InOrder walks the tree in-order
func (t *Tree) InOrder(fn Visitor) {
if t.IsEmpty() {
return
}
var recurse Visitor
recurse = func(n *Node) {
if n == nil {
return
}
recurse(n.left)
fn(n)
recurse(n.right)
}
recurse(t.root)
}
// PostOrder walks the tree in post-order
func (t *Tree) PostOrder(fn Visitor) {
if t.IsEmpty() {
return
}
var recurse Visitor
recurse = func(n *Node) {
if n == nil {
return
}
recurse(n.left)
recurse(n.right)
fn(n)
}
recurse(t.root)
}
// Min gives the minimum key of this tree
func (t *Tree) Min() *Node {
if t.IsEmpty() {
return nil
}
return t.min(t.root)
}
func (t *Tree) min(node *Node) *Node {
if node.left == nil {
return node
}
return t.min(node.left)
}
// Max gives the maximum key of this tree
func (t *Tree) Max() *Node {
if t.IsEmpty() {
return nil
}
return t.max(t.root)
}
func (t *Tree) max(node *Node) *Node {
if node.right == nil {
return node
}
return t.max(node.right)
}
// Insert adds the key as a new node. error if tried to add a duplicate key
func (t *Tree) Insert(key int) (err error) {
if t.IsEmpty() {
t.root = &Node{Key: key}
t.size++
return
}
if err = t.root.Insert(key); err == nil {
t.size++
}
return
}
// Contains tests for existence of the search key
func (t *Tree) Contains(key int) bool {
_, err := t.Get(key)
return err == nil
}
// Get gets the node with the given key. error if not found
func (t *Tree) Get(key int) (*Node, error) {
var recurse func(key int, node *Node) *Node
recurse = func(key int, node *Node) *Node {
if node == nil {
return nil
}
if key < node.Key {
return recurse(key, node.left)
} else if key > node.Key {
return recurse(key, node.right)
} else {
return node
}
}
if node := recurse(key, t.root); node != nil {
return node, nil
}
return nil, ErrNodeNotFound
}
// Height gives the height of this tree
func (t *Tree) Height() int {
if t.IsEmpty() {
return 0
}
var recurse func(n *Node) int
recurse = func(n *Node) int {
if n == nil {
return -1
}
return util.Max(recurse(n.left), recurse(n.right)) + 1
}
return recurse(t.root)
}
func (t *Tree) deleteMin(node *Node) *Node {
if node.left == nil {
return node.right
}
node.left = t.deleteMin(node.left)
return node
}
func (t *Tree) deleteMax(node *Node) *Node {
if node.right == nil {
return node.left
}
node.right = t.deleteMax(node.right)
return node
}
// Remove removes the key from the tree. error if not found or tree is empty
func (t *Tree) Remove(key int) (*Node, error) {
if t.IsEmpty() {
return nil, ErrNodeNotFound
}
if node := t.remove(key, t.root); node != nil {
t.size--
return node, nil
}
return nil, ErrNodeNotFound
}
func (t *Tree) remove(key int, node *Node) *Node {
if node == nil {
return nil
}
if key < node.Key {
removed := t.remove(key, node.left)
node.left = removed
node = removed
} else if key > node.Key {
removed := t.remove(key, node.right)
node.right = removed
node = removed
} else {
// found our node with given key
if node.IsLeaf() {
return node // when leaf just remove the link
} else if node.left == nil {
return node.right // swap parent link of us w/ the right node
} else if node.right == nil {
return node.left // swap parent link of us w/ the left node
}
tmp := node
// Hibbard deletion: reduce degradation speed by randomly choosing successor/predecessor
if rand.Intn(2) == 1 {
node = t.max(tmp.left)
node.left = t.deleteMax(tmp.left)
node.right = tmp.right
} else {
node = t.min(tmp.right)
node.right = t.deleteMin(tmp.right)
node.left = tmp.left
}
return tmp
}
return node
}
func (t *Tree) IsBalanced() bool {
return false
}