forked from westerndigitalcorporation/swerv-ISS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDecodedInst.hpp
246 lines (199 loc) · 7.91 KB
/
DecodedInst.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
//
// SPDX-License-Identifier: GPL-3.0-or-later
// Copyright 2018 Western Digital Corporation or its affiliates.
//
// This program is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation, either version 3 of the License, or (at your option)
// any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along with
// this program. If not, see <https://www.gnu.org/licenses/>.
//
#pragma once
#include <vector>
#include <string>
#include <unordered_map>
#include "InstEntry.hpp"
#include "FpRegs.hpp"
#include "InstId.hpp"
namespace WdRiscv
{
/// Model a decoded instruction: instruction address, opcode, and
/// operand fields. All instructions are assumed to have the form
/// inst op0, op1, op2, op3
/// where op0 to op3 are optional. For example, in "add x2, x1, x0"
/// op0 is x2, op1 is x1 and op2 is x0.
///
/// Load instructions of the form "load rd, offset(rs1)" get mapped
/// to "load rd, rs1, offset" assigning rd to op0 and offset to op2.
///
/// Store instructions of the form "store rs2, offset(rs1)" get mapped
/// to "store rs2, rs1, offset" assigning rs2 to op0 and offset to op2.
///
class DecodedInst
{
public:
/// Default contructor: Define an invalid object.
DecodedInst()
: addr_(0), inst_(0), size_(0), entry_(nullptr),
op0_(0), op1_(0), op2_(0), op3_(0)
{ values_[0] = values_[1] = values_[2] = values_[3] = 0; }
/// Constructor.
DecodedInst(uint64_t addr, uint32_t inst, const InstEntry* entry,
uint32_t op0, uint32_t op1, uint32_t op2, uint32_t op3)
: addr_(addr), inst_(inst), size_(instructionSize(inst)), entry_(entry),
op0_(op0), op1_(op1), op2_(op2), op3_(op3)
{ values_[0] = values_[1] = values_[2] = values_[3] = 0; }
/// Return instruction size in bytes.
uint32_t instSize() const
{ return size_; }
/// Return address of instruction.
uint64_t address() const
{ return addr_; }
/// Return instruction code.
uint32_t inst() const
{ return inst_; }
/// Return the 1st operand (zero if instruction has no operands).
/// First operand is typically the destination register.
uint32_t op0() const
{ return op0_; }
/// Return 2nd operand (zero if instruction has no 2nd operand).
/// Second operand is typically source register rs1.
uint32_t op1() const
{ return op1_; }
/// Return 2nd operand as a signed integer. This is useful
/// for instructions where the 2nd operand is a signed immediate
/// value.
template <typename SI>
SI op1As() const
{ return int32_t(op1_); }
/// Return 3rd operand (zero if instruction has no 3rd operand).
/// Third operand is typically source register rs2 or immediate
/// value.
uint32_t op2() const
{ return op2_; }
/// Return 3rd operand as a signed 32-bit integer. This is useful
/// for instructions where the 3rd operand is a signed immediate
/// value.
template <typename SI>
SI op2As() const
{ return int32_t(op2_); }
/// Return 4th operand (zero if instruction has no 4th operand).
/// Fourth operand is typically source register rs3 for
/// multiply-add like floating point instructions.
uint32_t op3() const
{ return op3_; }
/// Return the operand count associated with this
/// instruction. Immediate values are counted as operands. For
/// example, in "addi x3, x4, 10", there are 3 operands: 3, 4, and
/// 10 with types IntReg, IntReg and Imm respectively.
unsigned operandCount() const
{ return isValid()? entry_->operandCount() : 0; }
/// Return the ith operands or zero if i is out of bounds. For exmaple, if
/// decode insruction is "addi x3, x4, 10" then the 0th operand would be 3
/// and the second operands would be 10.
uint32_t ithOperand(unsigned i) const;
/// Return the ith operands or zero if i is out of bounds. For exmaple, if
/// decode insruction is "addi x3, x4, 10" then the 0th operand would be 3
/// and the second operands would be 10.
int32_t ithOperandAsInt(unsigned i) const;
/// Return the type of the ith operand or None if i is out of
/// bounds. Object must be valid.
OperandType ithOperandType(unsigned i) const
{ return isValid()? entry_->ithOperandType(i) : OperandType::None; }
/// Return true if this object is valid.
bool isValid() const
{ return entry_ != nullptr; }
/// Make invalid.
void invalidate()
{ entry_ = nullptr; }
/// Return associated instruction table information.
const InstEntry* instEntry() const
{ return entry_; }
/// Relevant for floating point instructions with rounding mode.
RoundingMode roundingMode() const
{ return RoundingMode((inst_ >> 12) & 7); }
/// Relevant to atomic instructions: Return true if acquire bit is
/// set.
bool isAtomicAcquire() const
{ return (inst_ >> 26) & 1; }
/// Relevant to atomic instructions: Return true if release bit is
/// set.
bool isAtomicRelease() const
{ return (inst_ >> 25) & 1; }
/// Associate a value with each operand by fetching
/// registers. After this method, the value of an immediate
/// operand x is x. The value of register operand y is the value
/// currently stored in register x. The value of a non-existing
/// operand is zero. Note that the association is only in this
/// object and that no register value is changed by this method.
template <typename URV>
void fetchOperands(const Hart<URV>& hart);
/// Associated a value with the ith operand. This has no effect if
/// i is out of bounds or if the ith operand is an immediate. Note
/// that the association is only in this object and that no
/// register value is changed by this method.
void setIthOperandValue(unsigned i, uint64_t value);
/// Return value associated with ith operand.
uint64_t ithOperandValue(unsigned i) const
{ return i < 4? values_[i] : 0; }
protected:
friend class Hart<uint32_t>;
friend class Hart<uint64_t>;
void setAddr(uint64_t addr)
{ addr_ = addr; }
void setInst(uint32_t inst)
{ inst_ = inst; size_ = instructionSize(inst); }
void setEntry(const InstEntry* e)
{ entry_ = e; }
void setOp0(uint32_t op0)
{ op0_ = op0; }
void setOp1(uint32_t op1)
{ op1_ = op1; }
void setOp2(uint32_t op2)
{ op2_ = op2; }
void setOp3(uint32_t op3)
{ op3_ = op3; }
void reset(uint64_t addr, uint32_t inst, const InstEntry* entry,
uint32_t op0, uint32_t op1, uint32_t op2, uint32_t op3)
{
addr_ = addr;
inst_ = inst;
entry_ = entry;
op0_ = op0; op1_ = op1; op2_ = op2; op3_ = op3;
size_ = instructionSize(inst);
}
private:
uint64_t addr_;
uint32_t inst_;
uint32_t size_;
const InstEntry* entry_;
uint32_t op0_; // 1st operand (typically a register number)
uint32_t op1_; // 2nd operand (register number or immediate value)
uint32_t op2_; // 3rd operand (register number or immediate value)
uint32_t op3_; // 4th operand (typically a register number)
uint64_t values_[4]; // Values of operands.
};
/// Return 2nd operand as a signed 64-bit integer. This is useful
/// for instructions where the 2nd operand is a signed immediate
/// value.
template <>
inline
int64_t
DecodedInst::op1As<int64_t>() const
{ return int32_t(op1_); }
/// Return 3rd operand as a signed 64-bit integer. This is useful
/// for instructions where the 3rd operand is a signed immediate
/// value.
template <>
inline
int64_t
DecodedInst::op2As<int64_t>() const
{ return int32_t(op2_); }
}