-
Notifications
You must be signed in to change notification settings - Fork 2
/
models.py
52 lines (42 loc) · 1.86 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
'''
xECG Project Repository (https://github.com/jtrpinto/xECG)
File: model.py
- Contains the Model class that includes the PyTorch implementation
of the convolutional neural network used for biometric identification.
"Explaining ECG Biometrics: Is It All In The QRS?"
João Ribeiro Pinto and Jaime S. Cardoso
19th International Conference of the Biometrics Special Interest Group (BIOSIG 2020)
joao.t.pinto@inesctec.pt | https://jtrpinto.github.io
'''
from torch import nn
from torch.nn import functional as F
class Model(nn.Module):
def __init__(self, N=100, dropout=.0):
super(Model, self).__init__()
fd = 108
self.convnet = nn.Sequential(nn.Conv1d(1, 24, 5, stride=1, padding=0),
nn.ReLU(),
nn.MaxPool1d(5),
nn.Conv1d(24, 24, 5, stride=1, padding=0),
nn.ReLU(),
nn.MaxPool1d(5),
nn.Conv1d(24, 36, 5, stride=1, padding=0),
nn.ReLU(),
nn.MaxPool1d(5),
nn.Conv1d(36, 36, 5, stride=1, padding=0),
nn.ReLU()
)
self.fc = nn.Sequential(nn.Linear(fd, 100),
nn.ReLU(),
nn.Dropout(p=dropout),
nn.Linear(100, N)
)
def forward(self, x):
h = self.convnet(x)
h = h.view(h.size()[0], -1)
output = self.fc(h)
return output
def predict(self, X):
logits = self.forward(X)
probs = F.softmax(logits, dim=1)
return probs