forked from ijp/pfds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheaps.sls
232 lines (204 loc) · 6.75 KB
/
heaps.sls
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#!r6rs
;; Copyright (C) 2012 Ian Price <ianprice90@googlemail.com>
;; Author: Ian Price <ianprice90@googlemail.com>
;; This program is free software, you can redistribute it and/or
;; modify it under the terms of the new-style BSD license.
;; You should have received a copy of the BSD license along with this
;; program. If not, see <http://www.debian.org/misc/bsd.license>.
;; Documentation:
;;
;; make-heap : (any any -> bool) -> heap
;; returns a new empty heap which uses the ordering procedure.
;;
;; heap : (any any -> bool) any ... -> heap
;; return a new heap, ordered by the procedure argument, that contains
;; all the other arguments as elements.
;;
;; heap? : any -> bool
;; returns #t if the argument is a heap, #f otherwise.
;;
;; heap-size : heap -> non-negative integer
;; returns the number of elements in the heap.
;;
;; heap-empty? : heap -> bool
;; returns #t if the heap contains no elements, #f otherwise.
;;
;; heap-min : heap -> any
;; returns the minimum element in the heap, according the heap's
;; ordering procedure. If there are no elements, a
;; &heap-empty-condition is raised.
;;
;; heap-delete-min : heap -> heap
;; returns a new heap containing all the elements of the heap
;; argument, except for the minimum argument, as determined by the
;; heap's ordering procedure. If there are no elements, a
;; &heap-empty-condition is raised.
;;
;; heap-pop : any + heap
;; returns two values: the the minimum value, and a heap obtained by
;; removing the minimum value from the original heap. If the heap is
;; empty, a &heap-empty-condition is raised.
;;
;; heap-insert : heap any -> heap
;; returns the new heap obtained by adding the element to those in the
;; argument heap.
;;
;; heap->list : heap -> Listof(any)
;; returns the heap containing all the elements of the heap. The
;; elements of the list are ordered according to the heap's ordering
;; procedure.
;;
;; list->heap : Listof(any) (any any -> boolean) -> heap
;; returns the heap containing all the elements of the list, and using
;; the procedure argument to order the elements.
;;
;; heap-merge : heap heap -> heap
;; returns the heap containing all the elements of the argument
;; heaps. The argument heaps are assumed to be using the same ordering
;; procedure.
;;
;; heap-sort : (any any -> bool) list -> list
;; returns a new list that is a permutation of the argument list, such
;; that all the elements are ordered by the given procedure.
;;
;; heap-ordering-procedure : heap -> (any any -> boolean)
;; returns the ordering procedure used internally by the heap.
;;
;; heap-empty-condition? : any -> bool
;; returns #t if argument is a &heap-empty condition, #f otherwise.
;;
(library (pfds heaps)
(export make-heap
(rename (%heap heap))
heap?
heap-size
heap-empty?
heap-min
heap-delete-min
heap-insert
heap-pop
heap->list
list->heap
heap-merge
heap-sort
(rename (heap-ordering-predicate heap-ordering-procedure))
heap-empty-condition?
)
(import (rnrs))
(define-record-type (node %make-node node?)
(fields size height value left right))
(define-record-type leaf)
(define (height x)
(if (leaf? x)
0
(node-height x)))
(define (size x)
(if (leaf? x)
0
(node-size x)))
(define (make-node v l r)
(define sl (height l))
(define sr (height r))
(define m (+ 1 (min sl sr)))
(define sz (+ 1 (size l) (size r)))
(if (< sl sr)
(%make-node sz m v r l)
(%make-node sz m v l r)))
(define (singleton v)
(%make-node 1 0 v (make-leaf) (make-leaf)))
(define (insert tree value prio<?)
(merge-trees tree (singleton value) prio<?))
(define (delete-min tree prio<?)
(merge-trees (node-left tree)
(node-right tree)
prio<?))
(define (merge-trees tree1 tree2 prio<?)
(cond ((leaf? tree1) tree2)
((leaf? tree2) tree1)
((prio<? (node-value tree2)
(node-value tree1))
(make-node (node-value tree2)
(node-left tree2)
(merge-trees tree1
(node-right tree2)
prio<?)))
(else
(make-node (node-value tree1)
(node-left tree1)
(merge-trees (node-right tree1)
tree2
prio<?)))))
;; outside interface
(define-record-type (heap %make-heap heap?)
(fields tree ordering-predicate))
(define (make-heap priority<?)
(%make-heap (make-leaf) priority<?))
(define (%heap < . vals)
(list->heap vals <))
(define (heap-size heap)
(size (heap-tree heap)))
(define (heap-empty? heap)
(leaf? (heap-tree heap)))
(define (heap-min heap)
(when (heap-empty? heap)
(raise (condition
(make-heap-empty-condition)
(make-who-condition 'heap-min)
(make-message-condition "There is no minimum element.")
(make-irritants-condition (list heap)))))
(node-value (heap-tree heap)))
(define (heap-delete-min heap)
(when (heap-empty? heap)
(raise (condition
(make-heap-empty-condition)
(make-who-condition 'heap-delete-min)
(make-message-condition "There is no minimum element.")
(make-irritants-condition (list heap)))))
(let ((< (heap-ordering-predicate heap)))
(%make-heap (delete-min (heap-tree heap) <) <)))
(define (heap-pop heap)
(when (heap-empty? heap)
(raise (condition
(make-heap-empty-condition)
(make-who-condition 'heap-pop)
(make-message-condition "There is no minimum element.")
(make-irritants-condition (list heap)))))
(let* ((tree (heap-tree heap))
(top (node-value tree))
(< (heap-ordering-predicate heap))
(rest (delete-min tree <)))
(values top
(%make-heap rest <))))
(define (heap-insert heap value)
(assert (heap? heap))
(let ((< (heap-ordering-predicate heap)))
(%make-heap (insert (heap-tree heap) value <) <)))
(define (heap->list heap)
(assert (heap? heap))
(let ((< (heap-ordering-predicate heap)))
(let loop ((tree (heap-tree heap)) (list '()))
(if (leaf? tree)
(reverse list)
(loop (delete-min tree <)
(cons (node-value tree) list))))))
(define (list->heap list <)
(%make-heap
(fold-left (lambda (h item)
(insert h item <))
(make-leaf)
list)
<))
(define (heap-merge heap1 heap2)
(define < (heap-ordering-predicate heap1))
(%make-heap
(merge-trees (heap-tree heap1)
(heap-tree heap2)
<)
<))
(define (heap-sort < list)
(heap->list (list->heap list <)))
(define-condition-type &heap-empty
&assertion
make-heap-empty-condition
heap-empty-condition?)
)