Script of the article entitled: Drivers of contrasting boreal understory vegetation in coniferous and broadleaf deciduous alternative states
Authors of the article: Juanita C. Rodríguez-Rodríguez, Nicole J. Fenton, Steven W. Kembel, Evick Mestre, Mélanie Jean, and Yves Bergeron
Script developed on 2021 by: Juanita C. Rodríguez-Rodríguez (e-mail: juanitacarolina.rodriguezrodriguez@uqat.ca), for my PhD in Environmental Sciences. A part of the script was developed during the statistical cours of Pierre Legendre.
library(dplyr) #For droplevels() library(tidyr) #For spread() library(stats) #For filter(), For PCA: prcomp() library(vegan) #For PCA: decostand(), PCA: rda() library(BiodiversityR) #For ordiequilibriumcircle() in PCA library(ggplot2) #For Figures library(nlme) # (for lme) library(devtools) install_github("sdray/adespatial") library(adespatial) # For beta.div (TBI) library(ade4) # For s.value (Beta div plot) and is.euclid() library(factoextra) # For fviz_pca_biplot library(cowplot) # For ggdraw library(ggpubr) # For ggarrange library(fastDummies) library(ape) # For pcoa() library(emmeans) #For lsmeans() library(ggbeeswarm) #For geom_quasirandom() library(lmerTest) #To include p values in lmer
DB_All <- read.csv2("Understory_veg_JR.csv") DB_All2 <- DB_All
DB_All2$Species <- NULL # Leaving just species Abbreviations (Abbr) DB_All2$Func_gr <- NULL # Not for now
Spp_All <- spread(DB_All2, Abbr, Coverage, fill = DB_All2$Coverage) which(is.na(DB_All2$Coverage)) # I checked it because after spread, I get a Warning message: In if (!is.na(fill)) { : the condition has length > 1 and only the first element will be used head(Spp_All) # Species table with all variables
Env <- select(Spp_All, 1:5) Spp <- select(Spp_All, 6:70)
Env$Year <- as.factor(Env$Year) Env$Block <- as.factor(Env$Block)
Env$Treatment <- factor(Env$Treatment, levels = c("Li","Nu","1F","2F","To","Ti","C"))
Canopy <- split(Spp_All, Spp_All$Canopy) BS <- Canopy$'BS' TA <- Canopy$'TA'
Alpha diversity (Shannon-Weiner index) of understory vegetation in 2018 among treatments in each forest type (Black spruce - BS and Trembling aspen - TA), over time (2013-2018) (n=9). Treatments correspond to light (Li, in yellow), nutrients (Nu, in purple), single amount of leaves (1F, in orange) and double amount of leaves (2F, in red), transplants-out (To, in blue), Transplants-in (Ti, in green) and control conditions (C, in grey).
####Ecosystem approach: "gold","mediumpurple1","tan1","lightcoral","paleturquoise2","chartreuse","azure3" ####Community approach: "goldenrod","darkorchid3","orangered","red3","lightseagreen","forestgreen","azure4"
div.plot2 <- ggplot(Spp, aes(x = Env$Treatment, y = diversity(Spp, index = "shannon"), fill=Env$Treatment)) + geom_boxplot()+ stat_summary(fun = mean, geom="point", pch=21, col = "black", bg = "white", size = 2.8)+ labs(x="Treatments", y = "Alpha diversity (Shannon index)")+ facet_grid(cols=vars(Env$Year), vars(Env$Canopy)) + scale_fill_manual(values=alpha(c("gold","mediumpurple1","tan1","lightcoral","paleturquoise2","chartreuse","azure3")), name = "Treatments") + theme(panel.background = element_rect(fill = "white", colour = "grey50")) + theme(strip.background = element_rect(colour = "black", fill = "white")) div.plot2
Differences in α-diversity (Shannon-Weiner index) based on the ANOVA of the linear mixed effect model of understory species abundance to evaluate the factors of Year, Forest type, Treatment and all interactions, using Sites and Blocks as nested random factors.
set.seed(1989) div.aov5 <- lmer(Div.spp ~ YearCanopyTreatment + (1|Site/Block), data = Env) summary(div.aov5) anova(div.aov5) plot(div.aov5)
div.emmeans <- emmeans(div.aov5, specs = trt.vs.ctrl ~ Treatment|Year*Canopy, type = "response") div.emmeans
div.mod_means <- multcomp::cld(object = div.emmeans$emmeans,
Letters = letters,no.readonly=TRUE)
div.mod_means
Post-hoc emmeans contrasts of the lineral mixed effect model (Table S2) of the α-diversity (Shannon index) of plant understory species in each forest type (Black spruce – BS, Trembling aspen - TA), comparing each treatment to the control. Significant differences correspond to P < 0.0001 ***, <0.001 **, < 0.05 *, denoted in letters for Figure 4.
lsmeans(div.aov2, pairwise~YearCanopyTreatment, adjust="tukey") t.test(diversity(Spp) ~ Env$Canopy)
Env$Treatment <- factor(Env$Treatment, levels=c("C","Li","Nu","1F","2F","To","Ti"))
Spp_Year <- split(Spp_All, Spp_All$Year)
Spp_2018 <- Spp_Year$2018
Spp_18 <- select(Spp_2018, 6:70)
Env_18 <- select(Spp_2018, 1:7)
Spp_18Can <- split(Spp_2018, Spp_2018$Canopy)
Spp_18BS <- Spp_18Can$BS
Spp_18TA <- Spp_18Can$TA
####Separate by Treatment - Objective approach ####BS Spp_18BS_Tbio <- filter(Spp_18BS, Treatment %in% c("C","1F","2F","Li","Nu")) Spp_18BS_Tss <- filter(Spp_18BS, Treatment %in% c("C","Ti","To")) ####TA Spp_18TA_Tbio <- filter(Spp_18TA, Treatment %in% c("C","1F","2F","Li","Nu")) Spp_18TA_Tss <- filter(Spp_18TA, Treatment %in% c("C","Ti","To"))
####Divide into Spp and Env tables ####BS, Tbio BS_Tbio_spp <- select(Spp_18BS_Tbio, 6:70) BS_Tbio_env <- select(Spp_18BS_Tbio, 1:5) ####BS, Tss BS_Tss_spp <- select(Spp_18BS_Tss, 6:70) BS_Tss_env <- select(Spp_18BS_Tss, 1:5) ####TA, Tbio TA_Tbio_spp <- select(Spp_18TA_Tbio, 6:70) TA_Tbio_env <- select(Spp_18TA_Tbio, 1:5) ####BS, Tss TA_Tss_spp <- select(Spp_18TA_Tss, 6:70) TA_Tss_env <- select(Spp_18TA_Tss, 1:5)
Tbio_cols <- c("salmon1","firebrick2","antiquewhite4","gold","mediumorchid") Tss_cols <- c("antiquewhite4","chartreuse3","lightseagreen")
Partitioning of β-diversity into local contributions of single plots (LCBD = Local Contributions to Beta Diversity) for treatments in each forest type (Black spruce and Trembling aspen) of (a, b) the ecosystem approach corresponding to Light (Li, in yellow), Nutrients (Nu, in purple), Single-litter (1F, in orange) and Double-litter (2F, in red), and for (c, d) the community approach corresponding to Transplants-out (To, in blue), Transplants-in (Ti, in green), as well as Control conditions (C, in grey) for both approaches. Treatments in black spruce forests in light colors and in trembling aspen forests in dark colors. Tables below each figure present the total sum-of-squares (SStotal), total β-diversity (BDtotal) and the contributions (decreasing order) of individual species (SCBD = Species Contributions to Beta Diversity), for each forest type in each approach. Data correspond to 2018, n = 9, from the combination of Site (A, B, C) and Blocks (1, 2, 3) in each forest type.
####BS, Tbio = BS_Tbio_spp, BS_Tbio_env res_BS_Tbio <- beta.div(BS_Tbio_spp, method="hellinger", nperm = 999) # Hell transformation of data summary(res_BS_Tbio) res_BS_Tbio$beta res_BS_Tbio$LCBD which(res_BS_Tbio$p.LCBD <= 0.05) # Which are the significant LCBD indices? res_BS_Tbio$SCBD res_BS_Tbio$SCBD[res_BS_Tbio$SCBD >= mean(res_BS_Tbio$SCBD)] res_BS_Tbio$p.adj
LCBD.plot_BST_bio <- ggplot(BS_Tbio_spp, aes(x = BS_Tbio_env$Treatment, y = res_BS_Tbio$LCBD), fill=res_BS_Tbio$LCBD) + geom_boxplot(fill=Tbio_cols) + labs(x="Treatments", y = "LCBD") + facet_grid(cols=vars(BS_Tbio_env$Canopy)) + ylim(0, 0.08) + theme(panel.background = element_rect(fill = "white", colour = "grey50")) + theme(strip.background = element_rect(colour = "black", fill = "white"))
LCBD.plot_BST_bio_aov <- aov(res_BS_Tbio$LCBD ~ BS_Tbio_env$Treatment / BS_Tbio_env$Site*BS_Tbio_env$Block) summary(LCBD.plot_BST_bio_aov)
####data.nest.agg = data.nest %>% group_by(A, Sites) %>% summarize(y = mean(y))
ejemp <- how(nperm = 9999,
blocks = BS_Tbio_env$Site,
plots = Plots(BS_Tbio_env$Block),
Within(type = "free"))
ejemp_ran <- adonis2(res_BS_Tbio$LCBD ~ BS_Tbio_env$Treatment, permutations = ejemp, method = "euc", by = "term") ejemp_ran
####TA, Tbio = TA_Tbio_spp, TA_Tbio_env res_TA_Tbio <- beta.div(TA_Tbio_spp, method="hellinger", nperm = 999) # Hell transformation of data summary(res_TA_Tbio) res_TA_Tbio$beta res_TA_Tbio$LCBD which(res_TA_Tbio$p.LCBD <= 0.05) res_TA_Tbio$SCBD res_TA_Tbio$SCBD[res_TA_Tbio$SCBD >= mean(res_TA_Tbio$SCBD)] res_TA_Tbio$p.adj
LCBD.plot_TAT_bio <- ggplot(TA_Tbio_spp, aes(x = TA_Tbio_env$Treatment, y = res_TA_Tbio$LCBD), fill=res_TA_Tbio$LCBD) + geom_boxplot(fill=Tbio_cols) + labs(x="Treatments", y = "LCBD") + facet_grid(cols=vars(TA_Tbio_env$Canopy)) + ylim(0, 0.08) + theme(panel.background = element_rect(fill = "white", colour = "grey50")) + theme(strip.background = element_rect(colour = "black", fill = "white"))
LCBD.plot_BST_bio_aov <- aov(res_BS_Tbio$LCBD ~ BS_Tbio_env$Treatment / BS_Tbio_env$Site*BS_Tbio_env$Block) summary(LCBD.plot_BST_bio_aov)
ejemp_TA <- how(nperm = 9999,
blocks = TA_Tbio_env$Site,
plots = Plots(TA_Tbio_env$Block),
Within(type = "free"))
ejemp_ran_TA <- adonis2(res_TA_Tbio$LCBD ~ TA_Tbio_env$Treatment, permutations = ejemp, method = "euc", by = "term") ejemp_ran_TA
####BS, Tss = BS_Tss_spp, BS_Tss_env res_BS_Tss <- beta.div(BS_Tss_spp, method="hellinger", nperm = 999) # Hell transformation of data summary(res_BS_Tss) res_BS_Tss$beta res_BS_Tss$LCBD which(res_BS_Tss$p.LCBD <= 0.05) res_BS_Tss$SCBD res_BS_Tss$SCBD[res_BS_Tss$SCBD >= mean(res_BS_Tss$SCBD)] res_BS_Tss$p.adj
LCBD.plot_BST_ss <- ggplot(BS_Tss_spp, aes(x = BS_Tss_env$Treatment, y = res_BS_Tss$LCBD), fill=res_BS_Tss$LCBD) + geom_boxplot(fill=Tss_cols)+ labs(x="Treatments", y = "LCBD") + facet_grid(cols=vars(BS_Tss_env$Canopy)) + ylim(0, 0.08) + theme(panel.background = element_rect(fill = "white", colour = "grey50")) + theme(strip.background = element_rect(colour = "black", fill = "white"))
#TA, Tss = TA_Tss_spp, TA_Tss_env res_TA_Tss <- beta.div(TA_Tss_spp, method="hellinger", nperm = 999) # Hell transformation of data summary(res_TA_Tss) res_TA_Tss$beta res_TA_Tss$LCBD which(res_TA_Tss$p.LCBD <= 0.05) res_TA_Tss$SCBD res_TA_Tss$SCBD[res_TA_Tss$SCBD >= mean(res_TA_Tss$SCBD)] res_TA_Tss$p.adj
LCBD.plot_TAT_ss <- ggplot(TA_Tss_spp, aes(x = TA_Tss_env$Treatment, y = res_TA_Tss$LCBD), fill=res_TA_Tss$LCBD) + geom_boxplot(fill=Tss_cols)+ labs(x="Treatments", y = "LCBD") + facet_grid(cols=vars(TA_Tss_env$Canopy)) + ylim(0, 0.08) + theme(panel.background = element_rect(fill = "white", colour = "grey50")) + theme(strip.background = element_rect(colour = "black", fill = "white"))
(LCBD_Allplots <- ggarrange(LCBD.plot_BST_bio, LCBD.plot_TAT_bio, LCBD.plot_BST_ss, LCBD.plot_TAT_ss + rremove("x.text"), labels = c("a)", "b)", "c)", "d)"), ncol = 2, nrow = 2))
(LCBD_Allplots_Tbio <- ggarrange(LCBD.plot_BST_bio, LCBD.plot_TAT_bio + rremove("x.text"), labels = c("a)", "b)"), ncol = 2, nrow = 2))
(LCBD_Allplots_Tss <- ggarrange(LCBD.plot_BST_ss, LCBD.plot_TAT_ss + rremove("x.text"), labels = c("c)", "d)"), ncol = 2, nrow = 2))
####Note: As adespatial package did not worked, I had to upload the whole script of TBI from Legendre script.
DBTbio <- DB_All
BS.mat <- DBTbio %>% filter(Canopy %in% c("BS")) %>% droplevels()
TA.mat <- DBTbio %>% filter(Canopy %in% c("TA")) %>% droplevels()
Make two matrices, one with 2013 data and the second with 2018 data. I'll get two matrices for each canopy composition.
BS.2013 <- BS.mat %>% filter(Year %in% c("2013")) %>% droplevels()
BS.2018 <- BS.mat %>% filter(Year %in% c("2018")) %>% droplevels()
TA.2013 <- TA.mat %>% filter(Year %in% c("2013")) %>% droplevels()
TA.2018 <- TA.mat %>% filter(Year %in% c("2018")) %>% droplevels()
Mat1.BS <- unite(BS.2013, TP,c("Site","Block","Treatment"), sep = ".", remove = TRUE) Mat1.BS$Year <- NULL Mat1.BS$Canopy <- NULL Mat1.BS$Species <- NULL Mat1.BS$Func_gr <- NULL
Mat2.BS <- unite(BS.2018, TP,c("Site", "Block","Treatment"), sep = ".", remove = TRUE) Mat2.BS$Year <- NULL Mat2.BS$Canopy <- NULL Mat2.BS$Species <- NULL Mat2.BS$Func_gr <- NULL
Mat1.TA <- unite(TA.2013, TP,c("Site", "Block","Treatment"), sep = ".", remove = TRUE) Mat1.TA$Year <- NULL Mat1.TA$Canopy <- NULL Mat1.TA$Species <- NULL Mat1.TA$Func_gr <- NULL
Mat2.TA <- unite(TA.2018, TP,c("Site", "Block","Treatment"), sep = ".", remove = TRUE) Mat2.TA$Year <- NULL Mat2.TA$Canopy <- NULL Mat2.TA$Species <- NULL Mat2.TA$Func_gr <- NULL
Now, I have all matrices (Mat1.BS, Mat2.BS, Mat1.TA, Mat2.TA) that I need for the analysis (filtered by Year, Canopy, with Abbr and with one single column with TP). However, I need a "species table", where the first column is my "sites" <- and the other columns are each Func_gr, filled by the Coverage in each cell.
####BS Mat1.BS.spp <- Mat1.BS %>% pivot_wider(names_from = Abbr, values_from = Coverage) Mat2.BS.spp <- Mat2.BS %>% pivot_wider(names_from = Abbr, values_from = Coverage) ####TA Mat1.TA.spp <- Mat1.TA %>% pivot_wider(names_from = Abbr, values_from = Coverage) Mat2.TA.spp <- Mat2.TA %>% pivot_wider(names_from = Abbr, values_from = Coverage)
I take a new table with the Treatment-plot names, because I need to eliminate it to do the analysis (must be numeric). I do the same for all the tables but they are the same, so I take just one in TP at the end.
TP.BS.Mat1 <- as.matrix(Mat1.BS.spp$TP) TP.BS.Mat2 <- as.matrix(Mat2.BS.spp$TP) TP.TA.Mat1 <- as.matrix(Mat1.TA.spp$TP) TP.TA.Mat2 <- as.matrix(Mat2.TA.spp$TP) (TP <- as.matrix(Mat1.BS.spp$TP))
(TP2 <- Mat1.BS.spp$TP)
Then, I need to add an ID to each row and then eliminate the TP columns of each DB that I'll use in the analysis.
ID <- data.frame("ID" = c(1:63)) #I create an ID with 9 numbers
BS1 <- Mat1.BS.spp BS1$TP <- NULL
BS2 <- Mat2.BS.spp BS2$TP <- NULL
TA1 <- Mat1.TA.spp TA1$TP <- NULL
TA2 <- Mat2.TA.spp TA2$TP <- NULL
BS1 <- as.data.frame(BS1) BS2 <- as.data.frame(BS2) TA1 <- as.data.frame(TA1) TA2 <- as.data.frame(TA2)
TBI.BS <- TBI(BS1,BS2,method="%diff", pa.tr=FALSE, nperm=9999, BCD=TRUE, replace=FALSE, test.BC=TRUE, test.t.perm=TRUE, save.BC=TRUE, seed.=NULL, clock=FALSE) TBI.BS # Non Sig - change: 0.3238 (P>0.05) summary(TBI.BS) BS.BCD.mat <- TBI.BS$BCD.mat
TBI.TA <- TBI(TA1,TA2,method="%diff", pa.tr=FALSE, nperm=9999, BCD=TRUE, replace=FALSE, test.BC=TRUE, test.t.perm=TRUE, save.BC=TRUE, seed.=NULL, clock=FALSE) TBI.TA # Sig + change: 1e-04 * (P<0.05) summary(TBI.TA) TA.BCD.mat <- TBI.TA$BCD.mat
Analysis of Temporal Beta-diversity Index (TBI) of understory communities in black spruce (left panel) and trembling aspen (right panel) stands. Figures correspond to B-C plots of understory vegetation comparing all treatments from 2013 to 2018, where 63 plots per forest type were plotted using losses (B/den statistics) and gains (C/den statistics) computed from the abundance data of understory species. These sites correspond to the combination of sampling design of Sites (A,B,C), Blocks (1, 2, 3) and seven Treatments: Control conditions (C, in grey), to treatments of the ecosystem approach: Light (Li, in yellow), Nutrients (Nu, in purple), Single-litter (1F, in orange) and Double-litter (2F, in red), and of the community approach: Transplants-out (To, in blue), Transplants-in (Ti, in green). Treatments in black spruce forests in light colors and in trembling aspen forests in dark colors. Notice also that axes are different to allow clearer data visualisation. The green line (with a slope of 1) is drawn to through the origin and it represent the theoretical positions of a net-zero species gain/loss scenario. The position of green line respective to red line indicates an average of species losses (green line above red line, as in left panel) or species gains (green line below red line, as in right panel) across the sites. Distinctive symbols are used for the sites dominated by gains (squares) and by losses (circles). Symbols sizes represent the values of the D = (B+C) statistics: larger points found in the upper-right corner of each plot represent a higher temporal β-diversity than the smaller points in the lower-left corner.
#####plot.TBI # Appeler la fonction avant! From: https://github.com/sdray/adespatial/blob/master/R/plot.TBI.R plot.TBI(TBI.BS) plot.TBI(TBI.TA)
par(mfrow = c(1, 2))
plot.TBI(TBI.BS, type = "BC", s.names = TP2, pch.loss = 21, pch.gain = 22, cex.names = 0.5, col.rim = "black", col.bg = "dodgerblue3", cex.symb = 3, diam = TRUE, main = "Black spruce forests", cex.main = 1, cex.lab = 1, xlim = NULL, ylim = NULL, silent = TRUE)
plot.TBI(TBI.TA, type = "BC", s.names = TP2, pch.loss = 21, pch.gain = 22, cex.names = 0.5, col.rim = "black", col.bg = "hotpink", cex.symb = 3, diam = TRUE, main = "Trembling aspen forests", cex.main = 1, cex.lab = 1, xlim = NULL, ylim = NULL, silent = TRUE)
par(mfrow = c(1, 1))
Principal Component Analysis (PCA) for the Objective 1 (a - Ecosystem approach) and the Objective 2 (b - Community approach) illustrating community change between 2013 and 2018. Points correspond to the centroids per treatment (means of 9 replicate plots from nested design of 3 Sites x 3 Blocks) of the Hellinger-transformed abundance of understory species from the beginning (2013, circles) and the end of the experiment (2018, triangles), united by lines indicating change over time. Solid lines correspond to black spruce stands (BS) and dotted lines correspond to trembling aspen stands (TA). Colors correspond to treatments of the ecosystem approach: Single-litter (1F, in orange), Double-litter (2F, in red), Control (C, in grey), Light (Li, in yellow) and Nutrients (Nu, in purple) and of treatments of the community approach: Control (C, in grey), Transplants-in (Ti, in green) and Transplants-out (To, in blue). Treatments in black spruce forests in light colors and in trembling aspen forests in dark colors. Species ordination is in the middle of the panel, with only the main species to allow a clear visualization. Notice that the scales are different.
###PERMANOVA based on the Hellinger-transformed data (Bray-Curtis distance) of understory vegetation abundance for the ecosystem and community approaches to test the variables of Year, Forest type, Treatment and all possible interactions, using Site and Blocks as nested random factors.
DB_All$Species <- NULL DB_All$Func_gr <- NULL
Spp_All <- spread(DB_All, Abbr, Coverage, fill = DB_All$Coverage) Spp_All$Y.C.T <- paste0(Spp_All$Year,"", Spp_All$Canopy, "", Spp_All$Treatment) Spp_All <- Spp_All[, c(1:5, 71, 6:70)] # To order columns
Spp.Tbio <- Spp_All %>% filter(Treatment %in% c("C", "Li", "Nu", "1F", "2F")) %>% droplevels()
Year <- split(Spp.Tbio, Spp.Tbio$Year)
Y2013 <- Year$2013
Y2018 <- Year$2018
BSTA.Year <- rbind(Y2013, Y2018) BSTA.sxs <- BSTA.Year[,6:71] #From column Y.C.T to the end of spp columns BSTA.env <- BSTA.Year[,1:5] #All sampling info
BSTA <- rbind(Y2013, Y2018) BSTA.PCA <- BSTA[,6:71] #From column Y.C.T to the end of spp columns
#Make a matrix with Site and Block columns to add random factors in the following PERMANOVAs BSTA_SB <- rbind(Y2013, Y2018) BSTA_SB <- BSTA_SB[,2:3]
Data.BSTA<-droplevels(subset(BSTA.PCA)) Data0.BSTA<- Data.BSTA[, colSums(Data.BSTA != 0) > 0] # To eliminate empty (0) columns
PCA.crd.dec <- decostand(Data0.BSTA[,-1], "hellinger") PCA.BSTA <- prcomp(PCA.crd.dec, center = TRUE, scale. = FALSE) PCA.crd.dec <- cbind(Data0.BSTA$Y.C.T, PCA.crd.dec) #Adding column with names colnames(PCA.crd.dec) names(PCA.crd.dec)[names(PCA.crd.dec) == "Data0.BSTA$Y.C.T"] <- "Y.C.T" PCAD.BSTA <- as.data.frame(PCA.BSTA$x)
PCAD.BSTA$Year <- with(PCA.crd.dec, substr(Y.C.T, 1,4)) PCAD.BSTA$Canopy <- with(PCA.crd.dec, substr(Y.C.T, 6,7)) PCAD.BSTA$Treatment <- with(PCA.crd.dec, substr(Y.C.T, 9,nchar(as.character(Y.C.T))))
pca.centroids.BSTA <- aggregate(PCAD.BSTA[,1:2], list(Year = PCAD.BSTA$Year, Canopy=PCAD.BSTA$Canopy, Treatment=PCAD.BSTA$Treatment), mean) pca.centroids.BSTA$LAB<-with(pca.centroids.BSTA, ifelse(Year==2018, "18", "13"))
Main.BSTA<-ggplot(data=pca.centroids.BSTA, aes(PC1, PC2, col=Treatment))+ theme_bw()+ geom_hline(yintercept = 0, lty=2, col="gray")+ geom_vline(xintercept = 0, lty=2, col="gray")+ geom_point(aes(shape = Year, color=Treatment),size = 2)+ scale_color_manual(values=c('darkorange1', 'red3', 'gray53', 'gold', 'darkmagenta'))+ geom_line(aes(PC1, PC2, group=interaction(Canopy, Treatment), linetype=Canopy)) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),legend.position="bottom", plot.title = element_text(size=12,hjust = 0.5,face="bold"), axis.title=element_text(size=11),text = element_text(size=12), axis.text.x = element_text(angle=0, hjust=0.5, size=8), axis.text.y = element_text(angle=0,hjust=0.5,size=8))+ labs(x= "PC1 (37.8%)", y ="PC2 (9.7%)", title="Ecosystem approach")
summary(PCA.BSTA)$importance[2,1] # PCA1: 0.37872 summary(PCA.BSTA)$importance[2,2] # PCA2: 0.09751 summary(PCA.BSTA)$importance[2,3] # PCA2: 0.07542 summary(PCA.BSTA)$importance[2,4] # PCA2: 0.05592
screeplot(PCA.BSTA, bstick = TRUE, npcs = length(PCA.BSTA$center)) bstick(PCA.BSTA) # I get four axes
scores(PCA.BSTA$center) #To get the scores of species and select the most important ones
#Ancient spp selected: "AUR", "ARN", "CLB", "CON", "EQP", "GAH", "LIB", "LYA", "MAC", "PLS", "POA", "PTC", "LEG", "RIG", "RUP", "SPS", "VAM", "VIE", "VIS" #Selecteed species with the highest scores (0.39-0.04): PLS,CON,GAH,PTC,RUP,LYA,MAC,VIS,LIB,CLB,VAM,VIE,ARN Sub.BSTA<-fviz_pca_biplot(PCA.BSTA, label = "var",labelsize = 3, habillage="none",title="", xlab="", ylab="", addEllipses=FALSE, geom.ind = "",col.var = "black", select.var=list(name=c('PLS','CON','GAH','PTC','RUP','LYA','MAC','VIS','LIB','CLB','VAM','VIE','ARN')), repel =TRUE, lable="ind", fill.ind = "white", legend.title = "SP")+ theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), legend.text=element_text(size=13), legend.title=element_text(size=15, face="bold"))+ theme_void()
plot.with.inset.BSTA <-ggdraw() + draw_plot(Main.BSTA) + draw_plot(Sub.BSTA, x = 0.191, y = 0.22, width = .60, height = .60)
perm_Tbio <- how(nperm = 9999,
blocks = BSTA_SB$Site,
plots = Plots(BSTA_SB$Block),
Within(type = "free"))
set.seed(1989) ado.BSTA_random2 <- adonis2(PCA.crd.dec[, -1] ~ PCAD.BSTA$Year * PCAD.BSTA$Canopy * PCAD.BSTA$Treatment, permutations = perm_Tbio, method = "euc", by = "term" ) ado.BSTA_random2
Spp.Tss <- Spp_All %>% filter(Treatment %in% c("C", "Ti", "To")) %>% droplevels()
Year.Tss <- split(Spp.Tss, Spp.Tss$Year)
Y2013.Tss <- Year.Tss$2013
Y2018.Tss <- Year.Tss$2018
BSTA.Tss <- rbind(Y2013.Tss, Y2018.Tss) BSTA.PCA.Tss <- BSTA.Tss[,6:71] #From column Y.C.T to the end of spp columns
####Make a matrix with Site and Block columns to add random factors in the following PERMANOVAs BSTA.Tss_SB <- rbind(Y2013.Tss, Y2018.Tss) BSTA.Tss_SB <- BSTA.Tss_SB[,2:3]
Data.BSTA.Tss<-droplevels(subset(BSTA.PCA.Tss)) Data0.BSTA.Tss<- Data.BSTA.Tss[, colSums(Data.BSTA.Tss != 0) > 0] # To eliminate empty (0) columns
PCA.crd.dec.Tss <- decostand(Data0.BSTA.Tss[,-1], "hellinger") PCA.BSTA.Tss <- prcomp(PCA.crd.dec.Tss, center = TRUE, scale. = FALSE) PCA.crd.dec.Tss <- cbind(Data0.BSTA.Tss$Y.C.T, PCA.crd.dec.Tss) #Adding colmn with names colnames(PCA.crd.dec.Tss) names(PCA.crd.dec.Tss)[names(PCA.crd.dec.Tss) == "Data0.BSTA.Tss$Y.C.T"] <- "Y.C.T" str(PCA.crd.dec.Tss) PCAD.BSTA.Tss <- as.data.frame(PCA.BSTA.Tss$x)
PCAD.BSTA.Tss$Year <- with(PCA.crd.dec.Tss, substr(Y.C.T, 1,4)) PCAD.BSTA.Tss$Canopy <- with(PCA.crd.dec.Tss, substr(Y.C.T, 6,7)) PCAD.BSTA.Tss$Treatment <- with(PCA.crd.dec.Tss, substr(Y.C.T, 9,nchar(as.character(Y.C.T))))
pca.centroids.BSTA.Tss <- aggregate(PCAD.BSTA.Tss[,1:2], list(Year = PCAD.BSTA.Tss$Year, Canopy=PCAD.BSTA.Tss$Canopy, Treatment=PCAD.BSTA.Tss$Treatment), mean) pca.centroids.BSTA.Tss$LAB<-with(pca.centroids.BSTA.Tss, ifelse(Year==2018, "18", "13"))
Main.BSTA.Tss<-ggplot(data=pca.centroids.BSTA.Tss, aes(PC1, PC2, col=Treatment))+ theme_bw()+ geom_hline(yintercept = 0, lty=2, col="gray")+ geom_vline(xintercept = 0, lty=2, col="gray")+ geom_point(aes(shape = Year, color=Treatment),size = 2)+ scale_color_manual(values=c('gray53', 'green', 'blue'))+ geom_line(aes(PC1, PC2, group=interaction(Canopy, Treatment), linetype=Canopy)) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),legend.position="bottom", plot.title = element_text(size=12,hjust = 0.5,face="bold"), axis.title=element_text(size=11),text = element_text(size=12), axis.text.x = element_text(angle=0, hjust=0.5, size=8), axis.text.y = element_text(angle=0,hjust=0.5,size=8))+ labs(x= "PC1 (38%)", y ="PC2 (9%)", title="Species abundance under BS and TA stands")
summary(PCA.BSTA.Tss)$importance[2,1] # PCA1: 0.38404 summary(PCA.BSTA.Tss)$importance[2,2] # PCA2: 0.09073
scores(PCA.BSTA.Tss$center) #To get the scores of species and select the most important ones
#Selected species with the highest scores (0.36-0.04): PLS,CON,GAH,PTC,RUP,LIB,MAC,VIS,LYA,CLB,VAM,DIP,PES,POA,RIG,POC,GAA Sub.BSTA.Tss<-fviz_pca_biplot(PCA.BSTA.Tss, label = "var",labelsize = 3, col.var = "black",habillage="none",title="", xlab="", ylab="", addEllipses=FALSE, geom.ind = "", select.var=list(name=c('PLS','CON','GAH','PTC','RUP','LIB','MAC','VIS','LYA','CLB','VAM','DIP','PES','POA','RIG','POC','GAA')), repel =TRUE, lable="ind", fill.ind = "white", legend.title = "SP")+ theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), legend.text=element_text(size=13), legend.title=element_text(size=15, face="bold"))+ theme_void()
plot.with.inset.BSTA.Tss <-ggdraw() + draw_plot(Main.BSTA.Tss) + draw_plot(Sub.BSTA.Tss, x = 0.212, y = 0.326, width = .60, height = .60)
PERMANOVA Including both blocks and Sites in permutations! (08/08/2022). If Year is included in the equation, I don't need to include it as random factor (As discussed with Steve and Valentina)
perm <- how(nperm = 9999,
blocks = BSTA.Tss_SB$Site,
plots = Plots(BSTA.Tss_SB$Block),
Within(type = "free"))
set.seed(1989) ado.BSTA.Tss_random2 <- adonis2(PCA.crd.dec.Tss[, -1] ~ PCAD.BSTA.Tss$Year * PCAD.BSTA.Tss$Canopy * PCAD.BSTA.Tss$Treatment, permutations = perm, method = "euc", by = "term" ) ado.BSTA.Tss_random2
Principal Coordinate Analysis (PCoA) based on the Bray-Curtis distance with Cailliez correction of the understory species abundance in 2013 (crossed squares) and 2018 (filled squares), with their corresponding percentage of variances in each axis. Treatments of the ecosystem approach in black spruce (a) and trembling aspen forests (b) correspond to Light (Li, in yellow), Nutrients (Nu, in purple), Single-litter (1F, in orange), Double-litter (2F, in red) and Control (C, in grey), with the corresponding centroids (standard deviation). Treatments of the community approach in black spruce (c) and trembling aspen forests (d) correspond to Control (C, in grey), Transplants-in (Ti, in green) and Transplants-out (To, in blue). Treatments in black spruce forests in light colors and in trembling aspen forests in dark colors. Arrows correspond to the most important understory species defining the community composition (Envfit, P < 0.05). Notice that scales are different.
###Homogeneity of multivariance dispersion of understory plant abundance among treatments and years for each forest type.
View(BSTA.Year) BSTA.Year0<-droplevels(subset(BSTA.Year)) BSTA_All<- BSTA.Year0[, colSums(BSTA.Year0 != 0) > 0] # To eliminate empty (0) columns (1 was eliminated) BSTA_All$Y.C.T <- NULL View(BSTA_All) #Table with Year 2013 and 2018, with all other info, to separate between canopies
###Separate by Canopy BSTA_Canopy<- split(BSTA_All, BSTA_All$Canopy) BS_BegEnd <- BSTA_Canopy$'BS' TA_BegEnd <- BSTA_Canopy$'TA'
####BS BS_BegEnd_Var <- select(BS_BegEnd, 1:5) BS_BegEnd_Spp <- select(BS_BegEnd, 6:68)
####TA TA_BegEnd_Var <- select(TA_BegEnd, 1:5) TA_BegEnd_Spp <- select(TA_BegEnd, 6:68)
####Preparing data for PCoA Farben <- c("gold","mediumorchid","salmon1","firebrick2","antiquewhite4","lightseagreen","chartreuse3")
BS.bray <- vegdist(BS_BegEnd_Spp, method = "bray") # Distance matrix with method = bray (it's good for spp abundance) is.euclid(BS.bray) #FALSE (Bad because then it has negative eigenvalues)
BS.bray.pcoa <- cmdscale(BS.bray, k=2, eig=TRUE, add = TRUE) #Multidimensional scaling (also known as PCoA)
ordi.pcoa_BS <- ordiplot(BS.bray.pcoa, display="sites", type="points", cex = 0.2)
points(ordi.pcoa_BS$sites[BS_BegEnd_Var$Year == '2013' & BS_BegEnd_Var$Treatment == '1F',], pch=7, col="salmon1", bg="salmon1", cex = 1.3) points(ordi.pcoa_BS$sites[BS_BegEnd_Var$Year == '2018' & BS_BegEnd_Var$Treatment == '1F',], pch=15, col="salmon1", bg="salmon1", cex = 1.3)
points(ordi.pcoa_BS$sites[BS_BegEnd_Var$Year == '2013' & BS_BegEnd_Var$Treatment == '2F',], pch=7, col="firebrick2", bg="firebrick2", cex = 1.3) points(ordi.pcoa_BS$sites[BS_BegEnd_Var$Year == '2018' & BS_BegEnd_Var$Treatment == '2F',], pch=15, col="firebrick2", bg="firebrick2", cex = 1.3)
points(ordi.pcoa_BS$sites[BS_BegEnd_Var$Year == '2013' & BS_BegEnd_Var$Treatment == 'C',], pch=7, col="antiquewhite4", bg="antiquewhite4", cex = 1.3) points(ordi.pcoa_BS$sites[BS_BegEnd_Var$Year == '2018' & BS_BegEnd_Var$Treatment == 'C',], pch=15, col="antiquewhite4", bg="antiquewhite4", cex = 1.3)
points(ordi.pcoa_BS$sites[BS_BegEnd_Var$Year == '2013' & BS_BegEnd_Var$Treatment == 'Li',], pch=7, col="gold", bg="gold", cex = 1.3) points(ordi.pcoa_BS$sites[BS_BegEnd_Var$Year == '2018' & BS_BegEnd_Var$Treatment == 'Li',], pch=15, col="gold", bg="gold", cex = 1.3)
points(ordi.pcoa_BS$sites[BS_BegEnd_Var$Year == '2013' & BS_BegEnd_Var$Treatment == 'Nu',], pch=7, col="mediumorchid", bg="mediumorchid", cex = 1.3) points(ordi.pcoa_BS$sites[BS_BegEnd_Var$Year == '2018' & BS_BegEnd_Var$Treatment == 'Nu',], pch=15, col="mediumorchid", bg="mediumorchid", cex = 1.3)
ordiellipse(ordi.pcoa_BS, BS_BegEnd_Var$Treatment, label=TRUE, col = Farben, cex=1.2, font=2, lty=2, lwd=1)
plot(envfit(ordi.pcoa_BS, BS_BegEnd_Spp), p.max=0.05, col="gray25", cex=1, font=2)
#Legend 1 legend(0.58, 0.4, legend = c("2013","2018"), #names to display col = c("gray25", "gray25"), pch = c(7,15), #symbol type bty = "n", #type of box around the legend pt.cex = 1.3, #symbol size cex = 1, #text size text.col = "gray25", horiz = F , inset = c(1.5, 1.5)) #% (from 0 to 1) to draw the legend away from x and y axis. You can also give the X and Y coordinate of the legend: legend(3, 5, ...) #Legend 2 legend(0.58, 0.4, legend = c("Li","Nu","1F","2F","C","Ti","To"), #names to display col = Farben, pch = c(0,0,0,0,0,0,0), #symbol type bty = "n", #type of box around the legend pt.cex = 1.3, #symbol size cex = 1, #text size text.col = Farben, horiz = F)
BS.bray.pcoa$eig[1:3] # 14.650921 10.682960 7.390236
100*BS.bray.pcoa$eig[1:3]/sum(BS.bray.pcoa$eig) # 15.020097 10.952151 7.576457
perm_BS_Tbio <- how(nperm = 9999,
blocks = BS_BegEnd_Var$Site,
plots = Plots(BS_BegEnd_Var$Block),
Within(type = "free"))
set.seed(1989) BS.bray.pcoa_perm_bray2 <- adonis2(BS.bray ~ Treatment*Year, data=BS_BegEnd_Var, permutations = perm_BS_Tbio, method = "bray") BS.bray.pcoa_perm_bray2
BS_BegEnd_Var2 <- BS_BegEnd_Var BS_BegEnd_Var2$YT <- paste(BS_BegEnd_Var2$Year,BS_BegEnd_Var2$Treatment)
dispersion_BS_Tbio <- betadisper(BS.bray, group=BS_BegEnd_Var2$YT,type = c("median","centroid"), bias.adjust = TRUE) dispersion_BS_Tbio # !!! To get the contrast (average distance to median) perm_BSTbio <- permutest(dispersion_BS_Tbio, pairwise = TRUE, permutations = 9999) # !!! TO get the P value in contrasts
anova(dispersion_BS_Tbio)
mod.HSD_BS_Tbio <- TukeyHSD(dispersion_BS_Tbio) mod.HSD_BS_Tbio plot(mod.HSD_BS_Tbio) pairwise.adonis2(BS.bray ~ YT, data = BS_BegEnd_Var2)
TA.bray <- vegdist(TA_BegEnd_Spp, method = "bray") # Distance matrix with method = bray (it's good for spp abundance) is.euclid(TA.bray) #FALSE
TA.bray.pcoa <- cmdscale(TA.bray, k=2, eig=TRUE, add = TRUE) #Multidimensional scaling (also known as PCoA)
ordi.pcoa_TA <- ordiplot(TA.bray.pcoa, display="sites", type="points", cex = 0.2)
points(ordi.pcoa_TA$sites[TA_BegEnd_Var$Year == '2013' & TA_BegEnd_Var$Treatment == '1F',], pch=7, col="salmon1", bg="salmon1", cex = 1.3) points(ordi.pcoa_TA$sites[TA_BegEnd_Var$Year == '2018' & TA_BegEnd_Var$Treatment == '1F',], pch=15, col="salmon1", bg="salmon1", cex = 1.3)
points(ordi.pcoa_TA$sites[TA_BegEnd_Var$Year == '2013' & TA_BegEnd_Var$Treatment == '2F',], pch=7, col="firebrick2", bg="firebrick2", cex = 1.3) points(ordi.pcoa_TA$sites[TA_BegEnd_Var$Year == '2018' & TA_BegEnd_Var$Treatment == '2F',], pch=15, col="firebrick2", bg="firebrick2", cex = 1.3)
points(ordi.pcoa_TA$sites[TA_BegEnd_Var$Year == '2013' & TA_BegEnd_Var$Treatment == 'C',], pch=7, col="antiquewhite4", bg="antiquewhite4", cex = 1.3) points(ordi.pcoa_TA$sites[TA_BegEnd_Var$Year == '2018' & TA_BegEnd_Var$Treatment == 'C',], pch=15, col="antiquewhite4", bg="antiquewhite4", cex = 1.3)
points(ordi.pcoa_TA$sites[TA_BegEnd_Var$Year == '2013' & TA_BegEnd_Var$Treatment == 'Li',], pch=7, col="gold", bg="gold", cex = 1.3) points(ordi.pcoa_TA$sites[TA_BegEnd_Var$Year == '2018' & TA_BegEnd_Var$Treatment == 'Li',], pch=15, col="gold", bg="gold", cex = 1.3)
points(ordi.pcoa_TA$sites[TA_BegEnd_Var$Year == '2013' & TA_BegEnd_Var$Treatment == 'Nu',], pch=7, col="mediumorchid", bg="mediumorchid", cex = 1.3) points(ordi.pcoa_TA$sites[TA_BegEnd_Var$Year == '2018' & TA_BegEnd_Var$Treatment == 'Nu',], pch=15, col="mediumorchid", bg="mediumorchid", cex = 1.3)
ordiellipse(ordi.pcoa_TA, TA_BegEnd_Var$Year, label=TRUE, col = "gray25", cex=1.2, font=2, lty=1, lwd=1) #the default for the ellipse is the standard deviation (kind="sd") ordiellipse(ordi.pcoa_TA, TA_BegEnd_Var$Treatment, label=TRUE, col = Farben, cex=1.2, font=2, lty=2, lwd=1)
plot(envfit(ordi.pcoa_TA, TA_BegEnd_Spp), p.max=0.05, col="gray25", cex=1, font=2)
#Legend 1 legend(0.58, 0.4, legend = c("2013","2018"), #names to display col = c("gray25", "gray25"), pch = c(7,15), #symbol type bty = "n", #type of box around the legend pt.cex = 1.3, #symbol size cex = 1, #text size text.col = "gray25", horiz = F , inset = c(1.5, 1.5)) #% (from 0 to 1) to draw the legend away from x and y axis. You can also give the X and Y coordinate of the legend: legend(3, 5, ...) #Legend 2 legend(1.5, 0.4, legend = c("Li","Nu","1F","2F","C","Ti","To"), #names to display col = Farben, pch = c(0,0,0,0,0,0,0), #symbol type bty = "n", #type of box around the legend pt.cex = 1.3, #symbol size cex = 1, #text size text.col = Farben, horiz = F)
TA.bray.pcoa$eig[1:3] # 10.419424 7.126796 4.062613
100*TA.bray.pcoa$eig[1:3]/sum(TA.bray.pcoa$eig) # 14.647095 10.018487 5.711014
perm_TA_Tbio <- how(nperm = 9999,
blocks = TA_BegEnd_Var$Site,
plots = Plots(TA_BegEnd_Var$Block),
Within(type = "free"))
set.seed(1989) TA.bray.pcoa_perm_bray2 <- adonis2(TA.bray ~ Treatment*Year, data=TA_BegEnd_Var, permutations = perm_TA_Tbio, method = "bray") TA.bray.pcoa_perm_bray2
TA_BegEnd_Var2 <- TA_BegEnd_Var TA_BegEnd_Var2$YT <- paste(TA_BegEnd_Var2$Year,TA_BegEnd_Var2$Treatment)
dispersion_TA_Tbio <- betadisper(TA.bray, group=TA_BegEnd_Var2$YT,type = c("median","centroid"), bias.adjust = TRUE) dispersion_TA_Tbio # !!! To get the contrast (average distance to median) perm_TATbio <- permutest(dispersion_TA_Tbio, pairwise = TRUE, permutations = 9999) # !!! TO get the P value in contrasts
anova(dispersion_TA_Tbio)
mod.HSD_TA_Tbio <- TukeyHSD(dispersion_TA_Tbio) mod.HSD_TA_Tbio plot(mod.HSD_TA_Tbio) pairwise.adonis2(TA.bray ~ YT, data = TA_BegEnd_Var2)
View(BSTA.Tss) BSTA.Tss0<-droplevels(subset(BSTA.Tss)) BSTA_All_Tss<- BSTA.Tss0[, colSums(BSTA.Tss0 != 0) > 0] # To eliminate empty (0) columns (12 were eliminated) BSTA_All_Tss$Y.C.T <- NULL View(BSTA_All_Tss) #Table with Year 2013 and 2018, with all other info, to separate between canopies
####Separate by Canopy BSTA_Tss_Canopy<- split(BSTA_All_Tss, BSTA_All_Tss$Canopy) BS_BegEnd_Tss <- BSTA_Tss_Canopy$'BS' TA_BegEnd_Tss <- BSTA_Tss_Canopy$'TA'
####BS BS_BegEnd_Tss_Var <- select(BS_BegEnd_Tss, 1:5) BS_BegEnd_Tss_Spp <- select(BS_BegEnd_Tss, 6:59)
####TA TA_BegEnd_Tss_Var <- select(TA_BegEnd_Tss, 1:5) TA_BegEnd_Tss_Spp <- select(TA_BegEnd_Tss, 6:59)
####Preparing data for PCoA Farben_Tss <- c("lightseagreen","chartreuse3","antiquewhite4")
BS.bray_Tss <- vegdist(BS_BegEnd_Tss_Spp, method = "bray") # Distance matrix with method = bray (it's good for spp abundance) is.euclid(BS.bray_Tss) #FALSE
BS.bray.pcoa_Tss <- cmdscale(BS.bray_Tss, k=2, eig=TRUE, add = TRUE) #Multidimansional scaling (also known as PCoA)
ordi.pcoa_BS_Tss <- ordiplot(BS.bray.pcoa_Tss, display="sites", type="points", cex = 0.2)
points(ordi.pcoa_BS_Tss$sites[BS_BegEnd_Tss_Var$Year == '2013' & BS_BegEnd_Tss_Var$Treatment == 'C',], pch=7, col="antiquewhite4", bg="antiquewhite4", cex = 1.3) points(ordi.pcoa_BS_Tss$sites[BS_BegEnd_Tss_Var$Year == '2018' & BS_BegEnd_Tss_Var$Treatment == 'C',], pch=15, col="antiquewhite4", bg="antiquewhite4", cex = 1.3)
points(ordi.pcoa_BS_Tss$sites[BS_BegEnd_Tss_Var$Year == '2013' & BS_BegEnd_Tss_Var$Treatment == 'Ti',], pch=7, col="chartreuse3", bg="chartreuse3", cex = 1.3) points(ordi.pcoa_BS_Tss$sites[BS_BegEnd_Tss_Var$Year == '2018' & BS_BegEnd_Tss_Var$Treatment == 'Ti',], pch=15, col="chartreuse3", bg="chartreuse3", cex = 1.3)
points(ordi.pcoa_BS_Tss$sites[BS_BegEnd_Tss_Var$Year == '2013' & BS_BegEnd_Tss_Var$Treatment == 'To',], pch=7, col="lightseagreen", bg="lightseagreen", cex = 1.3) points(ordi.pcoa_BS_Tss$sites[BS_BegEnd_Tss_Var$Year == '2018' & BS_BegEnd_Tss_Var$Treatment == 'To',], pch=15, col="lightseagreen", bg="lightseagreen", cex = 1.3)
ordiellipse(ordi.pcoa_BS_Tss, BS_BegEnd_Tss_Var$Treatment, label=TRUE, col = Farben_Tss, cex=1.2, font=2, lty=2, lwd=1)
plot(envfit(ordi.pcoa_BS_Tss, BS_BegEnd_Tss_Spp), p.max=0.05, col="gray25", cex=1, font=2)
#Legend 1 legend(0.58, 0.4, legend = c("2013","2018"), #names to display col = c("gray25", "gray25"), pch = c(7,15), #symbol type bty = "n", #type of box around the legend pt.cex = 1.3, #symbol size cex = 1, #text size text.col = "gray25", horiz = F , inset = c(1.5, 1.5)) #% (from 0 to 1) to draw the legend away from x and y axis. You can also give the X and Y coordinate of the legend: legend(3, 5, ...) #Legend 2 legend(0.58, 0.4, legend = c("C","Ti","To"), #names to display col = Farben_Tss, pch = c(0,0,0), #symbol type bty = "n", #type of box around the legend pt.cex = 1.3, #symbol size cex = 1, #text size text.col = Farben_Tss, horiz = F)
BS.bray.pcoa_Tss$eig[1:3] # 12.605008 4.847055 2.556525
100*BS.bray.pcoa_Tss$eig[1:3]/sum(BS.bray.pcoa_Tss$eig) # 27.376608 10.527239 5.552475
perm_BS_Tss <- how(nperm = 9999,
blocks = BS_BegEnd_Tss_Var$Site,
plots = Plots(BS_BegEnd_Tss_Var$Block),
Within(type = "free"))
set.seed(1989) BS.bray_Tss_perm_bray2 <- adonis2(BS.bray_Tss ~ Treatment*Year, data=BS_BegEnd_Tss_Var, permutations = perm_BS_Tss, method = "bray") BS.bray_Tss_perm_bray2
BS_BegEnd_Tss_Var2 <- BS_BegEnd_Tss_Var BS_BegEnd_Tss_Var2$YT <- paste(BS_BegEnd_Tss_Var2$Year,BS_BegEnd_Tss_Var2$Treatment)
dispersion_BS_Tss <- betadisper(BS.bray_Tss, group=BS_BegEnd_Tss_Var2$YT,type = c("median","centroid"), bias.adjust = TRUE) dispersion_BS_Tss # !!! To get the contrast (average distance to median) perm_BSTss <- permutest(dispersion_BS_Tss, pairwise = TRUE, permutations = 9999) # !!! TO get the P value in contrasts
anova(dispersion_BS_Tss)
mod.HSD_BS_Tss <- TukeyHSD(dispersion_BS_Tss) mod.HSD_BS_Tss plot(mod.HSD_BS_Tss) pairwise.adonis2(BS.bray_Tss ~ YT, data = BS_BegEnd_Var2)
TA.bray_Tss <- vegdist(TA_BegEnd_Tss_Spp, method = "bray") # Distance matrix with method = bray (it's good for spp abundance) is.euclid(TA.bray_Tss) #FALSE
TA.bray.pcoa_Tss <- cmdscale(TA.bray_Tss, k=2, eig=TRUE, add = TRUE) #Multidimensional scaling (also known as PCoA)
ordi.pcoa_TA_Tss <- ordiplot(TA.bray.pcoa_Tss, display="sites", type="points", cex = 0.2, col="cornsilk2")
points(ordi.pcoa_TA_Tss$sites[TA_BegEnd_Tss_Var$Year == '2013' & TA_BegEnd_Tss_Var$Treatment == 'C',], pch=7, col="antiquewhite4", bg="antiquewhite4", cex = 1.3) points(ordi.pcoa_TA_Tss$sites[TA_BegEnd_Tss_Var$Year == '2018' & TA_BegEnd_Tss_Var$Treatment == 'C',], pch=15, col="antiquewhite4", bg="antiquewhite4", cex = 1.3)
points(ordi.pcoa_TA_Tss$sites[TA_BegEnd_Tss_Var$Year == '2013' & TA_BegEnd_Tss_Var$Treatment == 'Ti',], pch=7, col="chartreuse3", bg="chartreuse3", cex = 1.3) points(ordi.pcoa_TA_Tss$sites[TA_BegEnd_Tss_Var$Year == '2018' & TA_BegEnd_Tss_Var$Treatment == 'Ti',], pch=15, col="chartreuse3", bg="chartreuse3", cex = 1.3)
points(ordi.pcoa_TA_Tss$sites[TA_BegEnd_Tss_Var$Year == '2013' & TA_BegEnd_Tss_Var$Treatment == 'To',], pch=7, col="lightseagreen", bg="lightseagreen", cex = 1.3) points(ordi.pcoa_TA_Tss$sites[TA_BegEnd_Tss_Var$Year == '2018' & TA_BegEnd_Tss_Var$Treatment == 'To',], pch=15, col="lightseagreen", bg="lightseagreen", cex = 1.3)
ordiellipse(ordi.pcoa_TA_Tss, TA_BegEnd_Tss_Var$Year, label=TRUE, col = "gray25", cex=1.2, font=2, lty=1, lwd=1) #the default for the ellipse is the standard deviation (kind="sd") ordiellipse(ordi.pcoa_TA_Tss, TA_BegEnd_Tss_Var$Treatment, label=TRUE, col = Farben_Tss, cex=1.2, font=2, lty=2, lwd=1)
plot(envfit(ordi.pcoa_TA_Tss, TA_BegEnd_Tss_Spp), p.max=0.05, col="gray25", cex=1, font=2)
#Legend 1 legend(0.58, 0.4, legend = c("2013","2018"), #names to display col = c("gray25", "gray25"), pch = c(7,15), #symbol type bty = "n", #type of box around the legend pt.cex = 1.3, #symbol size cex = 1, #text size text.col = "gray25", horiz = F , inset = c(1.5, 1.5)) #% (from 0 to 1) to draw the legend away from x and y axis. You can also give the X and Y coordinate of the legend: legend(3, 5, ...) #Legend 2 legend(-0.5, 0.4, legend = c("C","Ti","To"), #names to display col = Farben_Tss, pch = c(0,0,0), #symbol type bty = "n", #type of box around the legend pt.cex = 1.3, #symbol size cex = 1, #text size text.col = Farben_Tss, horiz = F)
TA.bray.pcoa_Tss$eig[1:3] # 10.131209 4.704789 3.861210
100*TA.bray.pcoa_Tss$eig[1:3]/sum(TA.bray.pcoa_Tss$eig) # 22.128320 10.276077 8.433552
perm_TA_Tss <- how(nperm = 9999,
blocks = TA_BegEnd_Tss_Var$Site,
plots = Plots(TA_BegEnd_Tss_Var$Block),
Within(type = "free"))
set.seed(1989) TA.bray_Tss_perm_bray2 <- adonis2(TA.bray_Tss ~ Treatment*Year, data=TA_BegEnd_Tss_Var, permutations = perm_TA_Tss, method = "bray") TA.bray_Tss_perm_bray2
TA_BegEnd_Tss_Var2 <- TA_BegEnd_Tss_Var TA_BegEnd_Tss_Var2$YT <- paste(TA_BegEnd_Tss_Var2$Year,TA_BegEnd_Tss_Var2$Treatment)
dispersion_TA_Tss <- betadisper(TA.bray_Tss, group=TA_BegEnd_Tss_Var2$YT,type = c("median","centroid"), bias.adjust = TRUE) dispersion_TA_Tss # !!! To get the contrast (average distance to median) perm_TATss <- permutest(dispersion_TA_Tss, pairwise = TRUE, permutations = 9999) # !!! TO get the P value in contrasts
anova(dispersion_TA_Tss)
mod.HSD_TA_Tss <- TukeyHSD(dispersion_TA_Tss) mod.HSD_TA_Tss plot(mod.HSD_TA_Tss) pairwise.adonis2(TA.bray_Tss ~ YT, data = TA_BegEnd_Var2)
DB_All3 <- DB_All
DB_All3_Year <- split(DB_All3, DB_All3$Year)
DB_All3_2018 <- DB_All3_Year$2018
Average abundance of understory plants of the cumulative effect of treatments in 2018 in black spruce and trembling aspen forests, for the Control (C, in grey) and the different treatments of the ecosystem approach (Objective 1): Light (Li, in yellow), Nutrients (Nu, in purple), Single-litter (1F, in orange) and Double-litter (2F, in red), and of the community approach (Objective 2): Transplants-out (To, in blue), Transplants-in (Ti, in green). Species, with their corresponding abbreviations, were classified in functional groups: Bryophytes, Sphagnaceae, Ericaceae, Pteridophyta, Graminoids, Herbs, and Shrubs, and Trees. Data correspond to the average and standard deviation (in grey numbers) of blocks and sites for each species among treatments and forest types. Values for each functional group (in colors) correspond to the average abundance per functional group for each treatment.
####Do a sum of Coverage per Func_gr Func18 <- DB_All3_2018 Func18$Year <- NULL
####make a joint column Func18_united <- unite(Func18, Site, Canopy, Treatment, Species, Abbr, Func_gr, col = "SCTSAF", sep = "_")
####Do a mean of Coverage per Block Func18_mean <- aggregate(Func18_united$Coverage, list(Func18_united$SCTSAF), FUN=mean)
####Arrange columns again Func18_mean2 <- separate(Func18_mean, Group.1, into = c("Site","Canopy","Treatment","Species","Abbr","Func_gr"), sep = "") Func18_mean3 <- unite(Func18_mean2, Canopy, Treatment, Species, Abbr, Func_gr, col = "CTSAF", sep = "")
####Do a mean of Coverage per Site (from mean of blocks) Func18_mean4 <- aggregate(Func18_mean3$x, list(Func18_mean3$CTSAF), FUN=mean) Func18_SD <- aggregate(Func18_mean3$x, list(Func18_mean3$CTSAF), FUN=sd)
####Arrange columns again Func18_mean5 <- separate(Func18_mean4, Group.1, into = c("Canopy","Treatment","Species","Abbr","Func_gr"), sep = "") Func18_mean6 <- unite(Func18_mean5, Canopy, Species, Abbr, Func_gr, col = "CSAF", sep = "")
Func18_SD2 <- separate(Func18_SD, Group.1, into = c("Canopy","Treatment","Species","Abbr","Func_gr"), sep = "") Func18_SD3 <- unite(Func18_SD2, Canopy, Species, Abbr, Func_gr, col = "CSAF", sep = "")
####Spread Treatmetns Func18_mean7 <- spread(Func18_mean6, Treatment, x, fill = Func18_mean6$x) Func18_SD4 <- spread(Func18_SD3, Treatment, x, fill = Func18_SD3$x)
####Merge to get a tbale with mean and SD for each treatment Func18_merged <- merge(Func18_mean7,Func18_SD4, by="CSAF") Func18_merged2 <- separate(Func18_merged, CSAF, into = c("Canopy","Species","Abbr","Func_gr"), sep = "_")
####Merge again from tables before spreading to get a table with mean and SD for each treatment (but witouth spread to arrange in Excel) Func18_merged3 <- merge(Func18_mean4,Func18_SD, by="Group.1") Func18_merged4 <- separate(Func18_merged3, Group.1, into = c("Canopy","Treatment","Species","Abbr","Func_gr"), sep = "_") ####write.csv(Func18_merged4, "Func18_merged4.csv")
DB3_2018_Treat <- split(DB_All3_2018, DB_All3_2018$Treatment) DB3_2018_C <- DB3_2018_Treat$'C'
#####Calculate cover by C plot for each of each Func-gr DB3_2018_C2 <- DB3_2018_C DB3_2018_C2$Species <- NULL DB3_2018_C2$Abbr <- NULL DB3_2018_C2$SBC <- paste0(DB3_2018_C2$Site,"", DB3_2018_C2$Block, "", DB3_2018_C2$Canopy) #Create a single column for variables DB3_2018_C2$Year <- NULL DB3_2018_C2$Treatment <- NULL
####Do a sum of Coverage per Func_gr Func18_C <- DB3_2018_C2 %>% group_by(Site, Block, Canopy, Func_gr) %>% summarise(Coverage = sum(Coverage))
Func18_C2 <- unite(Func18_C, Site, Canopy, Func_gr, col = "Site_Can_Func", sep = " ") ####Do a mean of Coverage per Block Func18_C_mean <- aggregate(Func18_C2$Coverage, list(Func18_C2$Site_Can_Func), FUN=mean) ####Arrange columns again Func18_C_mean2 <- separate(Func18_C_mean, Group.1, into = c("Site", "Canopy", "Func_gr"), sep = " ") Func18_C_mean3 <- unite(Func18_C_mean2, Canopy, Func_gr, col = "Can_Func", sep = " ") ####Do a mean and SD of Coverage (x) per Site Func18_C_mean4 <- aggregate(Func18_C_mean3$x, list(Func18_C_mean3$Can_Func), FUN=mean) Func18_C_SD <- aggregate(Func18_C_mean3$x, list(Func18_C_mean3$Can_Func), FUN=sd) Func18_C_mean5 <- merge(Func18_C_mean4,Func18_C_SD, by="Group.1") ####Arrange columns again colnames(Func18_C_mean5)[2] <- "Mean" colnames(Func18_C_mean5)[3] <- "SD" Func18_C_mean6 <- separate(Func18_C_mean5, Group.1, into = c("Canopy", "Func_gr"), sep = " ") ####With Func18_C_mean6 I got the table with the values of Mean and SD per Func_gr per Canopy, but for the figure, I must use data before calculating the mean, so (Func18_C_mean3)
####Arrange Func18_C_mean3 (with Mean per Blocks) for the boxplot Func18_C_mean7 <- separate(Func18_C_mean3, Can_Func, into = c("Canopy", "Func_gr"), sep = " ") colnames(Func18_C_mean7)[4] <- "Mean" Func18_C_mean8 <- Func18_C_mean7 Func18_C_mean8$Site <- NULL
Experimental design for overstory – understory relationships. a) The study area is located in the boreal forest of eastern Canada; b) above the parallel 49⁰N in western Quebec. c) The experiment was conducted in three sites A, B and C (Sites B and C are 0.5 km apart and Site A is 5.3 km away). d,e,f) Each site has adjacent stands (separated from 34 to 115 m) dominated by black spruce (BS, as triangles) and trembling aspen (TA, as circles), in which we placed 3 blocks (B1, B2, B3) separated from 16 to 49 m. g). In each block, one plot per treatment was placed to obtain a nested block experimental design with a total of 126 plots (3 sites x 2 forest types x 3 blocks x 7 treatments = 126 plots).. Vegetation abundance in all treatments was measured every year from 2013 to 2018 by using a 50 x 50 cm grid placed in the middle of each plot. Treatments in different colors correspond to Control conditions (C, in grey) and to treatments of the ecosystem approach: Light (Li, in yellow), Nutrients (Nu, in purple), Single-litter (1F, in orange) and Double-litter (2F, in red); and of the community approach: Transplants-out (To, in blue), Transplants-in (Ti, in green). Treatments in black spruce forests in light colors and in trembling aspen forests in dark colors.
Boxplot Coverage of Control plots in 2018 (average per Site (from averages per Blocks)) Save as PDF 8x6 portrait
cov.plot <- ggplot(Func18_C_mean8, aes(x = Func_gr, y =Mean, fill=Func_gr)) + geom_boxplot()+ facet_grid(cols=vars(Canopy)) + scale_fill_brewer(palette="Dark2") + theme_light(base_size = 12)
cov.plot.lm <- lm(Mean ~ Func_gr + Canopy + Func_gr:Canopy, data = Func18_C_mean8) summary(cov.plot.lm)
cov.emmeans <- emmeans(cov.plot.lm, specs = pairwise ~ Func_gr|Canopy, type = "response") cov.emmeans
plot(cov.emmeans, comparisons = TRUE)
cov.mod_means <- multcomp::cld(object = cov.emmeans$emmeans,
Letters = letters,no.readonly=TRUE)
cov.mod_means
Variation in abundance of functional groups (Bryophytes, Ericaceae, Pteridophyta, Herbs and Shrubs) over time (from 2013 to 2018) for black spruce (left panels) and trembling aspen stands (right panels).
DB_All_FG <- DB_All
DB_All_FG2 <- DB_All_FG %>% group_by(Year, Site, Block, Canopy, Treatment, Func_gr) %>% summarise(Coverage = sum(Coverage)) head(DB_All_FG2) ####Rename levels of Canopy DB_All_FG2$Canopy <- recode_factor(DB_All_FG2$Canopy, BS = "Black spruce", TA = "Trembling aspen")
Variation in abundance of functional groups over time (from 2013 to 2018) for black spruce (left panels) and trembling aspen stands (right panels). Functional groups: (a) Bryophytes, (b) Sphagnaceae, (c) Ericaceae, (d) Peridophyta, (e) Herbs, (f) Shrubs, and (g) Trees. Treatments correspond to ecosystem approach: Light (Li, in yellow), Nutrients (Nu, in purple), Single-litter (1F, in orange) and Double-litter (2F, in red) and Control conditions (C, in grey). Smooth lines are based on the linear model of understory species abundances, each point in different colors (treatments) from data each year of the study.
DB_Tbio_FG <- DB_All_FG2 %>% filter(Treatment %in% c("C", "Li", "Nu", "1F", "2F")) %>% droplevels() unique(DB_Tbio_FG$Treatment)
DB_Tbio_Her <- DB_Tbio_FG %>% filter(Func_gr %in% c("Herbs")) %>% droplevels() unique(DB_Tbio_Her$Func_gr)
####Herbs (ggplot with smoothed lines - Abundance per Func_gr over time) (PDF 4x10 landscape) Plot_Tbio_Her <- ggplot(DB_Tbio_Her, aes(x=Year, y=Coverage, group=Treatment, color=Treatment, pch=Treatment)) + facet_grid(~Canopy) + geom_point (size = 1.5, alpha = 0.5)+ geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE, size=1.5)+ theme_bw()+ labs(x="Year", y = "Abundance of Herbs")+ scale_shape_manual(values=c(17, 16, 17, 16, 17))+ scale_color_manual(values=c("salmon1","firebrick2","antiquewhite4","gold","mediumorchid"))+ theme(axis.text=element_text(size=11, face="bold"), axis.title=element_text(size=14,face="bold"), plot.title = element_text(size=14,face="bold"), legend.text=element_text(size=14, face="bold"), legend.title = element_text(size=14, face="bold")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) Plot_Tbio_Her
DB_Tbio_Bry <- DB_Tbio_FG %>% filter(Func_gr %in% c("Bryophytes")) %>% droplevels() unique(DB_Tbio_Bry$Func_gr)
####Bryophytes (ggplot with smoothed lines - Abundance per Func_gr over time) (PDF 4x10 landscape) Plot_Tbio_Bry <- ggplot(DB_Tbio_Bry, aes(x=Year, y=Coverage, group=Treatment, color=Treatment, pch=Treatment)) + facet_grid(~Canopy) + geom_point (size = 1.5, alpha = 0.5)+ geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE, size=1.5)+ theme_bw()+ labs(x="Year", y = "Abundance of Bryophytes")+ scale_shape_manual(values=c(17, 16, 17, 16, 17))+ scale_color_manual(values=c("salmon1","firebrick2","antiquewhite4","gold","mediumorchid"))+ theme(axis.text=element_text(size=11, face="bold"), axis.title=element_text(size=14,face="bold"), plot.title = element_text(size=14,face="bold"), legend.text=element_text(size=14, face="bold"), legend.title = element_text(size=14, face="bold")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) Plot_Tbio_Bry
DB_Tbio_Eri <- DB_Tbio_FG %>% filter(Func_gr %in% c("Ericaceae")) %>% droplevels() unique(DB_Tbio_Eri$Func_gr)
####Ericaceae (ggplot with smoothed lines - Abundance per Func_gr over time) (PDF 4x10 landscape) Plot_Tbio_Eri <- ggplot(DB_Tbio_Eri, aes(x=Year, y=Coverage, group=Treatment, color=Treatment, pch=Treatment)) + facet_grid(~Canopy) + geom_point (size = 1.5, alpha = 0.5)+ geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE, size=1.5)+ theme_bw()+ labs(x="Year", y = "Abundance of Ericaceae")+ scale_shape_manual(values=c(17, 16, 17, 16, 17))+ scale_color_manual(values=c("salmon1","firebrick2","antiquewhite4","gold","mediumorchid"))+ theme(axis.text=element_text(size=11, face="bold"), axis.title=element_text(size=14,face="bold"), plot.title = element_text(size=14,face="bold"), legend.text=element_text(size=14, face="bold"), legend.title = element_text(size=14, face="bold")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) Plot_Tbio_Eri
DB_Tbio_Pte <- DB_Tbio_FG %>% filter(Func_gr %in% c("Pteridophyta")) %>% droplevels() unique(DB_Tbio_Pte$Func_gr)
####Pteridophyta (ggplot with smoothed lines - Abundance per Func_gr over time) (PDF 4x10 landscape) Plot_Tbio_Pte <- ggplot(DB_Tbio_Pte, aes(x=Year, y=Coverage, group=Treatment, color=Treatment, pch=Treatment)) + facet_grid(~Canopy) + geom_point (size = 1.5, alpha = 0.5)+ geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE, size=1.5)+ theme_bw()+ labs(x="Year", y = "Abundance of Pteridophyta")+ scale_shape_manual(values=c(17, 16, 17, 16, 17))+ scale_color_manual(values=c("salmon1","firebrick2","antiquewhite4","gold","mediumorchid"))+ theme(axis.text=element_text(size=11, face="bold"), axis.title=element_text(size=14,face="bold"), plot.title = element_text(size=14,face="bold"), legend.text=element_text(size=14, face="bold"), legend.title = element_text(size=14, face="bold")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) Plot_Tbio_Pte
DB_Tbio_Shr <- DB_Tbio_FG %>% filter(Func_gr %in% c("Shrubs")) %>% droplevels() unique(DB_Tbio_Shr$Func_gr)
####Shrubs (ggplot with smoothed lines - Abundance per Func_gr over time) (PDF 4x10 landscape) Plot_Tbio_Sch <- ggplot(DB_Tbio_Shr, aes(x=Year, y=Coverage, group=Treatment, color=Treatment, pch=Treatment)) + facet_grid(~Canopy) + geom_point (size = 1.5, alpha = 0.5)+ geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE, size=1.5)+ theme_bw()+ labs(x="Year", y = "Abundance of Shrubs")+ scale_shape_manual(values=c(17, 16, 17, 16, 17))+ scale_color_manual(values=c("salmon1","firebrick2","antiquewhite4","gold","mediumorchid"))+ theme(axis.text=element_text(size=11, face="bold"), axis.title=element_text(size=14,face="bold"), plot.title = element_text(size=14,face="bold"), legend.text=element_text(size=14, face="bold"), legend.title = element_text(size=14, face="bold")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) Plot_Tbio_Sch
DB_Tbio_Sph <- DB_Tbio_FG %>% filter(Func_gr %in% c("Sphagnaceae")) %>% droplevels() unique(DB_Tbio_Sph$Func_gr)
####Sphagnaceae (ggplot with smoothed lines - Abundance per Func_gr over time) (PDF 4x10 landscape) Plot_Tbio_Sph <- ggplot(DB_Tbio_Sph, aes(x=Year, y=Coverage, group=Treatment, color=Treatment, pch=Treatment)) + facet_grid(~Canopy) + geom_point (size = 1.5, alpha = 0.5)+ geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE, size=1.5)+ theme_bw()+ labs(x="Year", y = "Abundance of Sphagnaceae")+ scale_shape_manual(values=c(17, 16, 17, 16, 17))+ scale_color_manual(values=c("salmon1","firebrick2","antiquewhite4","gold","mediumorchid"))+ theme(axis.text=element_text(size=11, face="bold"), axis.title=element_text(size=14,face="bold"), plot.title = element_text(size=14,face="bold"), legend.text=element_text(size=14, face="bold"), legend.title = element_text(size=14, face="bold")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) Plot_Tbio_Sph
DB_Tbio_Tre <- DB_Tbio_FG %>% filter(Func_gr %in% c("Trees")) %>% droplevels() unique(DB_Tbio_Tre$Func_gr)
####Trees (ggplot with smoothed lines - Abundance per Func_gr over time) (PDF 4x10 landscape) Plot_Tbio_Tre <- ggplot(DB_Tbio_Tre, aes(x=Year, y=Coverage, group=Treatment, color=Treatment, pch=Treatment)) + facet_grid(~Canopy) + geom_point (size = 1.5, alpha = 0.5)+ geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE, size=1.5)+ theme_bw()+ labs(x="Year", y = "Abundance of Trees")+ scale_shape_manual(values=c(17, 16, 17, 16, 17))+ scale_color_manual(values=c("salmon1","firebrick2","antiquewhite4","gold","mediumorchid"))+ theme(axis.text=element_text(size=11, face="bold"), axis.title=element_text(size=14,face="bold"), plot.title = element_text(size=14,face="bold"), legend.text=element_text(size=14, face="bold"), legend.title = element_text(size=14, face="bold")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) Plot_Tbio_Tre
DB_Tbio_Gra <- DB_Tbio_FG %>% filter(Func_gr %in% c("Graminoids")) %>% droplevels() unique(DB_Tbio_Gra$Func_gr)
####Graminoids (ggplot with smoothed lines - Abundance per Func_gr over time) (PDF 4x10 landscape) Plot_Tbio_Gra <- ggplot(DB_Tbio_Gra, aes(x=Year, y=Coverage, group=Treatment, color=Treatment, pch=Treatment)) + facet_grid(~Canopy) + geom_point (size = 1.5, alpha = 0.5)+ geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE, size=1.5)+ theme_bw()+ labs(x="Year", y = "Abundance of Graminoids")+ scale_shape_manual(values=c(17, 16, 17, 16, 17))+ scale_color_manual(values=c("salmon1","firebrick2","antiquewhite4","gold","mediumorchid"))+ theme(axis.text=element_text(size=11, face="bold"), axis.title=element_text(size=14,face="bold"), plot.title = element_text(size=14,face="bold"), legend.text=element_text(size=14, face="bold"), legend.title = element_text(size=14, face="bold")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) Plot_Tbio_Gra
Variation in abundance of functional groups over time (from 2013 to 2018) for black spruce (left panels) and trembling aspen stands (right panels). Functional groups: (a) Bryophytes, (b) Sphagnaceae, (c) Ericaceae, (d) Peridophyta, (e) Herbs, (f) Shrubs, and (g) Trees. Treatments correspond to ecosystem approach: Light (Li, in yellow), Nutrients (Nu, in purple), Single-litter (1F, in orange) and Double-litter (2F, in red) and Control conditions (C, in grey). Smooth lines are based on the linear model of understory species abundances, each point in different colors (treatments) from data each year of the study.
DB_Tss_FG <- DB_All_FG2 %>% filter(Treatment %in% c("C", "Ti", "To")) %>% droplevels() unique(DB_Tss_FG$Treatment)
DB_Tss_Her <- DB_Tss_FG %>% filter(Func_gr %in% c("Herbs")) %>% droplevels() unique(DB_Tss_Her$Func_gr)
####Herbs (ggplot with smoothed lines - Abundance per Func_gr over time) (PDF 4x10 landscape) Plot_Tss_Her <- ggplot(DB_Tss_Her, aes(x=Year, y=Coverage, group=Treatment, color=Treatment, pch=Treatment)) + facet_grid(~Canopy) + geom_point (size = 1.5, alpha = 0.5)+ geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE, size=1.5)+ theme_bw()+ labs(x="Year", y = "Abundance of Herbs")+ scale_shape_manual(values=c(17, 16, 17, 16, 17))+ scale_color_manual(values=c("antiquewhite4","lightseagreen","chartreuse3"))+ theme(axis.text=element_text(size=11, face="bold"), axis.title=element_text(size=14,face="bold"), plot.title = element_text(size=14,face="bold"), legend.text=element_text(size=14, face="bold"), legend.title = element_text(size=14, face="bold")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) Plot_Tss_Her
DB_Tss_Bry <- DB_Tss_FG %>% filter(Func_gr %in% c("Bryophytes")) %>% droplevels() unique(DB_Tss_Bry$Func_gr)
####Bryophytes (ggplot with smoothed lines - Abundance per Func_gr over time) (PDF 4x10 landscape) Plot_Tss_Bry <- ggplot(DB_Tss_Bry, aes(x=Year, y=Coverage, group=Treatment, color=Treatment, pch=Treatment)) + facet_grid(~Canopy) + geom_point (size = 1.5, alpha = 0.5)+ geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE, size=1.5)+ theme_bw()+ labs(x="Year", y = "Abundance of Bryophytes")+ scale_shape_manual(values=c(17, 16, 17, 16, 17))+ scale_color_manual(values=c("antiquewhite4","lightseagreen","chartreuse3"))+ theme(axis.text=element_text(size=11, face="bold"), axis.title=element_text(size=14,face="bold"), plot.title = element_text(size=14,face="bold"), legend.text=element_text(size=14, face="bold"), legend.title = element_text(size=14, face="bold")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) Plot_Tss_Bry
DB_Tss_Eri <- DB_Tss_FG %>% filter(Func_gr %in% c("Ericaceae")) %>% droplevels() unique(DB_Tss_Eri$Func_gr)
####Ericaceae (ggplot with smoothed lines - Abundance per Func_gr over time) (PDF 4x10 landscape) Plot_Tss_Eri <- ggplot(DB_Tss_Eri, aes(x=Year, y=Coverage, group=Treatment, color=Treatment, pch=Treatment)) + facet_grid(~Canopy) + geom_point (size = 1.5, alpha = 0.5)+ geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE, size=1.5)+ theme_bw()+ labs(x="Year", y = "Abundance of Ericaceae")+ scale_shape_manual(values=c(17, 16, 17, 16, 17))+ scale_color_manual(values=c("antiquewhite4","lightseagreen","chartreuse3"))+ theme(axis.text=element_text(size=11, face="bold"), axis.title=element_text(size=14,face="bold"), plot.title = element_text(size=14,face="bold"), legend.text=element_text(size=14, face="bold"), legend.title = element_text(size=14, face="bold")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) Plot_Tss_Eri
DB_Tss_Pte <- DB_Tss_FG %>% filter(Func_gr %in% c("Pteridophyta")) %>% droplevels() unique(DB_Tss_Pte$Func_gr)
####Pteridophyta (ggplot with smoothed lines - Abundance per Func_gr over time) (PDF 4x10 landscape) Plot_Tss_Pte <- ggplot(DB_Tss_Pte, aes(x=Year, y=Coverage, group=Treatment, color=Treatment, pch=Treatment)) + facet_grid(~Canopy) + geom_point (size = 1.5, alpha = 0.5)+ geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE, size=1.5)+ theme_bw()+ labs(x="Year", y = "Abundance of Pteridophyta")+ scale_shape_manual(values=c(17, 16, 17, 16, 17))+ scale_color_manual(values=c("antiquewhite4","lightseagreen","chartreuse3"))+ theme(axis.text=element_text(size=11, face="bold"), axis.title=element_text(size=14,face="bold"), plot.title = element_text(size=14,face="bold"), legend.text=element_text(size=14, face="bold"), legend.title = element_text(size=14, face="bold")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) Plot_Tss_Pte
DB_Tss_Shr <- DB_Tss_FG %>% filter(Func_gr %in% c("Shrubs")) %>% droplevels() unique(DB_Tss_Shr$Func_gr)
####Shrubs (ggplot with smoothed lines - Abundance per Func_gr over time) (PDF 4x10 landscape) Plot_Tss_Sch <- ggplot(DB_Tss_Shr, aes(x=Year, y=Coverage, group=Treatment, color=Treatment, pch=Treatment)) + facet_grid(~Canopy) + geom_point (size = 1.5, alpha = 0.5)+ geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE, size=1.5)+ theme_bw()+ labs(x="Year", y = "Abundance of Shrubs")+ scale_shape_manual(values=c(17, 16, 17, 16, 17))+ scale_color_manual(values=c("antiquewhite4","lightseagreen","chartreuse3"))+ theme(axis.text=element_text(size=11, face="bold"), axis.title=element_text(size=14,face="bold"), plot.title = element_text(size=14,face="bold"), legend.text=element_text(size=14, face="bold"), legend.title = element_text(size=14, face="bold")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) Plot_Tss_Sch
DB_Tss_Sph <- DB_Tss_FG %>% filter(Func_gr %in% c("Sphagnaceae")) %>% droplevels() unique(DB_Tss_Sph$Func_gr)
####Sphagnaceae (ggplot with smoothed lines - Abundance per Func_gr over time) (PDF 4x10 landscape) Plot_Tss_Sph <- ggplot(DB_Tss_Sph, aes(x=Year, y=Coverage, group=Treatment, color=Treatment, pch=Treatment)) + facet_grid(~Canopy) + geom_point (size = 1.5, alpha = 0.5)+ geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE, size=1.5)+ theme_bw()+ labs(x="Year", y = "Abundance of Sphagnaceae")+ scale_shape_manual(values=c(17, 16, 17, 16, 17))+ scale_color_manual(values=c("antiquewhite4","lightseagreen","chartreuse3"))+ theme(axis.text=element_text(size=11, face="bold"), axis.title=element_text(size=14,face="bold"), plot.title = element_text(size=14,face="bold"), legend.text=element_text(size=14, face="bold"), legend.title = element_text(size=14, face="bold")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) Plot_Tss_Sph
DB_Tss_Tre <- DB_Tss_FG %>% filter(Func_gr %in% c("Trees")) %>% droplevels() unique(DB_Tss_Tre$Func_gr)
####Trees (ggplot with smoothed lines - Abundance per Func_gr over time) (PDF 4x10 landscape) Plot_Tss_Tre <- ggplot(DB_Tss_Tre, aes(x=Year, y=Coverage, group=Treatment, color=Treatment, pch=Treatment)) + facet_grid(~Canopy) + geom_point (size = 1.5, alpha = 0.5)+ geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE, size=1.5)+ theme_bw()+ labs(x="Year", y = "Abundance of Trees")+ scale_shape_manual(values=c(17, 16, 17, 16, 17))+ scale_color_manual(values=c("antiquewhite4","lightseagreen","chartreuse3"))+ theme(axis.text=element_text(size=11, face="bold"), axis.title=element_text(size=14,face="bold"), plot.title = element_text(size=14,face="bold"), legend.text=element_text(size=14, face="bold"), legend.title = element_text(size=14, face="bold")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) Plot_Tss_Tre
DB_Tss_Gra <- DB_Tss_FG %>% filter(Func_gr %in% c("Graminoids")) %>% droplevels() unique(DB_Tss_Gra$Func_gr)
####Graminoids (ggplot with smoothed lines - Abundance per Func_gr over time) (PDF 4x10 landscape) Plot_Tss_Gra <- ggplot(DB_Tss_Gra, aes(x=Year, y=Coverage, group=Treatment, color=Treatment, pch=Treatment)) + facet_grid(~Canopy) + geom_point (size = 1.5, alpha = 0.5)+ geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE, size=1.5)+ theme_bw()+ labs(x="Year", y = "Abundance of Graminoids")+ scale_shape_manual(values=c(17, 16, 17, 16, 17))+ scale_color_manual(values=c("antiquewhite4","lightseagreen","chartreuse3"))+ theme(axis.text=element_text(size=11, face="bold"), axis.title=element_text(size=14,face="bold"), plot.title = element_text(size=14,face="bold"), legend.text=element_text(size=14, face="bold"), legend.title = element_text(size=14, face="bold")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(hjust = 0.5)) Plot_Tss_Gra