-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathindex.html
114 lines (87 loc) · 3.39 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
layout: default-plus
title: Home
feed-in-sidebar: true
---
<!-- <h1>About me</h1> -->
<div id="landing-page-container">
<div id="banner-cont">
<img src="{{site.baseurl}}/assets/images/blackboard.jpg" width="100%">
</div>
<h3>Postgraduate student at the University of Oxford </h3>
<p id="bio">
I am a fourth year DPhil student at the Mathematical Insitute in the University of Oxford, supervised by <a href="https://www.maths.ox.ac.uk/people/panagiotis.papazoglou">Panos Papazoglou</a>.
</p>
<p id="bio">
I am funded by a scholarship from the
<a href="https://heilbronn.ac.uk/">Heilbronn Institute for Mathematical Research</a>, and also currently hold a Graduate Development
Scholarship at St Anne's College.
</p>
<p id="bio">
I previously completed the MFoCS MSc here at Oxford, funded by a grant from <a href="https://www.jamespantyfedwen.cymru/">the James Pantyfedwen Foundation</a>.
Before this, I was an undergraduate student at the University of Bristol,
where I earned a BSc in Mathematics and Computer Science.
</p>
<p id="bio">
I am broadly interested in geometric group theory, particularly questions relating to splittings, coarse geometry,
and algorithmic problems.
</p>
<p>
Find a CV <a href="{{site.baseurl}}/assets/files/academic_cv.pdf">here</a> (last updated 21 August 2024), and feel free to get in contact for more detail.
</p>
<h3>Preprints</h3>
<ol class="references">
<li>
MacManus, J. (2024). Fat minors in finitely presented groups. <i>arXiv preprint.</i> arXiv:2408.10748.
<a href="https://arxiv.org/abs/2408.10748">Link</a>
</li>
<br>
<li>
MacManus, J. (2024). A note on transitve graphs quasi-isometric to planar (Cayley) graphs. <i>arXiv preprint.</i> arXiv:2407.13375.
<a href="https://arxiv.org/abs/2407.13375">Link</a>
</li>
<br>
<li>
Baligács, J., MacManus, J. (2024). The metric Menger problem. <i>arXiv preprint.</i> arXiv:2403.05630.
<a href="https://arxiv.org/abs/2403.05630">Link</a>
</li>
<br>
<li>
MacManus, J., Mineh L. (2024). Tiling in some nonpositively curved groups. <i>arXiv preprint.</i> arXiv:2401.09545.
<a href="https://arxiv.org/abs/2401.09545">Link</a>
</li>
<br>
<li>
MacManus, J. (2023). Accessibility, planar graphs, and quasi-isometries. <i>arXiv preprint</i> arXiv:2310.15242.
<a href="https://arxiv.org/abs/2310.15242">Link</a>
</li>
</ol>
<h3>Publications</h3>
<ol class="references">
<li>
MacManus, J. (2022). Deciding if a hyperbolic group splits over a given quasiconvex subgroup. To appear in <i>Groups, Geom. Dyn.</i>
<a href="https://arxiv.org/abs/2210.09973">arXiv link</a>
</li>
<br>
<li>
Alexandru, C. -M., Bridgett-Tomkinson, E., Linden, N., MacManus, J., Montanaro, A., & Morris, H. (2020).
Quantum speedups of some general-purpose numerical optimisation algorithms.
<i>Quantum Science and Technology, 5</i>(4), 045014.
<a href="https://arxiv.org/abs/2004.06521">arXiv link</a>
</li>
</ol>
<h3>Things I've done</h3>
<ul>
<li>I ran the the <a href="https://www.maths.ox.ac.uk/events/list/655">Junior Topology and Group Theory seminar</a> at Oxford for 2022-23.</li>
</ul>
<h3>Contact info</h3>
<p id="bio">
You can reach me by email at:
<span>
<code class="tag" id="email-tag"> macmanus @ maths.ox.ac.uk </code>
</span>
</p>
<p id="bio">Alternatively, find me on the following platforms.</p>
<br>
{% include socials.html %}
</div>