forked from ijp/pfds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpsqs.sls
544 lines (490 loc) · 18.4 KB
/
psqs.sls
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
#!r6rs
;;; psqs.sls --- Priority Search Queues
;; Copyright (C) 2012 Ian Price <ianprice90@googlemail.com>
;; Author: Ian Price <ianprice90@googlemail.com>
;; This program is free software, you can redistribute it and/or
;; modify it under the terms of the new-style BSD license.
;; You should have received a copy of the BSD license along with this
;; program. If not, see <http://www.debian.org/misc/bsd.license>.
;;;; Documentation
;;
;; Priority search queues are a combination of two common abstract
;; data types: finite maps, and priority queues. As such, it provides
;; for access, insertion, removal and update on arbitrary keys, as
;; well as for easy removal of the element with the lowest priority.
;;
;; Note: where a procedure takes a key or priority these are expected
;; to be compatible with the relevant ordering procedures on the psq.
;;
;;;; Basic operations
;;
;; make-psq : < < -> psq
;; takes a two ordering procedures, one for keys, and another for
;; priorities, and returns an empty priority search queue
;;
;; psq? : obj -> boolean
;; returns #t if the object is a priority search queue, #f otherwise.
;;
;; psq-empty? : psq -> boolean
;; returns #t if the priority search queue contains no elements, #f
;; otherwise.
;;
;; psq-size : psq -> non-negative integer
;; returns the number of associations in the priority search queue
;;
;;;; Finite map operations
;;
;; psq-ref : psq key -> priority
;; returns the priority of a key if it is in the priority search
;; queue. If the key is not in the priority queue an
;; assertion-violation is raised.
;;
;; psq-set : psq key priority -> psq
;; returns the priority search queue obtained from inserting a key
;; with a given priority. If the key is already in the priority search
;; queue, it updates the priority to the new value.
;;
;; psq-update : psq key (priority -> priority) priority -> psq
;; returns the priority search queue obtained by modifying the
;; priority of key, by the given function. If the key is not in the
;; priority search queue, it is inserted with the priority obtained by
;; calling the function on the default value.
;;
;; psq-delete : psq key -> psq
;; returns the priority search queue obtained by removing the
;; key-priority association from the priority search queue. If the key
;; is not in the queue, then the returned search queue will be the
;; same as the original.
;;
;; psq-contains? : psq key -> boolean
;; returns #t if there is an association for the given key in the
;; priority search queue, #f otherwise.
;;
;;;; Priority queue operations
;;
;; psq-min : psq -> key
;;
;; returns the key of the minimum association in the priority search
;; queue. If the queue is empty, an assertion violation is raised.
;;
;; psq-delete-min : psq -> psq
;; returns the priority search queue obtained by removing the minimum
;; association in the priority search queue. If the queue is empty, an
;; assertion violation is raised.
;;
;; psq-pop : psq -> key + psq
;; returns two values: the minimum key and the priority search queue
;; obtained by removing the minimum association from the original
;; queue. If the queue is empty, an assertion violation is raised.
;;
;;;; Ranged query functions
;;
;; psq-at-most : psq priority -> ListOf(key . priority)
;; returns an alist containing all the associations in the priority
;; search queue with priority less than or equal to a given value. The
;; alist returned is ordered by key according to the predicate for the
;; psq.
;;
;; psq-at-most-range : psq priority key key -> ListOf(key . priority)
;; Similar to psq-at-most, but it also takes an upper and lower bound,
;; for the keys it will return. These bounds are inclusive.
;;
(library (pfds psqs)
(export make-psq
psq?
psq-empty?
psq-size
;; map operations
psq-ref
psq-set
psq-update
psq-delete
psq-contains?
;; priority queue operations
psq-min
psq-delete-min
psq-pop
;; ranged query operations
psq-at-most
psq-at-most-range
)
(import (except (rnrs) min))
;;; record types
(define-record-type void)
(define-record-type winner
(fields key priority loser-tree maximum-key))
(define-record-type start)
(define-record-type (loser %make-loser loser?)
(fields size key priority left split-key right))
(define (make-loser key priority left split-key right)
(%make-loser (+ (size left) (size right) 1)
key
priority
left
split-key
right))
;;; functions
(define (maximum-key psq)
(winner-maximum-key psq))
(define max-key maximum-key)
(define empty (make-void))
(define (singleton key priority)
(make-winner key priority (make-start) key))
(define (play-match psq1 psq2 key<? prio<?)
(cond ((void? psq1) psq2)
((void? psq2) psq1)
((not (prio<? (winner-priority psq2)
(winner-priority psq1)))
(let ((k1 (winner-key psq1))
(p1 (winner-priority psq1))
(t1 (winner-loser-tree psq1))
(m1 (winner-maximum-key psq1))
(k2 (winner-key psq2))
(p2 (winner-priority psq2))
(t2 (winner-loser-tree psq2))
(m2 (winner-maximum-key psq2)))
(make-winner k1
p1
(balance k2 p2 t1 m1 t2 key<? prio<?)
m2)))
(else
(let ((k1 (winner-key psq1))
(p1 (winner-priority psq1))
(t1 (winner-loser-tree psq1))
(m1 (winner-maximum-key psq1))
(k2 (winner-key psq2))
(p2 (winner-priority psq2))
(t2 (winner-loser-tree psq2))
(m2 (winner-maximum-key psq2)))
(make-winner k2
p2
(balance k1 p1 t1 m1 t2 key<? prio<?)
m2)))))
(define (second-best ltree key key<? prio<?)
(if (start? ltree)
(make-void)
(let ((k (loser-key ltree))
(p (loser-priority ltree))
(l (loser-left ltree))
(m (loser-split-key ltree))
(r (loser-right ltree)))
(if (not (key<? m k))
(play-match (make-winner k p l m)
(second-best r key key<? prio<?)
key<?
prio<?)
(play-match (second-best l m key<? prio<?)
(make-winner k p r key)
key<?
prio<?)))))
(define (delete-min psq key<? prio<?)
;; maybe void psqs should return void?
(second-best (winner-loser-tree psq) (winner-maximum-key psq) key<? prio<?))
(define (psq-case psq empty-k singleton-k match-k key<?)
(if (void? psq)
(empty-k)
(let ((k1 (winner-key psq))
(p1 (winner-priority psq))
(t (winner-loser-tree psq))
(m (winner-maximum-key psq)))
(if (start? t)
(singleton-k k1 p1)
(let ((k2 (loser-key t))
(p2 (loser-priority t))
(l (loser-left t))
(s (loser-split-key t))
(r (loser-right t)))
(if (not (key<? s k2))
(match-k (make-winner k2 p2 l s)
(make-winner k1 p1 r m))
(match-k (make-winner k1 p1 l s)
(make-winner k2 p2 r m))))))))
(define (lookup psq key default key<?)
(psq-case psq
(lambda () default)
(lambda (k p)
(if (or (key<? k key) (key<? key k))
default
p))
(lambda (w1 w2)
(if (not (key<? (max-key w1) key))
(lookup w1 key default key<?)
(lookup w2 key default key<?)))
key<?))
(define (update psq key f default key<? prio<?)
(psq-case psq
(lambda () (singleton key (f default)))
(lambda (k p)
(cond ((key<? key k)
(play-match (singleton key (f default))
(singleton k p)
key<?
prio<?))
((key<? k key)
(play-match (singleton k p)
(singleton key (f default))
key<?
prio<?))
(else
(singleton key (f p)))))
(lambda (w1 w2)
(if (not (key<? (max-key w1) key))
(play-match (update w1 key f default key<? prio<?)
w2
key<?
prio<?)
(play-match w1
(update w2 key f default key<? prio<?)
key<?
prio<?)))
key<?))
(define (insert psq key val key<? prio<?)
(psq-case psq
(lambda () (singleton key val))
(lambda (k p)
(cond ((key<? key k)
(play-match (singleton key val)
(singleton k p)
key<?
prio<?))
((key<? k key)
(play-match (singleton k p)
(singleton key val)
key<?
prio<?))
(else
(singleton key val))))
(lambda (w1 w2)
(if (not (key<? (max-key w1) key))
(play-match (insert w1 key val key<? prio<?) w2 key<? prio<?)
(play-match w1 (insert w2 key val key<? prio<?) key<? prio<?)))
key<?))
(define (delete psq key key<? prio<?)
(psq-case psq
(lambda () empty)
(lambda (k p)
(if (or (key<? k key)
(key<? key k))
(singleton k p)
empty))
(lambda (w1 w2)
(if (not (key<? (max-key w1) key))
(play-match (delete w1 key key<? prio<?) w2 key<? prio<?)
(play-match w1 (delete w2 key key<? prio<?) key<? prio<?)))
key<?))
(define (min tree)
(when (void? tree)
(assertion-violation 'psq-min
"Can't take the minimum of an empty priority search queue"))
(winner-key tree))
(define (pop tree key<? prio<?)
(when (void? tree)
(assertion-violation 'psq-pop
"Can't pop from an empty priority search queue"))
(values (winner-key tree)
(delete-min tree key<? prio<?)))
;; at-most and at-most-range are perfect examples of when to use
;; dlists, but we do not do that here
(define (at-most psq p key<? prio<?)
(define (at-most psq accum)
(if (and (winner? psq)
(prio<? p (winner-priority psq)))
accum
(psq-case psq
(lambda () accum)
(lambda (k p) (cons (cons k p) accum))
(lambda (m1 m2)
(at-most m1 (at-most m2 accum)))
key<?)))
(at-most psq '()))
(define (at-most-range psq p lower upper key<? prio<?)
(define (within-range? key)
;; lower <= k <= upper
(not (or (key<? key lower) (key<? upper key))))
(define (at-most psq accum)
(if (and (winner? psq)
(prio<? p (winner-priority psq)))
accum
(psq-case psq
(lambda () accum)
(lambda (k p)
(if (within-range? k)
(cons (cons k p) accum)
accum))
(lambda (m1 m2)
(let ((accum* (if (key<? upper (max-key m1))
accum
(at-most m2 accum))))
(if (key<? (max-key m1) lower)
accum*
(at-most m1 accum*))))
key<?)))
(at-most psq '()))
;;; Maintaining balance
(define weight 4) ; balancing constant
(define (size ltree)
(if (start? ltree)
0
(loser-size ltree)))
(define (balance key priority left split-key right key<? prio<?)
(let ((l-size (size left))
(r-size (size right)))
(cond ((< (+ l-size r-size) 2)
(make-loser key priority left split-key right))
((> r-size (* weight l-size))
(balance-left key priority left split-key right key<? prio<?))
((> l-size (* weight r-size))
(balance-right key priority left split-key right key<? prio<?))
(else
(make-loser key priority left split-key right)))))
(define (balance-left key priority left split-key right key<? prio<?)
(if (< (size (loser-left right))
(size (loser-right right)))
(single-left key priority left split-key right key<? prio<?)
(double-left key priority left split-key right key<? prio<?)))
(define (balance-right key priority left split-key right key<? prio<?)
(if (< (size (loser-right left))
(size (loser-left left)))
(single-right key priority left split-key right key<? prio<?)
(double-right key priority left split-key right key<? prio<?)))
(define (single-left key priority left split-key right key<? prio<?)
(let ((right-key (loser-key right))
(right-priority (loser-priority right))
(right-left (loser-left right))
(right-split-key (loser-split-key right))
(right-right (loser-right right)))
;; test
(if (and (not (key<? right-split-key right-key))
(not (prio<? right-priority priority)))
(make-loser key
priority
(make-loser right-key right-priority left split-key right-left)
right-split-key
right-right
)
(make-loser right-key
right-priority
(make-loser key priority left split-key right-left)
right-split-key
right-right))))
(define (double-left key priority left split-key right key<? prio<?)
(let ((right-key (loser-key right))
(right-priority (loser-priority right))
(right-left (loser-left right))
(right-split-key (loser-split-key right))
(right-right (loser-right right)))
(single-left key
priority
left
split-key
(single-right right-key
right-priority
right-left
right-split-key
right-right
key<?
prio<?)
key<?
prio<?)))
(define (single-right key priority left split-key right key<? prio<?)
(let ((left-key (loser-key left))
(left-priority (loser-priority left))
(left-left (loser-left left))
(left-split-key (loser-split-key left))
(left-right (loser-right left)))
(if (and (key<? left-split-key left-key)
(not (prio<? left-priority priority)))
(make-loser key
priority
left-left
left-split-key
(make-loser left-key left-priority left-right split-key right))
(make-loser left-key
left-priority
left-left
left-split-key
(make-loser key priority left-right split-key right)))))
(define (double-right key priority left split-key right key<? prio<?)
(let ((left-key (loser-key left))
(left-priority (loser-priority left))
(left-left (loser-left left))
(left-split-key (loser-split-key left))
(left-right (loser-right left)))
(single-right key
priority
(single-left left-key
left-priority
left-left
left-split-key
left-right
key<?
prio<?)
split-key
right
key<?
prio<?)))
;;; Exported Type
(define-record-type (psq %make-psq psq?)
(fields key<? priority<? tree))
(define (%update-psq psq new-tree)
(%make-psq (psq-key<? psq)
(psq-priority<? psq)
new-tree))
;;; Exported Procedures
(define (make-psq key<? priority<?)
(%make-psq key<? priority<? (make-void)))
(define (psq-empty? psq)
(assert (psq? psq))
(void? (psq-tree psq)))
(define (psq-ref psq key)
(define cookie (cons #f #f))
(assert (psq? psq))
(let ((val (lookup (psq-tree psq) key cookie (psq-key<? psq))))
(if (eq? val cookie)
(assertion-violation 'psq-ref "not in tree")
val)))
(define (psq-set psq key priority)
(assert (psq? psq))
(%update-psq psq
(insert (psq-tree psq) key priority (psq-key<? psq) (psq-priority<? psq))))
(define (psq-update psq key f default)
(assert (psq? psq))
(%update-psq psq (update (psq-tree psq) key f default (psq-key<? psq) (psq-priority<? psq))))
(define (psq-delete psq key)
(assert (psq? psq))
(%update-psq psq (delete (psq-tree psq) key (psq-key<? psq) (psq-priority<? psq))))
(define (psq-contains? psq key)
(define cookie (cons #f #f))
(assert (psq? psq))
(let ((val (lookup (psq-tree psq) key cookie (psq-key<? psq))))
(not (eq? val cookie))))
(define (psq-min psq)
(assert (psq? psq))
(min (psq-tree psq)))
(define (psq-delete-min psq)
(assert (and (psq? psq)
(not (psq-empty? psq))))
(%update-psq psq (delete-min (psq-tree psq) (psq-key<? psq) (psq-priority<? psq))))
(define (psq-pop psq)
(assert (psq? psq))
(let-values (((min rest) (pop (psq-tree psq) (psq-key<? psq) (psq-priority<? psq))))
(values min (%update-psq psq rest))))
(define (psq-at-most psq max-priority)
(assert (psq? psq))
(let ((tree (psq-tree psq))
(key<? (psq-key<? psq))
(prio<? (psq-priority<? psq)))
(at-most tree max-priority key<? prio<?)))
(define (psq-at-most-range psq max-priority min-key max-key)
(assert (psq? psq))
(let ((tree (psq-tree psq))
(key<? (psq-key<? psq))
(prio<? (psq-priority<? psq)))
(at-most-range tree max-priority min-key max-key key<? prio<?)))
(define (psq-size psq)
(assert (psq? psq))
(let ((tree (psq-tree psq)))
(if (winner? tree)
(+ 1 (size (winner-loser-tree tree)))
0)))
)