This repository has been archived by the owner on Jan 25, 2023. It is now read-only.
forked from weidai11/cryptopp
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathadv_simd.h
1281 lines (1096 loc) · 54.3 KB
/
adv_simd.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// adv_simd.h - written and placed in the public domain by Jeffrey Walton
/// \file adv_simd.h
/// \brief Template for AdvancedProcessBlocks and SIMD processing
// The SIMD based implementations for ciphers that use SSE, NEON and Power7
// have a commom pattern. Namely, they have a specialized implementation of
// AdvancedProcessBlocks which processes multiple block using hardware
// acceleration. After several implementations we noticed a lot of copy and
// paste occuring. adv_simd.h provides a template to avoid the copy and paste.
//
// There are 6 templates provided in this file. The number following the
// function name, 128, is the block size in bits. The name following the
// block size is the arrangement and acceleration. For example 4x1_SSE means
// Intel SSE using two encrypt (or decrypt) functions: one that operates on
// 4 SIMD words, and one that operates on 1 SIMD words.
//
// * AdvancedProcessBlocks128_4x1_SSE
// * AdvancedProcessBlocks128_6x2_SSE
// * AdvancedProcessBlocks128_4x1_NEON
// * AdvancedProcessBlocks128_6x1_NEON
// * AdvancedProcessBlocks128_4x1_ALTIVEC
// * AdvancedProcessBlocks128_6x1_ALTIVEC
//
// If an arrangement ends in 2, like 6x2, then the template will handle the
// single block case by padding with 0's and using the two SIMD word
// function. This happens at most one time when processing multiple blocks.
// The extra processing of a zero block is trivial and worth the tradeoff.
//
// The MAYBE_CONST macro present on x86 is a SunCC workaround. Some versions
// of SunCC lose/drop the const-ness in the F1 and F4 functions. It eventually
// results in a failed link due to the const/non-const mismatch.
//
// In July 2020 the library stopped using 64-bit block version of
// AdvancedProcessBlocks. Testing showed unreliable results and failed
// self tests on occasion. Also see Issue 945 and
// https://github.com/weidai11/cryptopp/commit/dd7598e638bb.
#ifndef CRYPTOPP_ADVANCED_SIMD_TEMPLATES
#define CRYPTOPP_ADVANCED_SIMD_TEMPLATES
#include "config.h"
#include "misc.h"
#include "stdcpp.h"
#if (CRYPTOPP_ARM_NEON_HEADER)
# include <arm_neon.h>
#endif
#if (CRYPTOPP_ARM_ACLE_HEADER)
# include <stdint.h>
# include <arm_acle.h>
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
# include <emmintrin.h>
# include <xmmintrin.h>
#endif
// SunCC needs CRYPTOPP_SSSE3_AVAILABLE, too
#if (CRYPTOPP_SSSE3_AVAILABLE)
# include <emmintrin.h>
# include <pmmintrin.h>
# include <xmmintrin.h>
#endif
#if defined(__ALTIVEC__)
# include "ppc_simd.h"
#endif
// ************************ All block ciphers *********************** //
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::BlockTransformation;
CRYPTOPP_CONSTANT(BT_XorInput = BlockTransformation::BT_XorInput);
CRYPTOPP_CONSTANT(BT_AllowParallel = BlockTransformation::BT_AllowParallel);
CRYPTOPP_CONSTANT(BT_InBlockIsCounter = BlockTransformation::BT_InBlockIsCounter);
CRYPTOPP_CONSTANT(BT_ReverseDirection = BlockTransformation::BT_ReverseDirection);
CRYPTOPP_CONSTANT(BT_DontIncrementInOutPointers = BlockTransformation::BT_DontIncrementInOutPointers);
ANONYMOUS_NAMESPACE_END
// *************************** ARM NEON ************************** //
#if (CRYPTOPP_ARM_NEON_AVAILABLE) || (CRYPTOPP_ARM_ASIMD_AVAILABLE) || \
defined(CRYPTOPP_DOXYGEN_PROCESSING)
NAMESPACE_BEGIN(CryptoPP)
/// \brief AdvancedProcessBlocks for 1 and 6 blocks
/// \tparam F1 function to process 1 128-bit block
/// \tparam F6 function to process 6 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_6x1_NEON processes 6 and 2 NEON SIMD words
/// at a time.
/// \details The subkey type is usually word32 or word64. F1 and F6 must use the
/// same word type.
template <typename F1, typename F6, typename W>
inline size_t AdvancedProcessBlocks128_6x1_NEON(F1 func1, F6 func6,
const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
const unsigned int w_one[] = {0, 0<<24, 0, 1<<24};
const uint32x4_t s_one = vld1q_u32(w_one);
const size_t blockSize = 16;
// const size_t neonBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - blockSize);
xorBlocks = PtrAdd(xorBlocks, length - blockSize);
outBlocks = PtrAdd(outBlocks, length - blockSize);
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
uint64x2_t block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
const uint64x2_t one = vreinterpretq_u64_u32(s_one);
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
block1 = vaddq_u64(block0, one);
block2 = vaddq_u64(block1, one);
block3 = vaddq_u64(block2, one);
block4 = vaddq_u64(block3, one);
block5 = vaddq_u64(block4, one);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block5, one)));
}
else
{
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block2 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block3 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block4 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block5 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block2));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block3));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block4));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block5));
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 6*blockSize;
}
}
while (length >= blockSize)
{
uint64x2_t block;
block = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (xorInput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1(block, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block));
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
return length;
}
/// \brief AdvancedProcessBlocks for 1 and 4 blocks
/// \tparam F1 function to process 1 128-bit block
/// \tparam F4 function to process 4 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_4x1_NEON processes 4 and 1 NEON SIMD words
/// at a time.
/// \details The subkey type is usually word32 or word64. V is the vector type and it is
/// usually uint32x4_t or uint32x4_t. F1, F4, and W must use the same word and
/// vector type.
template <typename F1, typename F4, typename W>
inline size_t AdvancedProcessBlocks128_4x1_NEON(F1 func1, F4 func4,
const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
const unsigned int w_one[] = {0, 0<<24, 0, 1<<24};
const uint32x4_t s_one = vld1q_u32(w_one);
const size_t blockSize = 16;
// const size_t neonBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - blockSize);
xorBlocks = PtrAdd(xorBlocks, length - blockSize);
outBlocks = PtrAdd(outBlocks, length - blockSize);
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 4*blockSize)
{
uint32x4_t block0, block1, block2, block3;
if (flags & BT_InBlockIsCounter)
{
const uint32x4_t one = s_one;
block0 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
block1 = vreinterpretq_u32_u64(vaddq_u64(vreinterpretq_u64_u32(block0), vreinterpretq_u64_u32(one)));
block2 = vreinterpretq_u32_u64(vaddq_u64(vreinterpretq_u64_u32(block1), vreinterpretq_u64_u32(one)));
block3 = vreinterpretq_u32_u64(vaddq_u64(vreinterpretq_u64_u32(block2), vreinterpretq_u64_u32(one)));
vst1q_u8(const_cast<byte*>(inBlocks), vreinterpretq_u8_u64(vaddq_u64(
vreinterpretq_u64_u32(block3), vreinterpretq_u64_u32(one))));
}
else
{
block0 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block2 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block3 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = veorq_u32(block2, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = veorq_u32(block3, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func4(block0, block1, block2, block3, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = veorq_u32(block2, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = veorq_u32(block3, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block0));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block1));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block2));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block3));
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 4*blockSize;
}
}
while (length >= blockSize)
{
uint32x4_t block = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
if (xorInput)
block = veorq_u32(block, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1(block, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = veorq_u32(block, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block));
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
return length;
}
/// \brief AdvancedProcessBlocks for 2 and 6 blocks
/// \tparam F2 function to process 2 128-bit blocks
/// \tparam F6 function to process 6 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_6x2_NEON processes 6 and 2 NEON SIMD words
/// at a time. For a single block the template uses F2 with a zero block.
/// \details The subkey type is usually word32 or word64. F2 and F6 must use the
/// same word type.
template <typename F2, typename F6, typename W>
inline size_t AdvancedProcessBlocks128_6x2_NEON(F2 func2, F6 func6,
const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
const unsigned int w_one[] = {0, 0<<24, 0, 1<<24};
const uint32x4_t s_one = vld1q_u32(w_one);
const size_t blockSize = 16;
// const size_t neonBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - blockSize);
xorBlocks = PtrAdd(xorBlocks, length - blockSize);
outBlocks = PtrAdd(outBlocks, length - blockSize);
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
uint64x2_t block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
const uint64x2_t one = vreinterpretq_u64_u32(s_one);
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
block1 = vaddq_u64(block0, one);
block2 = vaddq_u64(block1, one);
block3 = vaddq_u64(block2, one);
block4 = vaddq_u64(block3, one);
block5 = vaddq_u64(block4, one);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block5, one)));
}
else
{
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block2 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block3 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block4 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block5 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block2));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block3));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block4));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block5));
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 6*blockSize;
}
while (length >= 2*blockSize)
{
uint64x2_t block0, block1;
if (flags & BT_InBlockIsCounter)
{
const uint64x2_t one = vreinterpretq_u64_u32(s_one);
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
block1 = vaddq_u64(block0, one);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block1, one)));
}
else
{
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 2*blockSize;
}
}
while (length >= blockSize)
{
uint64x2_t block, zero = {0,0};
block = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (xorInput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block));
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
return length;
}
NAMESPACE_END // CryptoPP
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
// *************************** Intel SSE ************************** //
#if defined(CRYPTOPP_SSSE3_AVAILABLE) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
#if defined(CRYPTOPP_DOXYGEN_PROCESSING)
/// \brief SunCC workaround
/// \details SunCC loses the const on AES_Enc_Block and AES_Dec_Block
/// \sa <A HREF="http://github.com/weidai11/cryptopp/issues/224">Issue
/// 224, SunCC and failed compile for rijndael.cpp</A>
# define MAYBE_CONST const
/// \brief SunCC workaround
/// \details SunCC loses the const on AES_Enc_Block and AES_Dec_Block
/// \sa <A HREF="http://github.com/weidai11/cryptopp/issues/224">Issue
/// 224, SunCC and failed compile for rijndael.cpp</A>
# define MAYBE_UNCONST_CAST(T, x) (x)
#elif (__SUNPRO_CC >= 0x5130)
# define MAYBE_CONST
# define MAYBE_UNCONST_CAST(T, x) const_cast<MAYBE_CONST T>(x)
#else
# define MAYBE_CONST const
# define MAYBE_UNCONST_CAST(T, x) (x)
#endif
#if defined(CRYPTOPP_DOXYGEN_PROCESSING)
/// \brief Clang workaround
/// \details Clang issues spurious alignment warnings
/// \sa <A HREF="http://bugs.llvm.org/show_bug.cgi?id=20670">Issue
/// 20670, _mm_loadu_si128 parameter has wrong type</A>
# define M128_CAST(x) ((__m128i *)(void *)(x))
/// \brief Clang workaround
/// \details Clang issues spurious alignment warnings
/// \sa <A HREF="http://bugs.llvm.org/show_bug.cgi?id=20670">Issue
/// 20670, _mm_loadu_si128 parameter has wrong type</A>
# define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
#else
# ifndef M128_CAST
# define M128_CAST(x) ((__m128i *)(void *)(x))
# endif
# ifndef CONST_M128_CAST
# define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
# endif
#endif
NAMESPACE_BEGIN(CryptoPP)
/// \brief AdvancedProcessBlocks for 2 and 6 blocks
/// \tparam F2 function to process 2 128-bit blocks
/// \tparam F6 function to process 6 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_6x2_SSE processes 6 and 2 SSE SIMD words
/// at a time. For a single block the template uses F2 with a zero block.
/// \details The subkey type is usually word32 or word64. F2 and F6 must use the
/// same word type.
template <typename F2, typename F6, typename W>
inline size_t AdvancedProcessBlocks128_6x2_SSE(F2 func2, F6 func6,
MAYBE_CONST W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
const size_t blockSize = 16;
// const size_t xmmBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - blockSize);
xorBlocks = PtrAdd(xorBlocks, length - blockSize);
outBlocks = PtrAdd(outBlocks, length - blockSize);
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
__m128i block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
// Increment of 1 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, s_one);
block2 = _mm_add_epi32(block1, s_one);
block3 = _mm_add_epi32(block2, s_one);
block4 = _mm_add_epi32(block3, s_one);
block5 = _mm_add_epi32(block4, s_one);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block5, s_one));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block4 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block5 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block4);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block5);
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 6*blockSize;
}
while (length >= 2*blockSize)
{
__m128i block0, block1;
if (flags & BT_InBlockIsCounter)
{
// Increment of 1 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, s_one);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block1, s_one));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 2*blockSize;
}
}
while (length >= blockSize)
{
__m128i block, zero = _mm_setzero_si128();
block = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
if (xorInput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
_mm_storeu_si128(M128_CAST(outBlocks), block);
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
return length;
}
/// \brief AdvancedProcessBlocks for 1 and 4 blocks
/// \tparam F1 function to process 1 128-bit block
/// \tparam F4 function to process 4 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_4x1_SSE processes 4 and 1 SSE SIMD words
/// at a time.
/// \details The subkey type is usually word32 or word64. F1 and F4 must use the
/// same word type.
template <typename F1, typename F4, typename W>
inline size_t AdvancedProcessBlocks128_4x1_SSE(F1 func1, F4 func4,
MAYBE_CONST W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
const size_t blockSize = 16;
// const size_t xmmBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - blockSize);
xorBlocks = PtrAdd(xorBlocks, length - blockSize);
outBlocks = PtrAdd(outBlocks, length - blockSize);
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 4*blockSize)
{
__m128i block0, block1, block2, block3;
if (flags & BT_InBlockIsCounter)
{
// Increment of 1 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, s_one);
block2 = _mm_add_epi32(block1, s_one);
block3 = _mm_add_epi32(block2, s_one);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block3, s_one));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func4(block0, block1, block2, block3, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 4*blockSize;
}
}
while (length >= blockSize)
{
__m128i block = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
if (xorInput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1(block, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
_mm_storeu_si128(M128_CAST(outBlocks), block);
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
return length;
}
NAMESPACE_END // CryptoPP
#endif // CRYPTOPP_SSSE3_AVAILABLE
// ************************** Altivec/Power 4 ************************** //
#if defined(__ALTIVEC__) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
NAMESPACE_BEGIN(CryptoPP)
/// \brief AdvancedProcessBlocks for 1 and 4 blocks
/// \tparam F1 function to process 1 128-bit block
/// \tparam F4 function to process 4 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_4x1_ALTIVEC processes 4 and 1 Altivec SIMD words
/// at a time.
/// \details The subkey type is usually word32 or word64. F1 and F4 must use the
/// same word type.
template <typename F1, typename F4, typename W>
inline size_t AdvancedProcessBlocks128_4x1_ALTIVEC(F1 func1, F4 func4,
const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
#if (CRYPTOPP_LITTLE_ENDIAN)
const uint32x4_p s_one = {1,0,0,0};
#else
const uint32x4_p s_one = {0,0,0,1};
#endif
const size_t blockSize = 16;
// const size_t simdBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - blockSize);
xorBlocks = PtrAdd(xorBlocks, length - blockSize);