We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
我参考你的思路,但是最后采用sigmoid的bce loss来优化模型,目的是为了预测同一个span属于多标签分类的问题,但是模型一直不收敛,可能的原因是什么呢
The text was updated successfully, but these errors were encountered:
这个我就不是很清楚了,按理说改成bce 应该没有任何问题的。你有把 candidate_ner_scores = util.bilinear_classifier(candidate_starts_emb,candidate_ends_emb,self.dropout,output_size=self.num_types+1)#[num_sentence, max_sentence_length,max_sentence_length,types+1] candidate_ner_scores = tf.boolean_mask(tf.reshape(candidate_ner_scores,[-1,self.num_types+1]),flattened_candidate_scores_mask)<br class="Apple-interchange-newline"> 里面的self.num_types+1 改成self.num_types吗? 这里应该你对每一个label做出单独的判断就不需要一个non_mention score了
candidate_ner_scores = util.bilinear_classifier(candidate_starts_emb,candidate_ends_emb,self.dropout,output_size=self.num_types+1)#[num_sentence, max_sentence_length,max_sentence_length,types+1] candidate_ner_scores = tf.boolean_mask(tf.reshape(candidate_ner_scores,[-1,self.num_types+1]),flattened_candidate_scores_mask)<br class="Apple-interchange-newline">
另外你可以尝试一下给negative example 一点reduced weight这样可以缓解imbalance的问题
Sorry, something went wrong.
No branches or pull requests
我参考你的思路,但是最后采用sigmoid的bce loss来优化模型,目的是为了预测同一个span属于多标签分类的问题,但是模型一直不收敛,可能的原因是什么呢
The text was updated successfully, but these errors were encountered: