-
Notifications
You must be signed in to change notification settings - Fork 0
/
AGU2018Poster.tex
733 lines (583 loc) · 29.1 KB
/
AGU2018Poster.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
\documentclass[landscape,24pt, a0paper,colspace=10mm,blockverticalspace=12mm]{tikzposter}
% Bibliography
%\usepackage[backend=bibtex,firstinits=true,sorting=none, doi=false,isbn=false,url=false]{biblatex}
%\bibliography{Mendeley.bib}
%\renewbibmacro{in:}{}
%\DeclareFieldFormat*{title}{#1}
% Bibliography v2
%\usepackage[style=nature,maxnames=1,uniquelist=false]{biblatex}
\usepackage[backend=bibtex,giveninits=true,sorting=none, doi=false,isbn=false,url=false,maxnames=1,uniquelist=false]{biblatex}
\renewbibmacro{in:}{}
\DeclareFieldFormat*{title}{#1}
% For preventing hyphenation
\usepackage{hyphenat}
% e.g. \nohyphens{longlineoftexthere}
% Some field suppression via options
\ExecuteBibliographyOptions{isbn=false,url=false,doi=false,eprint=false}
% One-paragraph bibliography environment
\defbibenvironment{bibliography}
{\list
{\printtext[labelnumberwidth]{%
\printfield{labelprefix}%
\printfield{labelnumber}}%
\ifentrytype{article}{% Suppress remaining fields/names/lists here
\clearfield{title}}{}}
{\setlength{\leftmargin}{0pt}%
\setlength{\topsep}{0pt}}%
\renewcommand*{\makelabel}[1]{##1}}
{\endlist}
{\mkbibitem}
% \mkbibitem just prints item label and non-breakable space
\makeatletter
\newcommand{\mkbibitem}{\@itemlabel\addnbspace}
\makeatother
% Add breakable space between bibliography items
\renewcommand*{\finentrypunct}{\addperiod\space}
% et al. string upright (nature style applies \mkbibemph)
\renewbibmacro*{name:andothers}{%
\ifboolexpr{
test {\ifnumequal{\value{listcount}}{\value{liststop}}}
and
test \ifmorenames
}
{\ifnumgreater{\value{liststop}}{1}{\finalandcomma}{}%
\andothersdelim
\bibstring{andothers}}
{}}
\addbibresource{Mendeley.bib}
%Remove 'references' title from bibliography
\usepackage{etoolbox}
\patchcmd{\thebibliography}{\section*{\refname}}{}{}{}
\usepackage{calculator}%For doing arithmetic?
\usepackage{verbatim}
\include{headerMaths}
% For displaying equations in tables
\usepackage{array}
%\def\tabularxcolumn#1{m{#1}} %ensure vertical centering
\newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{R}[1]{>{\raggedleft\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\usepackage{authblk} %Formatting of author lists
\usepackage{enumitem} % For different itemize icons
\usepackage{graphicx,subcaption} % For subfigures
\usepackage{xcolor} %For colors in equations
%\definecolor{oxfordblue}{rgb}{0.0, 0.13, 0.28}
\definecolor{darkolivegreen}{rgb}{0.33, 0.42, 0.18}
\definecolor{darkmidnightblue}{rgb}{0.0, 0.2, 0.4}
\definecolor{darkpowderblue}{rgb}{0.0, 0.2, 0.6}
\definecolor{dodgerblue}{rgb}{0.12, 0.56, 1.0}
\definecolor{egyptianblue}{rgb}{0.06, 0.2, 0.65}
\definecolor{dukeblue}{rgb}{0.0, 0.0, 0.61}
\definecolor{falured}{rgb}{0.5, 0.09, 0.09}
\definecolor{royalfuchsia}{rgb}{0.79, 0.17, 0.57}
\definecolor{captiongray}{rgb}{0.15,0.15,0.15}
\definecolor{captionTitle}{rgb}{0, 0, 0}
\definecolor{dividingLines}{rgb}{0.7, 0.7, 0.7}
\definecolor{eqnLabelGray}{rgb}{0.3, 0.3, 0.3}
\newcommand{\figureTitle}[1]{\color{captionTitle}{\textbf{#1}} }
\newcommand{\figureCaption}[1]{\color{captiongray}{#1} }
\newcommand{\highlightText}[1]{\textcolor{dukeblue}{\textbf{#1}} }
\newcommand{\varColor}[1]{\textcolor{dukeblue}{#1}}
\newcommand{\eqnColor}[1]{\textcolor{royalfuchsia}{#1}}
\newcommand{\paramColor}[1]{\textcolor{falured}{#1}}
\newcommand{\varLabel}[1]{\textcolor{eqnLabelGray}{\text{#1}}}
\newcommand{\eqnLabel}[1]{\textcolor{eqnLabelGray}{#1}}
\usepackage{pgfplots}
\usepgfplotslibrary{fillbetween}
\pgfplotsset{compat=1.13}
\usepackage{tikz}
\usetikzlibrary{calc,positioning,decorations.markings, backgrounds}
\makeatletter
%24 pt for figure captions for AGU
\renewenvironment{tikzfigure}[1][]{
\def \rememberparameter{#1}
\vspace{10pt}
\refstepcounter{figurecounter}
\begin{center}
}{
\ifx\rememberparameter\@empty
\else %nothing
\\[24pt]
{Fig.~\thefigurecounter: \rememberparameter}
\fi
\end{center}
}
% Title formatting
\def\TP@titlegraphictotitledistance{-5.0cm} % Without this, authors are below icons
\renewcommand\AB@affilsepx{, \protect\Affilfont}
\settitle{ \centering \vbox{
\centering
\vspace{-2.0cm}
\color{titlefgcolor} {\bfseries \Huge \sc \@title \par}
\vspace*{0.5cm} % Distance from bottom of title to top of graphics
% For title graphics. Uncomment next line to remove
\@titlegraphic \\ [\TP@titlegraphictotitledistance]
{\LARGE \@author \par} \vspace*{0.8em} {\Large \@institute}
\vspace*{-5em}
}
}
\def\maketitle{\AB@maketitle} % prevent shifing content block to middle of page
\makeatother
%Define my block style
\defineblockstyle{MyBlock}{% define a custom style for a block
titlewidthscale=1.0, bodywidthscale=1, titleleft,
titleoffsetx=0pt, titleoffsety=0pt, bodyoffsetx=0pt, bodyoffsety=26mm,
bodyverticalshift=16mm, roundedcorners=22, linewidth=5pt,
titleinnersep=7mm, bodyinnersep=8mm
}{
\draw[rounded corners=\blockroundedcorners, inner sep=\blockbodyinnersep,
line width=\blocklinewidth, color=blocktitlefgcolor,
top color=titlebgcolor, bottom color=titlebgcolor,
fill=blockbodybgcolor
]
(blockbody.south west) rectangle (blockbody.north east); %
%\ifBlockHasTitle%
% \draw[rounded corners=\blockroundedcorners, inner sep=\blocktitleinnersep,
% top color=titlebgcolor!90, bottom color=titlebgcolor!20!white,
% line width=\blocklinewidth, color=black, %fill=blocktitlebgcolor
% ]
% (blocktitle.south west) rectangle (blocktitle.north east); %
%\fi
}
\newcommand\myblock[3][MyBlock]{\useblockstyle{#1}\block{#2}{#3}\useblockstyle{Basic}}
% Theme details
\usetheme{Default} % See Section 5
\usebackgroundstyle{Empty}
\usetitlestyle[width=0.98\textwidth]{Default}
\useblockstyle{MyBlock}
\definecolor{oxfordblue}{rgb}{0.0, 0.13, 0.28}
\definecolorstyle{sampleColorStyle}
{
\definecolor{colorOne}{named}{blue}
\definecolor{colorTwo}{named}{yellow}
\definecolor{colorThree}{named}{orange}
}{
% Background Colors
\colorlet{backgroundcolor}{white}
\colorlet{framecolor}{white}
% Title Colors
\colorlet{titlefgcolor}{oxfordblue}
\colorlet{titlebgcolor}{white} % white
% Block Colors
\colorlet{blocktitlebgcolor}{white} %oxfordblue
\colorlet{blocktitlefgcolor}{oxfordblue}
\colorlet{blockbodybgcolor}{oxfordblue} % white
\colorlet{blockbodyfgcolor}{black}
% Innerblock Colors
\colorlet{innerblocktitlebgcolor}{white}
\colorlet{innerblocktitlefgcolor}{black}
\colorlet{innerblockbodybgcolor}{colorThree!30!white}
\colorlet{innerblockbodyfgcolor}{black}
% Note colors
\colorlet{notefgcolor}{black}
\colorlet{notebgcolor}{colorTwo!50!white}
\colorlet{noteframecolor}{colorTwo}
}
\usecolorstyle[]{sampleColorStyle}
%\definecolor{MyYellow}{RGB}{175 141 38}
\usepackage{mdframed}
\newmdenv[topline=false,
leftline=false,
bottomline=false,
linewidth=1.5mm,
linecolor=oxfordblue,
skipabove=-20em,
innertopmargin=0em]{leftbot}
\usepackage{tcolorbox}
\tcbset{arc=20pt,
leftright skip=-0.92em,
after skip=-0.92em,
boxrule=1.6mm}
%Title text and graphics
\title{\parbox{\linewidth}{\centering Modelling Convection, Phase Change and Salt Fluxes from Mushy Sea Ice}} %with Adaptive Mesh Refinement
\titlegraphic{ \includegraphics[height=4cm]{figures/AGU2018.eps} %TODO: update QR code
\includegraphics[height=4cm]{figures/Oxford.eps}
\includegraphics[height=4cm]{figures/Berkeley_Lab_Logo_Small.eps}
\hfill
\includegraphics[height=4cm]{figures/nerc-logo.eps}
\includegraphics[height=4cm]{figures/roysoclogo.jpg}
}
%For now title graphic:
%\titlegraphic{}
% Authors
\author[1]{James Parkinson (james.parkinson@physics.ox.ac.uk)}
\author[1]{Andrew Wells}
\author[2]{Dan Martin}
\author[1]{Richard Katz}
\affil[1]{University of Oxford}
\affil[2]{Lawrence Berkeley National Laboratory}
\tikzposterlatexaffectionproofoff % get rid of watermark in bottom right corner
\tikzset{->-/.style={decoration={
markings,
mark=at position .5 with {\arrow[scale=2]{latex}}},postaction={decorate}}}
\begin{document}
\maketitle
\begin{columns}
\column{0.21}
\block{Introduction}{
\begin{itemize}[leftmargin=0.4cm]
%\item 22 million square kilometres of sea ice form every year \cite{fetterer-02}
\item Sea ice is a mushy layer of ice crystals and brine.
\item Dense brine drains during ice formation (Fig. 1), affecting ocean circulation. \\
\textbf{Our goal: constrain brine fluxes} using numerical simulations.
%\item We use a \textbf{low concentration ratio}, \\ $\ConcRatio \approx S_\text{ocean}/(S_\text{eutectic} - S_\text{ocean}) \ll 1$, \\ as is appropriate for sea ice.
\end{itemize}
\vspace{-0.0cm}
\begin{tikzfigure}
%[Mushy layer grown in a lab, $\sim$10cm deep. \\ (Schulze \& Worster, 1998) %\cite{Schulze1998}]
\label{fig:lab-mushy-layer}
%\includegraphics[width=\linewidth]{../Images/SchulzeWorsterMushyLayer.png} \vspace{-2em}
\begin{tikzpicture}
\node[anchor=north west] (fig1) at (0,0) {\includegraphics[width=10.5em, trim={0.0cm, 8.0cm, 0.0cm, 0.0cm}, clip]{figures/MiddletonEtAlBrineChannels.png} }; %0.47 \linewidth
%\node[anchor=north west] (fig2) at (fig1.north east) {\includegraphics[width=0.55\linewidth, trim={0.0cm, 0cm, 0cm, 0cm}, clip]{figures/Wettlaufer1997BrineChannel.png} };
%\draw[red, line width = 2mm, ->] ([xshift=0cm, yshift=-2.0cm]fig2.north) -- ([xshift=-3.2cm, yshift=-3.2cm]fig2.north);
%\draw[red, line width = 2mm, ->] ([xshift=4.0cm, yshift=-7.0cm]fig2.north) -- ([xshift=1.5cm, yshift=2.1cm]fig2.south);
\node[anchor=north west] (fig2) at (fig1.north east) {\includegraphics[angle=90,origin=c, width=10em, trim={0.0cm, 0.0cm, 8.0cm, 0cm}, clip]{figures/Wettlaufer1997BrineChannel.png} }; %0.455\linewidth
% Bottom left arrow
\draw[red, line width = 2mm, ->] ([xshift=-1.0cm, yshift=-4.0cm]fig2.north) -- ([xshift=3.1cm, yshift=-1.1cm]fig2.west);
% Top right arrow
\draw[red, line width = 2mm, ->] ([xshift=-3.0cm, yshift=0.0cm]fig2.east) -- ([xshift=-1.95cm, yshift=2.6cm]fig2.east);
\node[anchor=north west,fill=white!100,outer sep=0cm] at (fig1.north west) {(a)};
\node[anchor=north west,fill=white!100,outer sep=0cm] at (fig2.north west) {(b)};
\end{tikzpicture}
\end{tikzfigure}
\figureTitle{Fig. 1:} \figureCaption{Solidification of salt water viewed from (a) side; Middleton et. al. (2016) and (b) below; Wettlaufer et. al. (1997). Arrows indicate where salty plumes leave the ice. }
}
\block{What is a mushy layer?}
{
\vspace{-0cm}
\begin{tikzfigure}
\label{fig:phaseDiagram}
\begin{tikzpicture}
\node[anchor=north west] (fig2) at (0,0) {\includegraphics[width=0.4\linewidth, trim={0.0cm, 0.0cm, 0.0cm, 0.0cm}, clip]{figures/Eicken2000Edited.jpg} };
\node[anchor=north west] (phaseDiagram) at ([xshift=1.0cm]fig2.north east) {\includegraphics[width=0.47\linewidth, trim={0.0cm, 0.0cm, 0.0cm, 0.0cm}, clip]{figures/phaseDiagramVFinal.eps} };
\node[anchor=north west] (fig2label) at (fig2.north west) {(a)};
\node[anchor=north west] (fig1label) at ([yshift=0.0cm]phaseDiagram.north west) {(b)};
\end{tikzpicture}
\end{tikzfigure}
\figureTitle{Fig. 2:} \figureCaption{(a) Sea ice is a porous mixture of solid ice crystals (white) and liquid brine (dark) \cite{Eicken2000}. (b) Trajectory ($\textcolor{red}{\rightarrow}$) of a solidifying salt water parcel through the phase diagram. As the temperature $T_l$ decreases, more ice forms and the residual brine salinity $S_l$ increases making the fluid denser, which can drive convection. Below the eutectic ($T_e, S_e$) = (-21.1$^\circ$, 233) the system is entirely solid.} %making the fluid denser which can lead to convection
%the resulting dense fluid can drive convection
%Eicken et. al. (2000).
}
\block{Numerical Method}
{
\vspace{0.5em}
Solve (1)-(4) using Chombo finite volume toolkit:
\begin{itemize}
\item Momentum and mass: projection method \cite{Martin2008}.
\item Energy and solute:
% \hspace{-\baselineskip}
% \begin{minipage}[t]{8cm}
% \textit{Advective terms:} \\
% explicit, 2\textsuperscript{nd} order unsplit Godunov.
% \end{minipage} \hfill \vrule{} \hfill
% \begin{minipage}[t]{12cm}
% \textit{Nonlinear diffusive terms: } \\
% semi implicit, geometric multigrid.
% \end{minipage}
% \item Timestepping: Backward Euler.
%\nohyphens{
{
\raggedright % left align - prevent splitting words over multiple lines as we have space
\begin{itemize}
\item Advective terms: explicit, 2\textsuperscript{nd} order unsplit Godunov method. %\cite{Colella1990},
\item Nonlinear diffusive terms: semi implicit, geometric multigrid. %\cite{Martin1996}
\item Timestepping: Backward Euler. %\cite{Twizell1996}
\end{itemize}
}
% }
\end{itemize}
\vspace{-1ex}
}
\block[bodyoffsety=0mm, bodyverticalshift=0mm]{}{ %Need to specify some options to get rid of the title space
This work was funded by NERC and a travel grant from the Royal Society.
{
\fontsize{16}{15}\selectfont
\renewcommand\refname{\vskip -2.5cm}
%\bibliography{bibliography}
\renewcommand*{\bibfont}{\scriptsize}
\printbibliography
}
\vspace{-0.75cm}
}
%\column{0.55}
%\column{0.42}
\column{0.79}
%\block{Scaling laws for confined convection}{
\block{}{
\begin{tcolorbox}[width=0.49\linewidth, nobeforeafter, box align=top, bottomrule=0pt,toprule=0pt, leftrule=0.0pt, sharp corners=east, colframe=oxfordblue, colback=white, left skip=0.75pt, before skip=-2.4em, top=0.4em, left=0.0em, standard jigsaw, opacityback=0, extrude left by=0.9em, arc=6mm]
\begin{tcolorbox}[boxsep=5mm, width=1.016\linewidth, sharp corners=uphill,
colback=red!5,
colframe=red!60!black, before skip=-2.5em, after skip=0.5em, left skip=-1.055em, boxrule=1.5mm, extrude top by=0.7em, arc=6mm]
%\LARGE \textbf{Conclusions:}
\vspace{-1.0em}
\begin{minipage}[c]{9cm}
\vspace{-1.5em}
\LARGE \textbf{Summary:}
\end{minipage}\hfill
\begin{minipage}[c]{\linewidth - 9cm}
\large
\begin{itemize}
\item \textbf{During transient growth, channel spacing increases over time.}
\item \textbf{Scaling predictions for steady state growth are consistent with experimental observations}
\end{itemize}
\end{minipage}
\vspace{-0.5em}
\end{tcolorbox}
{\LARGE \textcolor{oxfordblue}{\textbf{Simulated transient growth}}}
Water of initial salinity $S_0=35\,\mathrm{g\,kg}^{-1}$ and temperature $-2^\circ$C is frozen from above in a Hele-Shaw cell (plate separation $d=1$mm). We assume $K_0=10^{-9}\,\mathrm{m}^2$, and vary the atmospheric temperature $T_a$.
%\vspace{-4.5em}
\vspace{0.2em}
\textcolor{dividingLines}{\hrule}
%\vspace{-0.2em}
%\textcolor{dividingLines}{\rule{\linewidth}{0.2pt}}
%\vspace{-1em}
%\vspace{0.5em}
\hspace{-0.6cm}\begin{minipage}[t]{27.8cm}
\begin{tikzfigure}
\begin{tikzpicture}
\node[anchor=north west, inner sep=0pt, outer sep=0pt] (timeseries) at (0,0) {\includegraphics[width=28cm, trim={0.5cm, 0.5cm, 0.5cm, 0.5cm}, clip]{figures/timeSeries-t.png} };
\node[anchor=north west, inner sep=0pt, outer sep=0pt] (timeseries) at ([xshift=0cm,yshift=-0.3cm]timeseries.south west)
{\figureTitle{Fig. 4:}\figureCaption{Ice grown from a fixed boundary. https://goo.gl/4n9STV}};
\end{tikzpicture}
\end{tikzfigure}
\end{minipage} \hfill \textcolor{dividingLines}{\vline} \hfill
\begin{minipage}[t]{15.0cm}
\begin{tikzfigure}
\begin{tikzpicture}
\node[anchor=north west, inner sep=0pt, outer sep=0pt] (BCs) at (0,0) {\includegraphics[height=12cm, trim={0.0cm, 0, 15.5cm, 0}, clip]{figures/EGUBCs.png} };
\node[anchor=north west, inner sep=0pt, outer sep=0pt] (BCs) at (BCs.north east) {\includegraphics[height=12cm, trim={23.4cm, 0, 1.0cm, 0}, clip]{figures/EGUBCs.png} };
%\node[anchor=south west, inner sep=0pt, outer sep=0pt] (aLabel) at ([xshift=-0.5cm, yshift=-0.8cm]BCs.north west) {(a)};
%\node[anchor=south west, inner sep=0pt, outer sep=0pt] (bLabel) at ([xshift=0.5cm, yshift=-0.8cm]BCs.north) {(b)};
\end{tikzpicture}
\end{tikzfigure}
\vspace{-0.3\baselineskip}
\figureTitle{Fig. 3 ($\uparrow$).}\figureCaption{Domain and colorbars for transient simulations ($\leftarrow$).}
%(b) Solution for $T_a=-15^\circ$C, before the onset of convection.
\vspace{0.3em}
\textcolor{dividingLines}{\hrule}
\vspace{-0.3em}
\begin{tikzfigure}
\begin{tikzpicture}
\node[anchor=north west, inner sep=0pt, outer sep=0pt] (BCs) at (0,0) {\includegraphics[width=15.2cm, trim={0.0cm, 0, 0.0cm, 0}, clip]{figures/transientDiagnosticsExtended.pdf} };
\end{tikzpicture}
\end{tikzfigure}
\figureTitle{Fig. 5 ($\uparrow$).}\figureCaption{(a) Total salt rejected from ice. (b) Ice depth increases roughly $\propto \sqrt{t}$. (c) Average solid fraction $\bar{\phi}$ increases following the onset of convection. (d) Average channel spacing $\bar{L}$ increases over time. }
\end{minipage}
\iffalse
\begin{tcolorbox}[boxsep=5mm, width=1.016\linewidth, sharp corners=downhill,
colback=red!5,
colframe=red!60!black, before skip=0.5em, after skip=-2em, left skip=-1.055em, boxrule=1.5mm, extrude bottom by=1.25em, arc=6mm]
%\LARGE \textbf{Conclusions:}
\begin{minipage}[c]{9cm}
\vspace{-0.5em}
\LARGE \textbf{Summary:}
\end{minipage}\hfill
\begin{minipage}[c]{\linewidth - 9cm}
\large
\begin{itemize}
\item \textbf{During transient growth, channel spacing increases over time.}
\item \textbf{Scaling predictions for steady state growth are consistent with experimental observations}
\end{itemize}
\end{minipage}
\vspace{-1.8em}
\end{tcolorbox}
\fi
\end{tcolorbox} \hfill
\begin{tcolorbox}[width=0.49\linewidth, nobeforeafter, box align=top, boxrule=0mm, colback=white, colframe=white, right skip=0.75pt, top=0.4em, left=-1.0em, standard jigsaw, opacityback=0]
{\LARGE \textcolor{oxfordblue}{\textbf{Steady state solutions}} }
\begin{minipage}[t]{0.54\linewidth}
%\vspace{10pt}
For ice grown at a constant rate $V$ from water of initial salinity $S_0$ we investigate the sensitivity to the Rayleigh number $Rm$ and concentration ratio $\mathcal{C}$,
\begin{align}
\textcolor{dukeblue}{ \mathcal{C} = \frac{S_0}{S_e - S_0}.} \nonumber
\end{align}
In fig. 6 (right $\rightarrow$), we plot the porosity $\chi$, streamlines (white) and salinity contours (red) for steady state solutions, where the domain width is chosen to maximise the solute flux. \highlightText{Decreasing $\mathcal{C}$ reduces the porosity, confining convection to a narrow porous layer at the mush-liquid interface.} \\
Below, we construct a scaling argument for $\mathcal{C} \ll 1$, then compare to numerical simulations (fig. 7) and experimental results (fig. 8).
\end{minipage} \hfill
\begin{minipage}[t]{0.49\linewidth}
\vspace{-3em}
\begin{tikzfigure}
\begin{tikzpicture}
%\node[anchor=north west, inner sep=0pt, outer sep=0pt] (timeseries) at (0,0) {\includegraphics[width=30cm, trim={0.0cm, 0.5cm, 0.5cm, 0.5cm}, clip]{figures/timeSeries-t.png} };
%\node[anchor=south, inner sep=0pt, outer sep=0pt] (timeseries) at ([xshift=2cm,yshift=-1.2cm]timeseries.south)
%{Go to https://goo.gl/4n9STV or scan QR code for movie};
\node[anchor=north west, inner sep=0pt, outer sep=0pt] (timeseries) at (0,0) {\includegraphics[width=0.95\linewidth, trim={0.0cm, 0.0cm, 0.2cm, 0.0cm}, clip]{figures/CRRaExampleSolutions.pdf} };
\end{tikzpicture}
\end{tikzfigure}
\end{minipage}
\begin{tikzfigure}
\begin{tikzpicture}
\node[anchor=north west, inner sep=0pt, outer sep=0pt] (BCs) at (0,0) {\includegraphics[width=\linewidth, trim={0.0cm, 0, 0, 0}, clip]{figures/scalingArgumentAnnotated.pdf} };
%\node[anchor=south west, inner sep=0pt, outer sep=0pt] (aLabel) at ([xshift=-0.5cm, yshift=-0.8cm]BCs.north west) {(a)};
%\node[anchor=south west, inner sep=0pt, outer sep=0pt] (bLabel) at ([xshift=0.5cm, yshift=-0.8cm]BCs.north) {(b)};
\end{tikzpicture}
\end{tikzfigure}
\vspace{-2em}
%% Validation of scaling laws
\begin{minipage}[t]{0.42\linewidth}
\begin{tikzfigure}
\label{fig:fluxScaling}
\begin{tikzpicture}
\node[anchor=north west] (fig1) at (0,0) {\includegraphics[height=11cm, trim={0.0cm, 0.0cm, 0.0cm, 0.0cm}, clip]{figures/fluxScalingPoster.eps} };
\end{tikzpicture}
\end{tikzfigure}
%Fig. x: Numerically calculated porosity (color scale and black contours), liquid salinity (magenta), and streamlines (gray, clockwise) for ice grown from 30 g/kg salt water with $\RmS=400$.
\figureTitle{Fig. 7:}\figureCaption{Numerically calculated \highlightText{salt flux increases nearly linearly with $(\Rm - \Rm_{crit})^{3/4}$} when $\mathcal{C} \ll 1$, where $\Rm_{crit}$ is the critical Rayleigh number for convection.}
\end{minipage} \hfill
\begin{minipage}[t]{0.55\linewidth}
\begin{tikzfigure}
\label{fig:WWH}
\begin{tikzpicture}
\node[anchor=north west] (fig1) at (0,0) {\includegraphics[height=11cm, trim={0.0cm, 0.0cm, 0.0cm, 0.0cm}, clip]{{figures/WWHPosterCollapse-LiquidusSlope-0.1}.pdf} };
\end{tikzpicture}
\end{tikzfigure}
\figureTitle{Fig. 8:}\figureCaption{(a) Change in salinity of the underlying liquid during transient growth measured by \cite{wettlaufer-et-al-97}. (b) Collapse of the data predicted by $F\sim \mathcal{C} Rm^{3/4}$, where $t_c$ is the time when convection starts and $\gamma = l \; \kappa_l^{-3/8} \left(g K_0/\nu \right)^{-3/4}$.}
\end{minipage}
\end{tcolorbox}
\vspace{-0.9em}} % end big main block
\begin{subcolumns}
\subcolumn{0.77}
\block{Governing Equations for Flow in Porous Mushy Sea Ice}
{
%Continuous equations for conservation of momentum, mass, energy, and salt are found by averaging over lengths greater than the pore scale of sea ice \cite{Worster1991} and nondimensionalised. For flow in a narrow Hele-Shaw cell, the momentum equation is well approximated by Darcy's law everywhere. \\
Solve for flow and solidification in reactive porous media \cite{Worster1991} with Darcy's law applied in a narrow Hele-Shaw cell with variable ice porosity. \\
Scales: length $\sim l$, time $\sim l^2/\kappa_l$, velocity $\sim \kappa_l/l$, temperature $\Delta T \sim T_e-T_0$, salinity $\Delta S \sim S_e-S_0$, permeability $\sim K_0$, pressure $\sim \eta \kappa_l / K_0$.
\begin{minipage}[t]{0.55\linewidth}
\vspace{-0.1em}
\begin{minipage}[t]{6cm}
\eqnLabel{Momentum}
\end{minipage}
\begin{minipage}[t]{0.4\linewidth}
\vspace{-1.5em}
\begin{align}
\mathbf{U} = Rm \Pi \left(-\nabla p - S_l \right), \nonumber
\end{align}
\end{minipage} \hfill \\
\begin{minipage}[t]{6cm}
\vspace{0.25em}
\eqnLabel{Energy}
\end{minipage}
\begin{minipage}[t]{0.4\linewidth}
\vspace{-0.5em}
\begin{align}
\frac{D H}{Dt} + \mathbf{U} \cdot \nabla T = \nabla \cdot \left[\chi + (1-\chi) k \right] \nabla T , \nonumber \label{eq:energy-cons}
\end{align}
\end{minipage} \hfill \\
\begin{minipage}[t]{6cm}
\vspace{1em}
\eqnLabel{Mass, salt}
\end{minipage}
%\hfill
\begin{minipage}[t]{0.48\linewidth}
\vspace{-0.0em}
\begin{align}
\nabla \cdot \mathbf{U} = 0, \hspace{10ex} \frac{D S}{Dt} + \mathbf{U} \cdot \nabla S = \Le^{-1} \nabla \cdot \chi \nabla S. \nonumber
\end{align}
\end{minipage} \hfill \\
%\vspace{0.3em}
%\textcolor{dividingLines}{\hrule}
%\vspace{0.3em}
\begin{minipage}[t]{6cm}
\vspace{1.2em}
\eqnLabel{Parameters}
\end{minipage}
%\hspace{-5em}
\begin{minipage}[t]{0.78\linewidth}
\vspace{0.2em}
\begin{align}
\textcolor{dukeblue}{ Rm = \frac{ \, \rho_0 \, g \, \beta \, \Delta S \, K_0 \,l}{\kappa_l \, \eta}}, \;\; Le = \frac{\kappa_l}{D_l}, \; \;St = \frac{L}{c_{p,l} \Delta T}, \; \; c_p = \frac{c_{p,s}}{c_{p,l}}, \; \; k = \frac{k_{s}}{k_{l}}. \nonumber
\end{align}
\end{minipage}
\iffalse
\begin{minipage}{\linewidth}
\begin{minipage}[t]{0.2\linewidth}
Length: $\sim l$. \\
Time: $ \sim l^2/ \kappa_l$.
\end{minipage}
\begin{minipage}[t]{0.35\linewidth}
Permeability: $\sim K_0$. \\
Pressure: $ \sim (\rho_0 K_0 / \eta^2)$.
\end{minipage}
\begin{minipage}[t]{0.45\linewidth}
%Temperature, salinity: $(T,S)_\text{eutectic} - (T,S)_0$. \\
Temperature: $\Delta T = \sim T_e - T_0$. \\
Salinity: $\Delta S \sim S_e - S_0$.
\end{minipage}
\end{minipage}
\begin{minipage}{0.9\linewidth} % 0.9 here forces minipage to the left
\begin{align}
& \mathbf{U} = Rm \Pi \left(-\nabla p - S_l \right), \quad \frac{D H}{Dt} + \mathbf{U} \cdot \nabla T = \nabla \cdot \left[\chi + (1-\chi) k \right] \nabla T , \nonumber \\
& \nabla \cdot \mathbf{U} = 0, \hspace{15ex} \frac{D S}{Dt} + \mathbf{U} \cdot \nabla S = \Le^{-1} \nabla \cdot \chi \nabla S. \nonumber \\
& Rm = \frac{\beta \, \rho_0 \, g \, \Delta S \, K_0 \,l}{\kappa_l \, \eta}, \;\; Le = \frac{\kappa_l}{D_l}, \; \;St = \frac{L}{c_{p,l} \Delta T}, \; \; c_p = \frac{c_{p,s}}{c_{p,l}}, \; \; k = \frac{k_{s}}{k_{l}}. \nonumber
\end{align}
\end{minipage}
\fi
\end{minipage} \hfill
\begin{minipage}[t]{0.4\linewidth}
\vspace{-1.2\baselineskip}
\begin{align*}
&\varColor{\mathbf{U}}\; \varLabel{(Darcy velocity)}, \quad \varColor{\chi} \; \varLabel{(porosity)}, \quad \varColor{p} \; \varLabel{(pressure)}, \quad \varColor{T} \; \varLabel{(temperature)},\\
&\varColor{S_l} \; \varLabel{(liquid salinity)}, \quad \varColor{S = \chi S_l} \; \varLabel{(bulk salinity)}, \\
&\eqnColor{H = St \chi + \left[\chi + (1-\chi) c_p \right] T} \; \varLabel{(enthalpy)}, \\
%&\eqnColor{H = \rho_0 \left\{ L \chi + \left[\chi c_{p,l} + (1-\chi) c_{p,s}\right] T \right\}} \; \varLabel{(enthalpy)}, \\
&\eqnColor{\Pi(\chi)^{-1} = \Pi_\text{Hele-Shaw}^{-1} + \chi^{-3}} \; \varLabel{(permeability)}, \\
&\paramColor{\eta} \; \varLabel{(viscosity)}; \paramColor{D_l} \; \varLabel{(salt diffusivity)};\paramColor{\beta} \; \varLabel{(haline expansion)}; \\
&\paramColor{c_{p,l}}, \paramColor{c_{p,s}} \; \varLabel{(liquid/solid specific heat)}; \paramColor{k_l}, \paramColor{k_s} \; \varLabel{(liquid/solid heat conductivity)}; \\
&\paramColor{d} \; \varLabel{(Hele-Shaw cell thickness)}; \paramColor{K_0} \; \varLabel{(reference permeability)}; \\
&\paramColor{l} \; \varLabel{(box height)}; \; \paramColor{\kappa_l} \; \varLabel{(liquid heat diffusivity)}; \; \paramColor{\rho_0} \; \varLabel{(reference density)}.
\end{align*}
\vspace{-1.9em}
\end{minipage}
%\begin{minipage}[t][][b]{0.48\linewidth}
%\begin{align*}
%&\mathbf{U}\; \text{(Darcy velocity)}, \quad \chi \; \text{(porosity)}, \quad \Pi \; \text{(permeability)}, \quad p \; \text{(pressure)}, \\
%&H = \chi S_t + T \; \text{(enthalpy)},\quad T \; \text{(temperature)}, \quad S \; \text{(salt concentration)}, \\
%&Ra - \text{Rayleigh number, determining the importance of buoyancy}, \\
%&Da - \text{Darcy number, determining the importance of viscosity}, \\
%&Le - \text{Lewis number, ratio of heat diffusion to salt diffusion}, \\
%&S_t - \text{Stefan number, quantifies energy release during freezing}.
%\end{align*}
%\end{minipage}
% \iffalse
% Continuous equations for conservation of momentum~\eqref{eq:mom-cons}, mass~\eqref{eq:mass-cons}, salt~\eqref{eq:energy-cons} and energy~\eqref{eq:salt-cons} are found by averaging over lengths greater than the pore scale of sea ice \cite{Worster1991,LeBars2006}. \\
% \begin{minipage}[t]{0.49\linewidth}
% \begin{align}
% \rho_0 \frac{\partial \mathbf{U}}{\partial \tau} + \rho_0 \mathbf{U} \cdot \nabla \left( \frac{\mathbf{U}}{\chi} \right) &= - \chi \nabla p + \eta \nabla^2 \mathbf{U} + \chi \rho_l \mathbf{g} - \frac{\eta \chi}{K(\chi)} \mathbf{U}, \\
% \nabla \cdot \mathbf{U} &= 0, \label{eq:mass-cons} \\
% \frac{\partial S}{\partial t} + \mathbf{U} \cdot \nabla S_l &= \nabla \cdot \chi D_l \nabla S_l, \label{eq:salt-cons} \\
% \frac{\partial H}{\partial t} + \rho_0 \, c_{p,l} \, \mathbf{U} \cdot \nabla T &= \nabla \cdot \left[ k_l \chi + (1-\chi) k_s \right] \nabla T . \label{eq:energy-cons}
% \end{align}
% \end{minipage}
% \hfill
% \begin{minipage}[t][][b]{0.48\linewidth}
% \vspace{-1.75\baselineskip}
% \begin{align*}
% &\varColor{\mathbf{U}}\; \text{(Darcy velocity)}, \quad \varColor{\chi} \; \text{(porosity)}, \quad \varColor{p} \; \text{(pressure)}, \quad \varColor{T} \; \text{(temperature)},\\
% &\varColor{S_l} \; \text{(liquid salinity)}, \quad \varColor{S = \chi S_l} \; \text{(bulk salinity)}, \\
% &\eqnColor{H = \rho_0 \left\{ L \chi + \left[\chi c_{p,l} + (1-\chi) c_{p,s}\right] T \right\}} \; \text{(enthalpy)}, \\
% &\eqnColor{\rho_l = \rho_0 \left[1 - \alpha T + \beta S_l \right]} \; \text{(liquid density)}, \\
% &\eqnColor{K(\chi)^{-1} = \left(d^2/12\right)^{-1} + \left[K_0 \chi^3 / (1-\chi)^2 \right]^{-1}} \; \text{(permeability)}, \\
% &\paramColor{\eta} \; \text{(viscosity)}; \paramColor{D_l} \; \text{(salt diffusivity)}; \paramColor{\alpha}, \paramColor{\beta} \; \text{(thermal/haline expansion)}; \\
% &\paramColor{c_{p,l}}, \paramColor{c_{p,s}} \; \text{(liquid/solid specific heat)}; \paramColor{k_l}, \paramColor{k_s} \; \text{(liquid/solid heat conductivity)}; \\
% &\paramColor{d} \; \text{(Hele-Shaw cell thickness)}; \paramColor{K_0} \; \text{(Reference permeability)}.
% \end{align*}
% \end{minipage}
% \fi
}
\subcolumn{0.23}
\block{Future Work}
{
\begin{itemize}
\item Consider growth over longer time periods (days to weeks), with time varying atmospheric forcing.
\item Simulations with the liquid region governed by the Navier-Stokes equation, rather than flow in a Hele-Shaw cell.
\item Three dimensional simulations, utilising the Adaptive Mesh Refinement capabilities of our code.
%\item Investigation of salt fluxes from warming sea ice in the spring/summer.
%\item Investigate salt fluxes over longer time periods, and with time dependent atmospheric forcing.
%\item Simulations with a liquid region governed by eq (1), rather than flow in a Hele-Shaw cell.
%\item Simulations in three dimensions, including Adaptive Mesh Refinement.
\end{itemize}
}
\end{subcolumns}
\end{columns}
\end{document}