forked from westerndigitalcorporation/swerv-ISS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMemory.hpp
896 lines (759 loc) · 29.5 KB
/
Memory.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
//
// SPED-License-Identifier: GPL-3.0-or-later
// Copyright 2018 Western Digital Corporation or its affiliates.
//
// This program is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation, either version 3 of the License, or (at your option)
// any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along with
// this program. If not, see <https://www.gnu.org/licenses/>.
//
#pragma once
#include <unordered_map>
#include <cstdint>
#include <vector>
#include <unordered_map>
#include <mutex>
#include <type_traits>
#include <cassert>
namespace WdRiscv
{
template <typename URV>
class Hart;
/// Page attributes.
struct PageAttribs
{
PageAttribs()
: read_(false), write_(false), exec_(false),
reg_(false), iccm_(false), dccm_(false)
{ }
/// Set all attributes to given flag.
void setAll(bool flag)
{
read_ = flag;
write_ = flag;
exec_ = flag;
reg_ = flag;
iccm_ = flag;
dccm_ = flag;
}
/// Mark page as writable/non-writable.
void setWrite(bool flag)
{ write_ = flag; }
/// Mark/unmark page as usable for instruction fetch.
void setExec(bool flag)
{ exec_ = flag; }
/// Mark/unmark page as readable.
void setRead(bool flag)
{ read_ = flag; }
/// Mark/unmark page as usable for memory-mapped registers.
void setMemMappedReg(bool flag)
{ reg_ = flag; }
/// Mark page as belonging to an ICCM region.
void setIccm(bool flag)
{ iccm_ = flag; }
/// Mark page as belonging to a DCCM region.
void setDccm(bool flag)
{ dccm_ = flag; }
/// Return true if page can be used for instruction fetch. Fetch
/// will still fail if page is not mapped.
bool isExec() const
{ return exec_; }
/// Return true if page can be used for data access (load/store
/// instructions). Access will fail is page is not mapped. Write
/// access (store instructions) will fail if page is not
/// writable.
bool isRead() const
{ return read_; }
/// Return true if page is writable (write will still fail if
/// page is not mapped).
bool isWrite() const
{ return write_; }
/// True if page belongs to an ICCM region.
bool isIccm() const
{ return iccm_; }
/// True if page belongs to a DCCM region.
bool isDccm() const
{ return dccm_; }
/// True if page is marked for memory-mapped registers.
bool isMemMappedReg() const
{ return reg_; }
/// Return true if page is external to the core.
bool isExternal() const
{ return not dccm_ and not reg_; }
/// True if page is mapped (usable).
bool isMapped() const
{ return read_ or write_ or exec_; }
bool read_ : 1; // True if page is readable.
bool write_ : 1; // True if page is writable.
bool exec_ : 1; // True if page can be used for fetching insts.
bool reg_ : 1; // True if page has memory mapped registers.
bool iccm_ : 1; // True if page is in an ICCM section.
bool dccm_ : 1; // True if page is in a DCCM section.
// When page size is small (64-bytes), the number of pages becomes
// very large. Using packed attribute helps reduce memory usage.
} __attribute__((packed));
/// Location and size of an ELF file symbol.
struct ElfSymbol
{
ElfSymbol(size_t addr = 0, size_t size = 0)
: addr_(addr), size_(size)
{ }
size_t addr_ = 0;
size_t size_ = 0;
};
/// Model physical memory of system.
class Memory
{
public:
friend class Hart<uint32_t>;
friend class Hart<uint64_t>;
/// Constructor: define a memory of the given size initialized to
/// zero. Given memory size (byte count) must be a multiple of 4
/// otherwise, it is truncated to a multiple of 4. The memory
/// is partitioned into regions according to the region size which
/// must be a power of 2.
Memory(size_t size, size_t pageSize = 4*1024,
size_t regionSize = 256*1024*1024);
/// Destructor.
~Memory();
/// Define number of hardware threads for LR/SC. FIX: put this in
/// constructor.
void setHartCount(unsigned count)
{ reservations_.resize(count); lastWriteData_.resize(count); }
/// Return memory size in bytes.
size_t size() const
{ return size_; }
/// Read an unsigned integer value of type T from memory at the
/// given address into value. Return true on success. Return false
/// if any of the requested bytes is out of memory bounds or fall
/// in unmapped memory or if the read crosses memory regions of
/// different attributes.
template <typename T>
bool read(size_t address, T& value) const
{
PageAttribs attrib = getAttrib(address);
if (not attrib.isRead())
return false;
#ifndef FAST_SLOPPY
if (address & (sizeof(T) - 1)) // If address is misaligned
{
size_t page = getPageStartAddr(address);
size_t page2 = getPageStartAddr(address + sizeof(T) - 1);
if (page != page2)
{
// Read crosses page boundary: Check next page.
PageAttribs attrib2 = getAttrib(address + sizeof(T));
if (not attrib2.isRead())
return false;
if (attrib.isDccm() != attrib2.isDccm())
return false; // Cannot cross a DCCM boundary.
if (attrib.isMemMappedReg() != attrib2.isMemMappedReg())
return false; // Cannot cross a PIC boundary.
}
}
// Memory mapped region accessible only with word-size read.
if constexpr (sizeof(T) == 4)
{
if (attrib.isMemMappedReg())
return readRegister(address, value);
}
else if (attrib.isMemMappedReg())
return false;
#endif
value = *(reinterpret_cast<const T*>(data_ + address));
return true;
}
/// Read byte from given address into value. Return true on
/// success. Return false if address is out of bounds.
bool readByte(size_t address, uint8_t& value) const
{
PageAttribs attrib = getAttrib(address);
if (not attrib.isRead())
return false;
#ifndef FAST_SLOPPY
if (attrib.isMemMappedReg())
return false; // Only word access allowed to memory mapped regs.
#endif
value = data_[address];
return true;
}
/// Read half-word (2 bytes) from given address into value. See
/// read method.
bool readHalfWord(size_t address, uint16_t& value) const
{ return read(address, value); }
/// Read word (4 bytes) from given address into value. See read
/// method.
bool readWord(size_t address, uint32_t& value) const
{ return read(address, value); }
/// Read a double-word (8 bytes) from given address into
/// value. See read method.
bool readDoubleWord(size_t address, uint64_t& value) const
{ return read(address, value); }
/// On a unified memory model, this is the same as readHalfWord.
/// On a split memory model, this will taken an exception if the
/// target address is not in instruction memory.
bool readInstHalfWord(size_t address, uint16_t& value) const
{
PageAttribs attrib = getAttrib(address);
if (attrib.isExec())
{
if (address & 1)
{
size_t page = getPageStartAddr(address);
size_t page2 = getPageStartAddr(address + 1);
if (page != page2)
{
// Instruction crosses page boundary: Check next page.
PageAttribs attrib2 = getAttrib(address + 1);
if (not attrib2.isExec())
return false;
if (attrib.isIccm() != attrib2.isIccm())
return false; // Cannot cross an ICCM boundary.
}
}
value = *(reinterpret_cast<const uint16_t*>(data_ + address));
return true;
}
return false;
}
/// On a unified memory model, this is the same as readWord.
/// On a split memory model, this will taken an exception if the
/// target address is not in instruction memory.
bool readInstWord(size_t address, uint32_t& value) const
{
PageAttribs attrib = getAttrib(address);
if (attrib.isExec())
{
if (address & 3)
{
size_t page = getPageStartAddr(address);
size_t page2 = getPageStartAddr(address + 3);
if (page != page2)
{
// Instruction crosses page boundary: Check next page.
PageAttribs attrib2 = getAttrib(address + 3);
if (not attrib2.isExec())
return false;
if (attrib.isIccm() != attrib2.isIccm())
return false; // Cannot cross a ICCM boundary.
}
}
value = *(reinterpret_cast<const uint32_t*>(data_ + address));
return true;
}
return false;
}
/// Return true if write will be successful if tried. Do not
/// write. Change value to the maksed value if write is to a
/// memory mapped register.
template <typename T>
bool checkWrite(size_t address, T& value)
{
PageAttribs attrib1 = getAttrib(address);
if (not attrib1.isWrite())
return false;
if (address & (sizeof(T) - 1)) // If address is misaligned
{
size_t page = getPageStartAddr(address);
size_t page2 = getPageStartAddr(address + sizeof(T) - 1);
if (page != page2)
{
// Write crosses page boundary: Check next page.
PageAttribs attrib2 = getAttrib(address + sizeof(T));
if (not attrib2.isWrite())
return false;
if (attrib1.isDccm() != attrib2.isDccm())
return false; // Cannot cross a DCCM boundary.
if (attrib1.isMemMappedReg() != attrib2.isMemMappedReg())
return false; // Cannot cross a PIC boundary.
}
}
// Memory mapped region accessible only with word-size write.
if constexpr (sizeof(T) == 4)
{
if (attrib1.isMemMappedReg() and (address & 3) != 0)
return false;
value = doRegisterMasking(address, value);
}
else if (attrib1.isMemMappedReg())
return false;
return true;
}
/// Write given unsigned integer value of type T into memory
/// starting at the given address. Return true on success. Return
/// false if any of the target memory bytes are out of bounds or
/// fall in inaccessible regions or if the write crosses memory
/// region of different attributes.
template <typename T>
bool write(unsigned localHartId, size_t address, T value)
{
PageAttribs attrib1 = getAttrib(address);
if (not attrib1.isWrite())
return false;
#ifndef FAST_SLOPPY
if (address & (sizeof(T) - 1)) // If address is misaligned
{
size_t page = getPageStartAddr(address);
size_t page2 = getPageStartAddr(address + sizeof(T) - 1);
if (page != page2)
{
// Write crosses page boundary: Check next page.
PageAttribs attrib2 = getAttrib(address + sizeof(T));
if (not attrib2.isWrite())
return false;
if (attrib1.isDccm() != attrib2.isDccm())
return false; // Cannot cross a DCCM boundary.
if (attrib1.isMemMappedReg() != attrib2.isMemMappedReg())
return false; // Cannot cross a PIC boundary.
}
}
// Memory mapped region accessible only with word-size write.
if constexpr (sizeof(T) == 4)
{
if (attrib1.isMemMappedReg())
return writeRegister(localHartId, address, value);
}
else if (attrib1.isMemMappedReg())
return false;
auto& lwd = lastWriteData_.at(localHartId);
lwd.prevValue_ = *(reinterpret_cast<T*>(data_ + address));
lwd.size_ = sizeof(T);
lwd.addr_ = address;
lwd.value_ = value;
#else
localHartId = localHartId; // Avoid unused var warning.
#endif
*(reinterpret_cast<T*>(data_ + address)) = value;
return true;
}
/// Write byte to given address. Return true on success. Return
/// false if address is out of bounds or is not writable.
bool writeByte(unsigned localHartId, size_t address, uint8_t value)
{
PageAttribs attrib = getAttrib(address);
if (not attrib.isWrite())
return false;
if (attrib.isMemMappedReg())
return false; // Only word access allowed to memory mapped regs.
auto& lwd = lastWriteData_.at(localHartId);
lwd.prevValue_ = *(data_ + address);
data_[address] = value;
lwd.size_ = 1;
lwd.addr_ = address;
lwd.value_ = value;
return true;
}
/// Write half-word (2 bytes) to given address. Return true on
/// success. Return false if address is out of bounds or is not
/// writable.
bool writeHalfWord(unsigned localHartId, size_t address, uint16_t value)
{ return write(localHartId, address, value); }
/// Read word (4 bytes) from given address into value. Return true
/// on success. Return false if address is out of bounds or is
/// not writable.
bool writeWord(unsigned localHartId, size_t address, uint32_t value)
{ return write(localHartId, address, value); }
/// Read a double-word (8 bytes) from given address into
/// value. Return true on success. Return false if address is out
/// of bounds.
bool writeDoubleWord(unsigned localHartId, size_t address, uint64_t value)
{ return write(localHartId, address, value); }
/// Load the given hex file and set memory locations accordingly.
/// Return true on success. Return false if file does not exists,
/// cannot be opened or contains malformed data.
/// File format: A line either contains @address where address
/// is a hexadecimal memory address or one or more space separated
/// tokens each consisting of two hexadecimal digits.
bool loadHexFile(const std::string& file);
/// Load the given ELF file and set memory locations accordingly.
/// Return true on success. Return false if file does not exists,
/// cannot be opened or contains malformed data, or if it contains
/// data incompatible with the given register width (32 or 64). If
/// successful, set entryPoint to the entry point of the loaded
/// file and end to the address past that of the loaded byte with
/// the largest address. Extract symbol names and corresponding
/// addresses and sizes into the memory symbols map.
bool loadElfFile(const std::string& file, unsigned registerWidth,
size_t& entryPoint, size_t& end);
/// Locate the given ELF symbol (symbols are collected for every
/// loaded ELF file) returning true if symbol is found and false
/// otherwise. Set value to the corresponding value if symbol is
/// found.
bool findElfSymbol(const std::string& symbol, ElfSymbol& value) const;
/// Locate the ELF function cotaining the give address returning true
/// on success and false on failure. If successful set name to the
/// corresponding function name and symbol to the corresponding symbol
/// value.
bool findElfFunction(size_t addr, std::string& name, ElfSymbol& value) const;
/// Print the ELF symbols on the given stream. Output format:
/// <name> <value>
void printElfSymbols(std::ostream& out) const;
/// Enable/disable errors on unmapped memory when loading ELF files.
void checkUnmappedElf(bool flag)
{ checkUnmappedElf_ = flag; }
/// Return the min and max addresses corresponding to the segments
/// in the given ELF file. Return true on success and false if
/// the ELF file does not exist or cannot be read (in which
/// case min and max address are left unmodified).
static bool getElfFileAddressBounds(const std::string& file,
size_t& minAddr, size_t& maxAddr);
/// Copy data from the given memory into this memory. If the two
/// memories have different sizes then copy data from location
/// zero up to n-1 where n is the minimum of the sizes.
void copy(const Memory& other);
/// Return true if given path corresponds to an ELF file and set
/// the given flags according to the contents of the file. Return
/// false leaving the flags unmodified if file does not exist,
/// cannot be read, or is not an ELF file.
static bool checkElfFile(const std::string& path, bool& is32bit,
bool& is64bit, bool& isRiscv);
/// Return true if given symbol is present in the given ELF file.
static bool isSymbolInElfFile(const std::string& path,
const std::string& target);
protected:
/// Same as write but effects not recorded in last-write info.
template <typename T>
bool poke(size_t address, T value)
{
PageAttribs attrib = getAttrib(address);
if (not attrib.isMapped())
return false;
size_t pageEnd = getPageStartAddr(address) + pageSize_;
if (address + sizeof(T) > pageEnd)
{
// Write crosses page boundary: Check next page.
PageAttribs attrib2 = getAttrib(address + sizeof(T));
if (not attrib2.isMapped())
return false;
}
// Memory mapped region accessible only with word-size poke.
if constexpr (sizeof(T) == 4)
{
if (attrib.isMemMappedReg())
{
if ((address & 3) != 0)
return false; // Address must be word-aligned.
}
}
else if (attrib.isMemMappedReg())
return false;
*(reinterpret_cast<T*>(data_ + address)) = value;
return true;
}
/// Same as writeByte but effects are not record in last-write info.
bool pokeByte(size_t address, uint8_t value)
{
PageAttribs attrib = getAttrib(address);
if (not attrib.isMapped())
return false;
if (attrib.isMemMappedReg())
return false; // Only word access allowed to memory mapped regs.
data_[address] = value;
return true;
}
/// Write byte to given address. Return true on success. Return
/// false if address is not mapped. This is used to initialize
/// memory.
bool writeByteNoAccessCheck(size_t address, uint8_t value);
/// Set addr to the address of the last write and value to the
/// corresponding value and return the size of that write. Return
/// 0 if no write since the most recent clearLastWriteInfo in
/// which case addr and value are not modified.
unsigned getLastWriteNewValue(unsigned localHartId, size_t& addr, uint64_t& value) const
{
const auto& lwd = lastWriteData_.at(localHartId);
if (lwd.size_)
{
addr = lwd.addr_;
value = lwd.value_;
}
return lwd.size_;
}
/// Set addr to the address of the last write and value to the
/// corresponding previous value (value before last write) and
/// return the size of that write. Return 0 if no write since the
/// most recent clearLastWriteInfo in which case addr and value
/// are not modified.
unsigned getLastWriteOldValue(unsigned localHartId, size_t& addr,
uint64_t& value) const
{
auto& lwd = lastWriteData_.at(localHartId);
if (lwd.size_)
{
addr = lwd.addr_;
value = lwd.value_;
}
return lwd.size_;
}
/// Clear the information associated with last write.
void clearLastWriteInfo(unsigned localHartId)
{
auto& lwd = lastWriteData_.at(localHartId);
lwd.size_ = 0;
}
/// Return the page size.
size_t pageSize() const
{ return pageSize_; }
/// Return the number of the page containing the given address.
size_t getPageIx(size_t addr) const
{ return addr >> pageShift_; }
/// Return the attribute of the page containing given address.
PageAttribs getAttrib(size_t addr) const
{
size_t ix = getPageIx(addr);
return ix < attribs_.size() ? attribs_[ix] : PageAttribs();
}
/// Return start address of page containing given address.
size_t getPageStartAddr(size_t addr) const
{ return (addr >> pageShift_) << pageShift_; }
/// Return true if CCM (iccm or dccm) configuration defined by
/// region/offset/size is valid. Return false otherwise. Tag
/// parameter ("iccm"/"dccm") is used with error messages.
bool checkCcmConfig(const std::string& tag, size_t region, size_t offset,
size_t size) const;
/// Complain if CCM (iccm or dccm) defined by region/offset/size
/// overlaps a previously defined CCM area. Return true if all is
/// well (no overlap).
bool checkCcmOverlap(const std::string& tag, size_t region, size_t offset,
size_t size, bool iccm, bool dccm, bool pic);
/// Define instruction closed coupled memory (in core instruction memory).
bool defineIccm(size_t region, size_t offset, size_t size);
/// Define data closed coupled memory (in core data memory).
bool defineDccm(size_t region, size_t offset, size_t size);
/// Define region for memory mapped registers. Return true on
/// success and false if offset or size are not properly aligned
/// or sized.
bool defineMemoryMappedRegisterRegion(size_t region, size_t offset,
size_t size);
/// Reset (to zero) all memory mapped registers.
void resetMemoryMappedRegisters();
/// Define write mask for a memory-mapped register with given
/// index and register-offset within the given region and region-offset.
/// Address of memory associated with register is:
/// region*256M + regionOffset + registerBlockOffset + registerIx*4.
/// Return true on success and false if the region (index) is not
/// valid or if the region is not mapped of if the region was not
/// defined for memory mapped registers or if the register address
/// is out of bounds.
bool defineMemoryMappedRegisterWriteMask(size_t region,
size_t regionOffset,
size_t registerBlockOffset,
size_t registerIx,
uint32_t mask);
/// Called after memory is configured to refine memory access to
/// sections of regions containing ICCM, DCCM or PIC-registers.
void finishCcmConfig();
/// Read a memory mapped register.
bool readRegister(size_t addr, uint32_t& value) const
{
if ((addr & 3) != 0)
return false; // Address must be workd-aligned.
value = *(reinterpret_cast<const uint32_t*>(data_ + addr));
return true;
}
/// Return memory mapped mask associated with the word containing
/// the given address. Return all 1 if given address is not a
/// memory mapped register.
uint32_t getMemoryMappedMask(size_t addr) const
{
uint32_t mask = ~ uint32_t(0);
if (masks_.empty())
return mask;
size_t pageIx = getPageIx(addr);
auto& pageMasks = masks_.at(pageIx);
if (pageMasks.empty())
return mask;
size_t wordIx = (addr - getPageStartAddr(addr)) / 4;
mask = pageMasks.at(wordIx);
return mask;
}
/// Perform masking for a write to a memory mapped register.
/// Return masked value.
uint32_t doRegisterMasking(size_t addr, uint32_t value) const
{
uint32_t mask = getMemoryMappedMask(addr);
value = value & mask;
return value;
}
/// Write a memory mapped register.
bool writeRegister(unsigned localHartId, size_t addr, uint32_t value)
{
if ((addr & 3) != 0)
return false; // Address must be word-aligned.
value = doRegisterMasking(addr, value);
auto& lwd = lastWriteData_.at(localHartId);
lwd.prevValue_ = *(reinterpret_cast<uint32_t*>(data_ + addr));
*(reinterpret_cast<uint32_t*>(data_ + addr)) = value;
lwd.size_ = 4;
lwd.addr_ = addr;
lwd.value_ = value;
return true;
}
/// Return the number of the 256-mb region containing given address.
size_t getRegionIndex(size_t addr) const
{ return (addr >> regionShift_) & regionMask_; }
/// Return true if given address is in a mapped page.
bool isAddrMapped(size_t addr) const
{ return getAttrib(addr).isMapped(); }
/// Return true if given address is in a readable page.
bool isAddrReadable(size_t addr) const
{ return getAttrib(addr).isRead(); }
/// Return true if page of given address is in data closed coupled
/// memory.
bool isAddrInDccm(size_t addr) const
{ return getAttrib(addr).isDccm(); }
/// Return true if page of given address is in instruction closed
/// coupled memory.
bool isAddrInIccm(size_t addr) const
{ return getAttrib(addr).isIccm(); }
/// Return true if given address is in memory-mapped register region.
bool isAddrInMappedRegs(size_t addr) const
{ return getAttrib(addr).isMemMappedReg(); }
/// Return true if given data address is external to the core.
bool isDataAddrExternal(size_t addr) const
{
PageAttribs attrib = getAttrib(addr);
return not (attrib.isDccm() or attrib.isMemMappedReg());
}
/// Return the simulator memory address corresponding to the
/// simulated RISCV memory address. This is useful for Linux
/// emulation.
bool getSimMemAddr(size_t addr, size_t& simAddr)
{
if (addr >= size_)
return false;
simAddr = reinterpret_cast<size_t>(data_ + addr);
return true;
}
/// Set the write-access of the page containing the given address
/// to the given flag. No-op if address is out of bounds.
void setWriteAccess(size_t addr, bool value)
{
size_t ix = getPageIx(addr);
if (ix >= attribs_.size())
return;
attribs_[ix].setWrite(value);
}
/// Set the read-access of the page containing the given address
/// to the given flag. No-op if address is out of bounds.
void setReadAccess(size_t addr, bool value)
{
size_t ix = getPageIx(addr);
if (ix >= attribs_.size())
return;
attribs_[ix].setRead(value);
}
/// Set the execute flag of the page containing the given address
/// to the given flag. No-op if address is out of bounds.
void setExecAccess(size_t addr, bool value)
{
size_t ix = getPageIx(addr);
if (ix >= attribs_.size())
return;
attribs_[ix].setExec(value);
}
/// Track LR instructin resrvations.
struct Reservation
{
size_t addr_ = 0;
unsigned size_ = 0;
bool valid_ = false;
};
/// Invalidate LR reservations matching address of poked/written
/// bytes and belonging to harts other than the given hart-id. The
/// memory tracks one reservation per hart indexed by local hart
/// ids.
void invalidateOtherHartLr(unsigned localHartId, size_t addr,
unsigned storeSize)
{
for (size_t i = 0; i < reservations_.size(); ++i)
{
if (i == localHartId) continue;
auto& res = reservations_[i];
if (addr >= res.addr_ and (addr - res.addr_) < res.size_)
res.valid_ = false;
else if (addr < res.addr_ and (res.addr_ - addr) < storeSize)
res.valid_ = false;
}
}
/// Invalidate LR reservations matching address of poked/written
/// bytes. The memory tracks one reservation per hart indexed by
/// local hart ids.
void invalidateLrs(size_t addr, unsigned storeSize)
{
for (size_t i = 0; i < reservations_.size(); ++i)
{
auto& res = reservations_[i];
if (addr >= res.addr_ and (addr - res.addr_) < res.size_)
res.valid_ = false;
else if (addr < res.addr_ and (res.addr_ - addr) < storeSize)
res.valid_ = false;
}
}
/// Invalidate LR reservation corresponding to the given hart.
void invalidateLr(unsigned localHartId)
{ reservations_.at(localHartId).valid_ = false; }
/// Make a LR reservation for the given hart.
void makeLr(unsigned localHartId, size_t addr, unsigned size)
{
auto& res = reservations_.at(localHartId);
res.addr_ = addr;
res.size_ = size;
res.valid_ = true;
}
/// Return true if given hart has a valid LR reservation for the
/// given address.
bool hasLr(unsigned localHartId, size_t addr) const
{
auto& res = reservations_.at(localHartId);
return res.valid_ and res.addr_ == addr;
}
/// Take a snapshot of the entire simulated memory into binary
/// file. Return true on success or false on failure
bool saveSnapshot(const std::string & filename, const std::vector<std::pair<uint64_t,uint64_t>>& used_blocks);
/// Load the simulated memory from snapshot binary file. Return
/// true on success or false on failure
bool loadSnapshot(const std::string & filename, const std::vector<std::pair<uint64_t,uint64_t>>& used_blocks);
private:
/// Information about last write operation by a hart.
struct LastWriteData
{
unsigned size_ = 0;
size_t addr_ = 0;
uint64_t value_ = 0;
uint64_t prevValue_ = 0;
};
size_t size_; // Size of memory in bytes.
uint8_t* data_; // Pointer to memory data.
// Memory is organized in regions (e.g. 256 Mb). Each region is
// organized in pages (e.g 4kb). Each page is associated with
// access attributes. Memory mapped register pages are also
// associated with write-masks (one 4-byte mask per word).
size_t regionCount_ = 16;
size_t regionSize_ = 256*1024*1024;
std::vector<bool> regionConfigured_; // One per region.
size_t pageCount_ = 1024*1024; // Should be derived from page size.
size_t pageSize_ = 4*1024; // Must be a power of 2.
unsigned pageShift_ = 12; // Shift address by this to get page no.
unsigned regionShift_ = 28; // Shift address by this to get region no.
unsigned regionMask_ = 0xf; // This should depend on mem size.
std::mutex amoMutex_;
std::mutex lrMutex_;
// Attributes are assigned to pages.
std::vector<PageAttribs> attribs_; // One entry per page.
std::vector<std::vector<uint32_t> > masks_; // One vector per page.
std::vector<size_t> mmrPages_; // Memory mapped register pages.
bool checkUnmappedElf_ = true;
std::unordered_map<std::string, ElfSymbol> symbols_;
std::vector<Reservation> reservations_;
std::vector<LastWriteData> lastWriteData_;
};
}