-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
93 lines (82 loc) · 3.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import tensorflow as tf
import numpy as np
import os
import matplotlib.pyplot as plt
from training import training_loop, resume_training
from loader import pics_loader,model_loader,recent_models
from models import make_generator_model, make_discriminator_model, define_gan
from telemetry import date, data_csv
now = date()
model_dir = 'models'
single_pics='single'
pics_path = 'data/64x64'
def starting(model_gan,model_disc,model_gen):
#Models folder
pics = pics_loader(pics_path)
print("Generator compile DONE")
generator = make_generator_model()
print("Discriminator compile DONE")
discriminator = make_discriminator_model()
print("Discriminator model compiling in progress...")
print("Combining.. GAN + Discriminator")
gan = define_gan(discriminator,generator)
print("Compiling in progress...")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
print("No models were found")
training_loop(generator, discriminator, gan, model_dir , pics)
else:
resume_training(generator, discriminator, gan, model_dir, pics, model_gan,model_disc,model_gen)
def main():
while True:
print("Welcome to the GAN Menu!")
print("1. Start GAN")
print("2. Stop GAN")
print("3. Resume GAN")
print("4. Load Model")
print("5. Load Weights")
print("6. Generate Picture")
print("0. Exit")
choice = input("Enter your choice: ")
is_model_loaded = False
if choice == '1':
print("Starting GAN...")
if is_model_loaded == True:
model_gan = models_tab[0]
model_disc = models_tab[1]
model_gen = models_tab[2]
starting(model_gan,model_disc,model_gen)
else:
models_tab = model_loader()
model_gan = models_tab[0]
model_disc = models_tab[1]
model_gen = models_tab[2]
is_model_loaded = True
starting(model_gan,model_disc,model_gen)
elif choice == '2':
print("Stopping GAN...")
elif choice == '3':
print("Resuming GAN...")
models_tab = recent_models(model_dir)
model_disc = models_tab[1]
model_gen = models_tab[2]
model_gan = models_tab[3]
print(model_gan,model_disc,model_gen)
starting(model_gan,model_disc,model_gen)
elif choice == '4':
is_model_loaded = True
models_tab = model_loader()
model_gan = models_tab[0]
model_disc = models_tab[1]
model_gen = models_tab[2]
elif choice == '5':
print("Loading Weights...")
elif choice == '6':
print("Generating Picture...")
elif choice == '0':
print("Exiting...")
break
else:
print("Invalid choice. Please try again.")
if __name__ == '__main__':
main()