Skip to content

Commit 0c9368a

Browse files
fixing a manual note
1 parent 043f02d commit 0c9368a

9 files changed

+46
-46
lines changed

R/RcppExports.R

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -355,19 +355,19 @@ optimPibbleCollapsed <- function(Y, upsilon, ThetaX, KInv, AInv, init, n_samples
355355
#'
356356
#' @details Notation: Let Z_j denote the J-th row of a matrix Z.
357357
#' While the collapsed model is given by:
358-
#' \deqn{Y_j ~ Multinomial(Pi_j)}
358+
#' \deqn{Y_j sim Multinomial(Pi_j)}
359359
#' \deqn{Pi_j = Phi^{-1}(Eta_j)}
360-
#' \deqn{Eta ~ T_{D-1, N}(upsilon, Theta*X, K, A)}
360+
#' \deqn{Eta \sim T_{D-1, N}(upsilon, Theta*X, K, A)}
361361
#' Where A = I_N + X * Gamma * X', K = Xi is a (D-1)x(D-1) covariance
362-
#' matrix, Gamma is a Q x Q covariance matrix, and Phi^{-1} is ALRInv_D
362+
#' matrix, Gamma is a Q x Q covariance matrix, and \eqn{Phi^{-1}} is ALRInv_D
363363
#' transform.
364364
#'
365365
#' The uncollapsed model (Full pibble model) is given by:
366-
#' \deqn{Y_j ~ Multinomial(Pi_j)}
366+
#' \deqn{Y_j \sim Multinomial(Pi_j)}
367367
#' \deqn{Pi_j = Phi^{-1}(Eta_j)}
368-
#' \deqn{Eta ~ MN_{D-1 x N}(Lambda*X, Sigma, I_N)}
369-
#' \deqn{Lambda ~ MN_{D-1 x Q}(Theta, Sigma, Gamma)}
370-
#' \deqn{Sigma ~ InvWish(upsilon, Xi)}
368+
#' \deqn{Eta \sim MN_{D-1 x N}(Lambda*X, Sigma, I_N)}
369+
#' \deqn{Lambda \sim MN_{D-1 x Q}(Theta, Sigma, Gamma)}
370+
#' \deqn{Sigma \sim InvWish(upsilon, Xi)}
371371
#' This function provides a means of sampling from the posterior distribution of
372372
#' \code{Lambda} and \code{Sigma} given posterior samples of \code{Eta} from
373373
#' the collapsed model.
@@ -449,19 +449,19 @@ rMatUnitNormal_test2 <- function(n) {
449449
#'
450450
#' @details Notation: Let Z_j denote the J-th row of a matrix Z.
451451
#' While the collapsed model is given by:
452-
#' \deqn{Y_j ~ Multinomial(Pi_j)}
452+
#' \deqn{Y_j \sim Multinomial(Pi_j)}
453453
#' \deqn{Pi_j = Phi^{-1}(Eta_j)}
454-
#' \deqn{Eta ~ T_{D-1, N}(upsilon, Theta*X, K, A)}
454+
#' \deqn{Eta \sim T_{D-1, N}(upsilon, Theta*X, K, A)}
455455
#' Where A = I_N + X * Gamma * X', K = Xi is a (D-1)x(D-1) covariance
456-
#' matrix, Gamma is a Q x Q covariance matrix, and Phi^{-1} is ALRInv_D
456+
#' matrix, Gamma is a Q x Q covariance matrix, and \eqn{Phi^{-1}} is ALRInv_D
457457
#' transform.
458458
#'
459459
#' The uncollapsed model (Full pibble model) is given by:
460-
#' \deqn{Y_j ~ Multinomial(Pi_j)}
460+
#' \deqn{Y_j \sim Multinomial(Pi_j)}
461461
#' \deqn{Pi_j = Phi^{-1}(Eta_j)}
462-
#' \deqn{Eta ~ MN_{D-1 x N}(Lambda*X, Sigma, I_N)}
463-
#' \deqn{Lambda ~ MN_{D-1 x Q}(Theta, Sigma, Gamma)}
464-
#' \deqn{Sigma ~ InvWish(upsilon, Xi)}
462+
#' \deqn{Eta \sim MN_{D-1 x N}(Lambda*X, Sigma, I_N)}
463+
#' \deqn{Lambda \sim MN_{D-1 x Q}(Theta, Sigma, Gamma)}
464+
#' \deqn{Sigma \sim InvWish(upsilon, Xi)}
465465
#' This function provides a means of sampling from the posterior distribution of
466466
#' \code{Lambda} and \code{Sigma} given posterior samples of \code{Eta} from
467467
#' the collapsed model.

R/fit_orthus.R

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@
3535
#' \deqn{cbind(Eta, Z) \sim MN_{D-1+P x N}(Lambda*X, Sigma, I_N)}
3636
#' \deqn{Lambda \sim MN_{D-1+P x Q}(Theta, Sigma, Gamma)}
3737
#' \deqn{Sigma \sim InvWish(upsilon, Xi)}
38-
#' Where Gamma is a Q x Q covariance matrix, and Phi^{-1} is
38+
#' Where Gamma is a Q x Q covariance matrix, and \eqn{Phi^{-1}} is
3939
#' ALRInv_D transform.
4040
#' That is, the orthus model models the latent multinomial log-ratios (Eta) and
4141
#' the observations of the second dataset jointly as a linear model. This allows

R/fit_pibble.R

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@
3434
#' \deqn{Eta \sim MN_{D-1 x N}(Lambda*X, Sigma, I_N)}
3535
#' \deqn{Lambda \sim MN_{D-1 x Q}(Theta, Sigma, Gamma)}
3636
#' \deqn{Sigma \sim InvWish(upsilon, Xi)}
37-
#' Where Gamma is a Q x Q covariance matrix, and Phi^{-1} is
37+
#' Where Gamma is a Q x Q covariance matrix, and \eqn{Phi^{-1}} is
3838
#' ALRInv_D transform.
3939
#'
4040
#' Default behavior is to use MAP estimate for uncollaping the LTP

man/orthus_fit.Rd

Lines changed: 1 addition & 1 deletion
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

man/pibble_fit.Rd

Lines changed: 1 addition & 1 deletion
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

man/uncollapsePibble.Rd

Lines changed: 7 additions & 7 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

man/uncollapsePibble_sigmaKnown.Rd

Lines changed: 7 additions & 7 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

src/PibbleCollapsed_Uncollapse.cpp

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -41,19 +41,19 @@ using Eigen::Lower;
4141
//'
4242
//' @details Notation: Let Z_j denote the J-th row of a matrix Z.
4343
//' While the collapsed model is given by:
44-
//' \deqn{Y_j ~ Multinomial(Pi_j)}
44+
//' \deqn{Y_j sim Multinomial(Pi_j)}
4545
//' \deqn{Pi_j = Phi^{-1}(Eta_j)}
46-
//' \deqn{Eta ~ T_{D-1, N}(upsilon, Theta*X, K, A)}
46+
//' \deqn{Eta \sim T_{D-1, N}(upsilon, Theta*X, K, A)}
4747
//' Where A = I_N + X * Gamma * X', K = Xi is a (D-1)x(D-1) covariance
48-
//' matrix, Gamma is a Q x Q covariance matrix, and Phi^{-1} is ALRInv_D
48+
//' matrix, Gamma is a Q x Q covariance matrix, and \eqn{Phi^{-1}} is ALRInv_D
4949
//' transform.
5050
//'
5151
//' The uncollapsed model (Full pibble model) is given by:
52-
//' \deqn{Y_j ~ Multinomial(Pi_j)}
52+
//' \deqn{Y_j \sim Multinomial(Pi_j)}
5353
//' \deqn{Pi_j = Phi^{-1}(Eta_j)}
54-
//' \deqn{Eta ~ MN_{D-1 x N}(Lambda*X, Sigma, I_N)}
55-
//' \deqn{Lambda ~ MN_{D-1 x Q}(Theta, Sigma, Gamma)}
56-
//' \deqn{Sigma ~ InvWish(upsilon, Xi)}
54+
//' \deqn{Eta \sim MN_{D-1 x N}(Lambda*X, Sigma, I_N)}
55+
//' \deqn{Lambda \sim MN_{D-1 x Q}(Theta, Sigma, Gamma)}
56+
//' \deqn{Sigma \sim InvWish(upsilon, Xi)}
5757
//' This function provides a means of sampling from the posterior distribution of
5858
//' \code{Lambda} and \code{Sigma} given posterior samples of \code{Eta} from
5959
//' the collapsed model.

src/PibbleCollapsed_Uncollapse_sigmaKnown.cpp

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -44,19 +44,19 @@ using Eigen::Lower;
4444
//'
4545
//' @details Notation: Let Z_j denote the J-th row of a matrix Z.
4646
//' While the collapsed model is given by:
47-
//' \deqn{Y_j ~ Multinomial(Pi_j)}
47+
//' \deqn{Y_j \sim Multinomial(Pi_j)}
4848
//' \deqn{Pi_j = Phi^{-1}(Eta_j)}
49-
//' \deqn{Eta ~ T_{D-1, N}(upsilon, Theta*X, K, A)}
49+
//' \deqn{Eta \sim T_{D-1, N}(upsilon, Theta*X, K, A)}
5050
//' Where A = I_N + X * Gamma * X', K = Xi is a (D-1)x(D-1) covariance
51-
//' matrix, Gamma is a Q x Q covariance matrix, and Phi^{-1} is ALRInv_D
51+
//' matrix, Gamma is a Q x Q covariance matrix, and \eqn{Phi^{-1}} is ALRInv_D
5252
//' transform.
5353
//'
5454
//' The uncollapsed model (Full pibble model) is given by:
55-
//' \deqn{Y_j ~ Multinomial(Pi_j)}
55+
//' \deqn{Y_j \sim Multinomial(Pi_j)}
5656
//' \deqn{Pi_j = Phi^{-1}(Eta_j)}
57-
//' \deqn{Eta ~ MN_{D-1 x N}(Lambda*X, Sigma, I_N)}
58-
//' \deqn{Lambda ~ MN_{D-1 x Q}(Theta, Sigma, Gamma)}
59-
//' \deqn{Sigma ~ InvWish(upsilon, Xi)}
57+
//' \deqn{Eta \sim MN_{D-1 x N}(Lambda*X, Sigma, I_N)}
58+
//' \deqn{Lambda \sim MN_{D-1 x Q}(Theta, Sigma, Gamma)}
59+
//' \deqn{Sigma \sim InvWish(upsilon, Xi)}
6060
//' This function provides a means of sampling from the posterior distribution of
6161
//' \code{Lambda} and \code{Sigma} given posterior samples of \code{Eta} from
6262
//' the collapsed model.

0 commit comments

Comments
 (0)