-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
320 lines (239 loc) · 12.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# -*- coding: utf-8 -*-
#!/usr/bin/env python
from data_iterator import *
from state import *
from dialog_encdec import *
from utils import *
from nlp_tools import NLPTools
import time
import traceback
import os.path
import sys
import argparse
import cPickle
import logging
import pprint
import numpy
import collections
import signal
import math
import matplotlib
matplotlib.use('Agg')
import pylab
class Unbuffered:
def __init__(self, stream):
self.stream = stream
def write(self, data):
self.stream.write(data)
self.stream.flush()
def __getattr__(self, attr):
return getattr(self.stream, attr)
sys.stdout = Unbuffered(sys.stdout)
logger = logging.getLogger(__name__)
### Unique RUN_ID for this execution
RUN_ID = str(time.time())
### Performance measures are defined here
measures = ["train_cost", "train_misclass_first", "train_misclass_second", "valid_cost", "valid_misclass_first", "valid_misclass_second", "valid_emi", "valid_bleu_n_1", "valid_bleu_n_2", "valid_bleu_n_3", "valid_bleu_n_4", 'valid_jaccard', 'valid_recall_at_1', 'valid_recall_at_5', 'valid_mrr_at_5', 'tfidf_cs_at_1', 'tfidf_cs_at_5']
def init_timings():
timings = {}
for m in measures:
timings[m] = []
return timings
def save(model, timings, post_fix = ''):
print "Saving the model..."
# ignore keyboard interrupt while saving
start = time.time()
s = signal.signal(signal.SIGINT, signal.SIG_IGN)
model.save(model.state['save_dir'] + '/' + model.state['run_id'] + "_" + model.state['prefix'] + post_fix + 'model.npz')
cPickle.dump(model.state, open(model.state['save_dir'] + '/' + model.state['run_id'] + "_" + model.state['prefix'] + post_fix + 'state.pkl', 'w'))
numpy.savez(model.state['save_dir'] + '/' + model.state['run_id'] + "_" + model.state['prefix'] + post_fix + 'timing.npz', **timings)
signal.signal(signal.SIGINT, s)
print "Model saved, took {}".format(time.time() - start)
def load(model, filename):
print "Loading the model..."
# ignore keyboard interrupt while saving
start = time.time()
s = signal.signal(signal.SIGINT, signal.SIG_IGN)
model.load(filename)
signal.signal(signal.SIGINT, s)
print "Model loaded, took {}".format(time.time() - start)
def main(args):
logging.basicConfig(level = logging.DEBUG,
format = "%(asctime)s: %(name)s: %(levelname)s: %(message)s")
state = eval(args.prototype)()
timings = init_timings()
# Resume model if specified by command line arguments.
if args.resume != "":
# Load in state and timings file for model to resume
logger.debug("Resuming %s" % args.resume)
state_file = args.resume + '_state.pkl'
timings_file = args.resume + '_timing.npz'
if os.path.isfile(state_file) and os.path.isfile(timings_file):
logger.debug("Loading previous state")
state = cPickle.load(open(state_file, 'r'))
timings = dict(numpy.load(open(timings_file, 'r')))
for x, y in timings.items():
timings[x] = list(y)
else:
raise Exception("Cannot resume, cannot find files!")
logger.debug("State:\n{}".format(pprint.pformat(state)))
logger.debug("Timings:\n{}".format(pprint.pformat(timings)))
# If user specified --force_train_all_wordemb, the model will train all word embeddings,
# regardless of any other model configuration variables
if args.force_train_all_wordemb == True:
state['fix_pretrained_word_embeddings'] = False
model = DialogEncoderDecoder(state)
rng = model.rng
if args.resume != "":
# Load in model parameters for model to resume
filename = args.resume + '_model.npz'
if os.path.isfile(filename):
logger.debug("Loading previous model")
load(model, filename)
else:
raise Exception("Cannot resume, cannot find model file!")
if 'run_id' not in model.state:
raise Exception('Backward compatibility not ensured! (need run_id in state)')
else:
# assign new run_id key
model.state['run_id'] = RUN_ID
# Compile Theano functions
logger.debug("Compile trainer")
logger.debug("Training with exact log-likelihood")
train_batch = model.build_train_function()
eval_batch = model.build_eval_function()
logger.debug("Load data")
sentence_break_symbols = [model.str_to_idx['.'], model.str_to_idx['?'], model.str_to_idx['!']]
train_data, \
valid_data, = get_train_iterator(state, sentence_break_symbols, args.uniform_sampling_across_classes)
train_data.start()
# The model is always predicting the speaker class, change-of-turn / no-change-of-turn class and auxiliary class
tokens_to_predict_per_sample = 3
# Start looping through the dataset
step = 0
patience = state['patience']
start_time = time.time()
train_cost = 0
train_misclass_first = 0 # Number of misclassifications of first class type (speaker class)
train_misclass_second = 0 # Number of misclassifications of second class type (turn-taking class)
train_samples_done = 0 # Number of training examples done
# Start training loop
while (step < state['loop_iters'] and
(time.time() - start_time)/60. < state['time_stop'] and
patience >= 0):
# Training phase
batch = train_data.next()
# Train finished
if not batch:
# Restart training
logger.debug("Got None...")
break
# Retrieve variables from batch
logger.debug("[TRAIN] - Got batch %d,%d" % (batch['x_prev'].shape[1], batch['max_length']))
x_data_prev = batch['x_prev']
x_mask_prev = batch['x_mask_prev']
x_data_next = batch['x_next']
x_mask_next = batch['x_mask_next']
x_precomputed_features = batch['x_precomputed_features']
y_data = batch['y']
y_data_prev = batch['y_prev']
x_max_length = batch['max_length']
max_length = batch['max_length']
# Train on batch
c, miscl_first, miscl_second = train_batch(x_data_prev, x_mask_prev, x_data_next, x_mask_next, x_precomputed_features, y_data, y_data_prev, x_max_length)
# Keep track of log-likelihood and misclassifications
if numpy.isinf(c) or numpy.isnan(c):
logger.warn("Got NaN cost .. skipping")
continue
train_cost += c
train_misclass_first += miscl_first
train_misclass_second += miscl_second
train_samples_done += batch['num_samples']
this_time = time.time()
# Print training statistics
if step % state['train_freq'] == 0:
elapsed = this_time - start_time
h, m, s = ConvertTimedelta(this_time - start_time)
print ".. %.2d:%.2d:%.2d %4d mb # %d bs %d maxl %d acc_cost = %.4f acc_word_perplexity = %.4f acc_mean_error_turn_taking_class = %.4f acc_mean_error_speaker_class = %.4f" % (h, m, s,\
state['time_stop'] - (time.time() - start_time)/60.,\
step, \
batch['x_prev'].shape[1], \
batch['max_length'], \
float((train_cost/train_samples_done)/tokens_to_predict_per_sample), \
math.exp(float((train_cost/train_samples_done)/tokens_to_predict_per_sample)), \
float(train_misclass_first/float(train_samples_done)), \
float(train_misclass_second/float(train_samples_done)))
# Start validation loop
if valid_data is not None and\
step % state['valid_freq'] == 0 and step > 1:
valid_data.start()
valid_cost = 0
valid_misclass_first = 0
valid_misclass_second = 0
valid_samples_done = 0
# Prepare variables for plotting histogram over word-perplexities and mutual information
valid_data_len = valid_data.data_len
logger.debug("[VALIDATION START]")
while True:
batch = valid_data.next()
# Train finished
if not batch:
break
logger.debug("[VALID] - Got batch %d,%d" % (batch['x_prev'].shape[1], batch['max_length']))
x_data_prev = batch['x_prev']
x_mask_prev = batch['x_mask_prev']
x_data_next = batch['x_next']
x_mask_next = batch['x_mask_next']
x_precomputed_features = batch['x_precomputed_features']
y_data = batch['y']
y_data_prev = batch['y_prev']
x_max_length = batch['max_length']
c, _, miscl_first, miscl_second, _, _ = eval_batch(x_data_prev, x_mask_prev, x_data_next, x_mask_next, x_precomputed_features, y_data, y_data_prev, x_max_length)
if numpy.isinf(c) or numpy.isnan(c):
continue
valid_cost += c
valid_misclass_first += miscl_first
valid_misclass_second += miscl_second
valid_samples_done += batch['num_samples']
logger.debug("[VALIDATION END]")
valid_cost /= float(valid_samples_done*tokens_to_predict_per_sample)
valid_misclass_first /= float(valid_samples_done)
valid_misclass_second /= float(valid_samples_done)
if len(timings["valid_cost"]) == 0 or valid_cost < numpy.min(timings["valid_cost"]):
patience = state['patience']
# Saving model if decrease in validation cost
save(model, timings)
elif valid_cost >= timings["valid_cost"][-1] * state['cost_threshold']:
patience -= 1
if args.save_every_valid_iteration:
save(model, timings, '_' + str(step) + '_')
print "** valid cost (NLL) = %.4f, valid word-perplexity = %.4f, valid mean turn-taking class error = %.4f, valid mean speaker class error = %.4f, patience = %d" % (float(valid_cost), float(math.exp(valid_cost)), float(valid_misclass_first), float(valid_misclass_second), patience)
timings["train_cost"].append((train_cost/train_samples_done)/tokens_to_predict_per_sample)
timings["train_misclass_first"].append(float(train_misclass_first)/float(train_samples_done))
timings["train_misclass_second"].append(float(train_misclass_second)/float(train_samples_done))
timings["valid_cost"].append(valid_cost)
timings["valid_misclass_first"].append(float(valid_misclass_first))
timings["valid_misclass_second"].append(float(valid_misclass_second))
# Reset train cost, train misclass and train done
train_cost = 0
train_misclass_first = 0
train_misclass_second = 0
train_samples_done = 0
step += 1
logger.debug("All done, exiting...")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--resume", type=str, default="", help="Resume training from that state")
parser.add_argument("--force_train_all_wordemb", action='store_true', help="If true, will force the model to train all word embeddings in the encoder. This switch can be used to fine-tune a model which was trained with fixed (pretrained) encoder word embeddings.")
parser.add_argument("--save_every_valid_iteration", action='store_true', help="If true, will save a copy of the model at every validation iteration.")
parser.add_argument("--uniform_sampling_across_classes", type=int, default="0", help="The number of batches the data iterator will sample uniformly across speaker classes. After this number of batches, the data iterator will startt to sample clases proportional to their real normalized frequency in the training set.")
parser.add_argument("--prototype", type=str, help="Use the prototype", default='prototype_state')
args = parser.parse_args()
return args
if __name__ == "__main__":
# Example run:
# THEANO_FLAGS=mode=FAST_COMPILE,floatX=float32 python train.py --prototype prototype_movies
# Models only run with float32
assert(theano.config.floatX == 'float32')
args = parse_args()
main(args)