-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
423 lines (345 loc) · 20.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import os
import json
import sys
import uuid
import math
from random import randint
import gc
import torch
from tqdm import tqdm
from PIL import Image
import joblib
from gaussian_renderer import render, network_gui
from scene import Scene, getmodel
from utils.image_utils import psnr
from utils.loss_utils import l1_loss, ssim
from utils.general_utils import safe_state, PILtoTorch
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
TENSORBOARD_FOUND = False
torch.set_default_dtype(torch.float32)
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, args):
first_iter = 0
tb_writer = prepare_output_and_logger(args)
GaussianModel = getmodel(dataset.model) # gmodel, gmodelrgbonly
gaussians = GaussianModel(dataset.sh_degree, dataset.start_duration, dataset.time_interval, dataset.time_pad,
interp_type=dataset.interp_type, rot_interp_type=dataset.rot_interp_type,
time_pad_type=dataset.time_pad_type, var_pad=dataset.var_pad, kernel_size=dataset.kernel_size)
scene = Scene(dataset, gaussians, use_timepad=True)
gaussians.training_setup(opt)
args.duration = dataset.duration
args.save_iterations.append(args.iterations)
# args.test_iterations.append(args.iterations)
args.checkpoint_iterations.append(args.iterations)
saving_iterations = args.save_iterations
# testing_iterations = args.test_iterations
checkpoint_iterations = args.checkpoint_iterations
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
# variables for progressive training
scene.set_sampling_len(dataset.start_duration, sample_every=dataset.sample_every)
expanded = gaussians.expand_duration(dataset.start_duration)
sample_len = dataset.start_duration
g_sample_len = dataset.start_duration
mark_extract = False
need_extract = True
mark_last = False
viewpoint_stack = None
prune_inv = False
train_images = None
e_count = args.extract_every
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer, far=dataset.far)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack, train_images = scene.getTrainCameras(return_as='generator', shuffle=True)
viewpoint_stack = viewpoint_stack.copy()
if iteration > opt.prune_invisible_interval:
prune_inv = True
viewpoint_cam = viewpoint_stack.pop(0)
gt_image = next(train_images).cuda()
if mark_last:
if viewpoint_cam.timestamp >= scene.sample_len - gaussians.interval:
mark_extract = True
mark_last = False
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
bg = torch.rand((3), device="cuda") if opt.random_background else background
render_pkg = render(viewpoint_cam, gaussians, pipe, bg, near=dataset.near, far=dataset.far)
image, viewspace_point_tensor, viewspace_point_error_tensor, visibility_filter, radii, depth, flow, acc, idxs = \
render_pkg["render"], render_pkg["viewspace_points"], render_pkg["viewspace_l1points"], render_pkg["visibility_filter"], \
render_pkg["radii"], render_pkg["depth"], render_pkg["opticalflow"], render_pkg["acc"], render_pkg["dominent_idxs"]
# Loss
Ll1 = l1_loss(image, gt_image)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
# backtrack register
if opt.l1_accum:
l1_errors = (image - gt_image).abs().mean(dim=0)
ssim_errors = ssim(image, gt_image, reduce=False).mean(dim=0)
hook_tensor = torch.stack([acc[0], l1_errors, ssim_errors])
flow_h = flow.register_hook(lambda grad: hook_tensor)
loss += flow.mean() * 0
# Regularization
if opt.static_reg > 0 and iteration > opt.progressive_growing_steps + opt.make_dynamic_interval:
loss += opt.static_reg * torch.log(gaussians._xyz_disp.norm(dim=-1)+0.001).mean()
if opt.motion_reg > 0 and iteration > opt.progressive_growing_steps * opt.extract_every + opt.make_dynamic_interval and gaussians._xyz_motion.shape[0] > 0:
diff1 = (gaussians._xyz_motion[:, :1] - gaussians._xyz_motion[:, 1:])
loss += opt.motion_reg * diff1.norm(dim=-1).mean()
if opt.rot_reg > 0 and iteration > opt.progressive_growing_steps * opt.extract_every + opt.make_dynamic_interval and gaussians._xyz_motion.shape[0] > 0:
r1 = gaussians._rotation_motion[:, 1:]
r2 = gaussians._rotation_motion[:, :-1]
r_i = 1 - (r1 * r2).sum(dim=-1) / r1.norm(dim=-1).clamp_min(1e-6) / r2.norm(dim=-1).clamp_min(1e-6)
loss += opt.rot_reg * r_i.mean()
loss.backward()
if opt.l1_accum:
flow_h.remove()
iter_end.record()
gaussians.mark_error(loss.item(), viewpoint_cam.timestamp)
with torch.no_grad():
# Progress bar
ema_loss_for_log = loss.item()
psnr_log = psnr(image.unsqueeze(0), gt_image.unsqueeze(0)).mean().item()
if iteration % 10 == 0:
progress_bar.set_postfix({"PSNR": f"{psnr_log:.{2}f}", "Loss": f"{ema_loss_for_log:.{6}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, (pipe, background), dataset.near, dataset.far)
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
if opt.l1_accum:
gaussians.mark_prune_stats(radii, viewspace_point_error_tensor)
# Densification
if iteration < opt.densify_until_iter:
static_num = gaussians._xyz.shape[0]
static_vis_filter = visibility_filter[:static_num]
static_radii = radii[:static_num]
dynamic_vis_filter = visibility_filter[static_num:]
dynamic_radii = radii[static_num:]
gaussians.max_radii2D[static_vis_filter] = torch.max(gaussians.max_radii2D[static_vis_filter], static_radii[static_vis_filter])
gaussians.motion_max_radii2D[dynamic_vis_filter] = torch.max(gaussians.motion_max_radii2D[dynamic_vis_filter], dynamic_radii[dynamic_vis_filter])
gaussians.add_densification_stats(viewspace_point_tensor, static_vis_filter, dynamic_vis_filter, static_num)
if opt.l1_accum:
gaussians.add_l1_ssim_stats(viewspace_point_error_tensor, static_vis_filter, dynamic_vis_filter, static_num, viewpoint_cam.timestamp)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold, dynamic_size_threshold = None, None
s_max_ssim = opt.s_max_ssim if iteration > opt.error_base_prune_steps and iteration % (opt.densification_interval * opt.ssim_prune_every) == 0 else 0
s_l1_thres = opt.s_l1_thres if iteration > opt.error_base_prune_steps and iteration % (opt.densification_interval * opt.l1_prune_every) == 0 else 100
d_max_ssim = opt.d_max_ssim if iteration > opt.error_base_prune_steps and iteration % (opt.densification_interval * opt.ssim_prune_every) == 0 else 0
d_l1_thres = opt.d_l1_thres if iteration > opt.error_base_prune_steps and iteration % (opt.densification_interval * opt.l1_prune_every) == 0 else 100
gaussians.densify_and_prune(opt.densify_grad_threshold,
opt.densify_dgrad_threshold,
0.01, 0.01, scene.cameras_extent, size_threshold, dynamic_size_threshold,
s_max_ssim=s_max_ssim, s_l1_thres=s_l1_thres, d_max_ssim=d_max_ssim, d_l1_thres=d_l1_thres)
elif iteration > opt.extract_from_iter and iteration % opt.extracton_interval == 0:
static_num = gaussians._xyz.shape[0]
candidate = gaussians.get_errorneous_timestamp()
if not candidate is None:
gaussians.extract_dynamic_points_from_static(torch.tensor(viewpoint_cam.T).unsqueeze(0), candidate, static_vis_filter, scene.cameras_extent, percentile=opt.extract_percentile, max_dur=sample_len)
if iteration % (opt.densification_interval*4) == 0 and iteration < opt.densify_until_iter - 3000:
gaussians.adjust_temp_opa(max_dur=sample_len)
# if prune_inv and iteration < opt.iterations - 5000:
if prune_inv and iteration < opt.iterations and iteration > 3000:
gaussians.prune_invisible()
if opt.l1_accum:
gaussians.prune_small()
prune_inv = False
# Optimizer step
if iteration < opt.iterations:
# prevent nan grad of dynamic opacity
if gaussians._opacity_duration_var.shape[0] != 0:
if not gaussians._opacity_duration_var.grad is None:
gaussians._opacity_duration_var.grad = gaussians._opacity_duration_var.grad.nan_to_num()
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none=True)
gaussians.prune_nan_points()
torch.cuda.empty_cache()
if iteration > opt.extract_from_iter and (iteration % opt.progressive_growing_steps == opt.make_dynamic_interval) and need_extract :
mark_last = True
need_extract = False
# increase duration
if iteration > opt.extract_from_iter and iteration % opt.progressive_growing_steps == 0 and iteration > opt.progressive_growing_steps and ~need_extract:
sample_len = min(dataset.duration + gaussians.time_shift, int(dataset.time_interval * dataset.progressive_step) + scene.sample_len)
scene.set_sampling_len(sample_len, sample_every=dataset.sample_every)
g_sample_len = min(dataset.duration + gaussians.time_shift, sample_len)
expanded = gaussians.expand_duration(g_sample_len)
if expanded:
e_count += 1
if e_count >= opt.extract_every:
mark_last = True
need_extract = True
e_count = 0
# create dynamic points from static points
if mark_extract:
static_num = gaussians._xyz.shape[0]
static_vis_filter = visibility_filter[:static_num]
gaussians.extract_dynamic_points_from_static(torch.tensor(viewpoint_cam.T).unsqueeze(0), viewpoint_cam.timestamp,
static_vis_filter, scene.cameras_extent, percentile=opt.extract_percentile, max_dur=sample_len)
mark_extract = False
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderArgs, near, far):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
test_viewpoint_stack, test_images = scene.getTestCameras(shuffle=False, return_as='generator', n_job=1)
test_viewpoint_stack = test_viewpoint_stack.copy()
train_viewpoint_stack, train_images = scene.getTrainCameras(shuffle=False, return_as='generator', n_job=1)
train_viewpoint_stack = train_viewpoint_stack.copy()
validation_configs = ({'name': 'test', 'cameras': test_viewpoint_stack,
'images': test_images},
{'name': 'train', 'cameras': train_viewpoint_stack,
'images': train_images})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
count = 0
for idx, viewpoint in enumerate(config['cameras']):
if config['name'] == 'train':
sampled_idx_list = [idx % len(train_viewpoint_stack) for idx in range(5, 30, 5)]
if not idx in sampled_idx_list:
_ = next(config['images'])
continue
gt_image = next(config['images']).cuda()
rend_pkg = render(viewpoint, scene.gaussians, near=near, far=far, *renderArgs)
image = torch.clamp(rend_pkg["render"], 0.0, 1.0).cuda()
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double().detach().item()
psnr_test += psnr(image.unsqueeze(0), gt_image.unsqueeze(0)).mean().double().detach().item()
count += 1
del(rend_pkg)
del(image)
del(gt_image)
del(viewpoint)
torch.cuda.empty_cache()
psnr_test /= count
l1_test /= count
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_histogram("scene/motion_opacity_histogram", scene.gaussians.get_motion_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians._xyz.shape[0]+scene.gaussians._xyz_motion.shape[0], iteration)
torch.cuda.empty_cache()
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[7000_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[30_000, 40_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[30_000, 40_000])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--configpath", type=str, default = "None")
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
# args.test_iterations.append(args.iterations)
args.checkpoint_iterations.append(args.iterations)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# incase we provide config file not directly pass to the file
if os.path.exists(args.configpath) and args.configpath != "None":
print("overload config from " + args.configpath)
config = json.load(open(args.configpath))
for k in config.keys():
try:
value = getattr(args, k)
newvalue = config[k]
setattr(args, k, newvalue)
except:
print("failed set config: " + k)
print("finish load config from " + args.configpath)
else:
raise ValueError("config file not exist or not provided")
# Start GUI server, configure and run training
while True:
try:
network_gui.init(args.ip, args.port)
break
except:
args.port += 1
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args)
# All done
print("\nTraining complete.")