-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpydqed.pyx
334 lines (272 loc) · 14.7 KB
/
pydqed.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
################################################################################
#
# PyDQED - A Python wrapper for the DQED constrained nonlinear optimization code
#
# Copyright (c) 2011 by Joshua W. Allen (joshua.w.allen@gmail.com)
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the 'Software'),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
################################################################################
"""
This `Cython <http://www.cython.org/>`_ module exposes the DQED bounded
constrained nonlinear optimization code to Python and provides a Python
extension type, the :class:`DQED` base class, for working with DQED.
To use DQED, write a Python class or Cython extension type that derives from
the :class:`DQED` class and implement the :meth:`evaluate` method.
Run by calling the :meth:`initialize` method to set the solver parameters, then
by using the :meth:`solve` method to execute the optimization or solve.
You can implement your derived class in pure Python, but for a significant
speed boost consider using Cython to compile the module. You can see the
proper Cython syntax for the residual and jacobian methods by looking at the
corresponding methods in the :class:`DASSL` base class.
"""
import math
import numpy
cimport numpy
cimport cython
################################################################################
# Expose the (double-precision) DQED function prototype to this module
cdef extern from "dqed.h":
void dqed_(
void* dqedev, # The function that evaluates the nonlinear equations and constraints
int* mequa, # The number of equations to be solved
int* nvars, # The number of unknown variables
int* mcon, # The number of general constraints (not including simple bounds)
int* ind, # The type of simple bounds to use for each variable
double* bl, # The lower bound to use for each variable (if applicable)
double* bu, # The upper bound to use for each variable (if applicable)
double* x, # The initial guess (on input) or final solution (on output)
double* fjac, # The final values of the Jacobian matrix for the constrants and equations
int* ldfjac, # The leading dimension of the Jacobian matrix
double* fnorm, # The value of the Euclidean norm at the solution
int* igo, # A flag containing the current or final status of the optimization/solve
int* iopt, # Integer parameters modifying how DQED executes
double* ropt, # Double-precision parameters modifying how DQED executes
int* iwork, # Work space for integer values
double* rwork # Work space for double-precision values
)
################################################################################
class DQEDError(Exception):
"""
An exception class for exceptions relating to use of DQED. Pass a string
message describing the circumstances of the exceptional behavior.
"""
pass
################################################################################
cdef class DQED:
"""
A base class for using the DQED bounded constrained nonlinear optimization
code by R. Hanson and F. Krogh.
"""
cdef public int Nvars, Ncons, Neq
cdef numpy.ndarray rwork, iwork, ropt, iopt, ind, bl, bu, x, fnorm, fjac
def __init__(self):
self.Nvars = 0
self.Ncons = 0
self.Neq = 0
cpdef initialize(self, int Neq, int Nvars, int Ncons, list bounds=None,
double tolf=1e-5, double told=1e-5, double tolx=1e-5, int maxIter=100,
bint verbose=False):
"""
Initialize the DQED solver. The required parameters are:
* `Neq` - The number of algebraic equations.
* `Nvars` - The number of unknown variables.
* `Ncons` - The number of constraint equations.
The optional parameters are:
* `bounds` - A list of 2-tuples giving the lower and upper bound for
each unknown variable. Use ``None`` if there is no bound in one or
either direction. If provided, you must give bounds for every unknown
variable.
* `tolf` - The tolerance used for stopping when the norm of the
residual has absolute length less than `tolf`, i.e.
:math:`\| \vector{f} \| \le \epsilon_f.
* `told` - The tolerance used for stopping when changes to the unknown
variables has absolute length less than `told`, i.e.
:math:`\| \Delta \vector{x} \| \le \epsilon_d.
* `tolx` - The tolerance used for stopping when changes to the unknown
variables has relative length less than `tolx`, i.e.
:math:`\| \Delta \vector{x} \| \le \epsilon_x \cdot \| \vector{x} \|`.
* `maxIter` - The maximum number of iterations to use
* `verbose` - ``True`` to have DQED print extra information about the
solve, ``False`` to only see printed output when the solver has an
error.
"""
self.Nvars = Nvars
self.Ncons = Ncons
self.Neq = Neq
# Determine required sizes of work arrays
Nt = 5 # if not using option 15
Na = Ncons + 2 * Nvars + Nt + 1 # if not using option 14
liwork = 3 * Ncons + 9 * Nvars + 4 * Nt + Na + 10
lrwork = Na * (Na + 6) + Nvars * (Nt + 33) + (Neq + max(Neq,Nvars) + 14) * Nt + 9 * Ncons + 26 + 12
# Allocate work arrays
self.rwork = numpy.zeros(lrwork, numpy.float64)
self.iwork = numpy.zeros(liwork, numpy.int32)
# Tell how much storage we gave the solver
self.iwork[0] = lrwork
self.iwork[1] = liwork
# Allocate options arrays
self.ropt = numpy.zeros(3, numpy.float64)
self.iopt = numpy.zeros(13, numpy.int32)
self.iopt[0] = 1 # Change the verbosity of the printed output
self.iopt[1] = 1 if verbose else 0 # The desired output verbosity
self.iopt[2] = 2 # Change the number of iterations
self.iopt[3] = maxIter # Maximum number of iterations
self.iopt[4] = 4 # Set the option to change the value of TOLF
self.iopt[5] = 1 # Where in ROPT to look for the new value
self.ropt[0] = tolf # New value for TOLF
self.iopt[6] = 5 # Set the option to change the value of TOLX
self.iopt[7] = 2 # Where in ROPT to look for the new value
self.ropt[1] = tolx # New value for TOLX
self.iopt[8] = 6 # Set the option to change the value of TOLD
self.iopt[9] = 3 # Where in ROPT to look for the new value
self.ropt[2] = told # New value for TOLD
self.iopt[10] = 17 # Do not allow the flag IGO to return the value IGO=3
self.iopt[11] = 1 # Forces a full model step
self.iopt[12] = 99 # No further options are changed
# Set up bounds arrays
bounds = bounds or [(None,None) for i in range(Nvars)]
if len(bounds) != Nvars + Ncons:
raise DQEDError('If bounds are specified, they must be specified for every unknown variable.')
self.ind = numpy.zeros((Nvars+Ncons), numpy.int32)
self.bl = numpy.zeros((Nvars+Ncons), numpy.float64)
self.bu = numpy.zeros((Nvars+Ncons), numpy.float64)
for i in range(len(bounds)):
bl, bu = bounds[i]
if bl is not None and bu is None:
self.ind[i] = 1
self.bl[i] = bl
elif bl is None and bu is not None:
self.ind[i] = 2
self.bu[i] = bu
elif bl is not None and bu is not None:
self.ind[i] = 3
self.bl[i] = bl
self.bu[i] = bu
else:
self.ind[i] = 4
def solve(self, numpy.ndarray[numpy.float64_t,ndim=1] x0):
"""
Using the initial guess `x0`, return the least-squares solution to the
set of nonlinear algebraic equations defined by the :meth:`evaluate`
method of the derived class. This is the method that actually conducts
the call to DQED. Returns the solution vector and a flag indicating
the status of the solve. The possible output values of the flag are:
======== ===============================================================
Value Meaning
======== ===============================================================
2 The norm of the residual is zero; the solution vector is a root of the system
3 The bounds on the trust region are being encountered on each step; the solution vector may or may not be a local minimum
4 The solution vector is a local minimum
5 A significant amount of noise or uncertainty has been observed in the residual; the solution may or may not be a local minimum
6 The solution vector is only changing by small absolute amounts; the solution may or may not be a local minimum
7 The solution vector is only changing by small relative amounts; the solution may or may not be a local minimum
8 The maximum number of iterations has been reached; the solution is the best found, but may or may not be a local minimum
9-18 An error occurred during the solve operation; the solution is not a local minimum
======== ===============================================================
"""
cdef int igo
cdef numpy.ndarray[numpy.float64_t,ndim=1] x
self.fjac = numpy.zeros((self.Neq+self.Ncons, self.Nvars+1), numpy.float64, order='F')
self.fnorm = numpy.zeros((self.Neq), numpy.float64)
# Make sure the length of the initial guess matches the expected number of variables
if len(x0) != self.Nvars:
raise DQEDError('Expected %i values of x0, got %i.' % (self.Nvars, len(x0)))
self.x = x0
# Call DQED
igo = self.dqed(self.Neq, self.Nvars, self.Ncons,
self.ind, self.bl, self.bu, self.x, self.fnorm, self.fjac,
self.iopt, self.ropt, self.iwork, self.rwork)
# Return the result to the user
x = self.x
return x, igo
cdef int dqed(self, int Neq, int Nvars, int Ncons,
numpy.ndarray[numpy.int32_t,ndim=1] ind,
numpy.ndarray[numpy.float64_t,ndim=1] bl,
numpy.ndarray[numpy.float64_t,ndim=1] bu,
numpy.ndarray[numpy.float64_t,ndim=1] x,
numpy.ndarray[numpy.float64_t,ndim=1] fnorm,
numpy.ndarray[numpy.float64_t,ndim=2] fjac,
numpy.ndarray[numpy.int32_t,ndim=1] iopt,
numpy.ndarray[numpy.float64_t,ndim=1] ropt,
numpy.ndarray[numpy.int32_t,ndim=1] iwork,
numpy.ndarray[numpy.float64_t,ndim=1] rwork):
cdef int ldfjac = self.Neq + self.Ncons
cdef int igo = 0
cdef void* dqedev = <void*> evaluate
# Set the global DQED object to this object (so we can get back to
# this object's residual and jacobian methods
global dqedObject
dqedObject = self
dqed_(
dqedev,
&(Neq),
&(Nvars),
&(Ncons),
<int*> ind.data,
<numpy.float64_t*> bl.data,
<numpy.float64_t*> bu.data,
<numpy.float64_t*> x.data,
<numpy.float64_t*> fjac.data,
&(ldfjac),
<numpy.float64_t*> fnorm.data,
&(igo),
<int*> iopt.data,
<numpy.float64_t*> ropt.data,
<int*> iwork.data,
<numpy.float64_t*> rwork.data,
)
# Unset the global DQED object
dqedObject = None
return igo
def evaluate(self, numpy.ndarray[numpy.float64_t,ndim=1] x):
"""
Evaluate the nonlinear equations and constraints for this system, and
the corresponding Jacobian matrices, at the given value of the solution
vector `x`. Return a tuple containing three items:
* A vector of the current values of the system of equations
:math:`\vector{f}(\vector{x})`.
* A matrix of the current values of the Jacobian of the system of
equations: :math:`J_{ij} = \frac{\partial f_i}{\partial x_j}`.
* A matrix of the current values of the Jacobian of the (linear)
constrains: :math:`J_{ij}^\prime = \frac{\partial g_i}{\partial x_j}`.
"""
print('DQEDError: You must implement the evaluate() method in your derived class.')
return None
################################################################################
# A module-level variable that contains the currently active DASSL object
# The residual and jacobian functions use this to call the object's residual
# and jacobian functions
cdef DQED dqedObject
cdef void evaluate(double* x, double* fj, int* ldfj, int* igo, int* iopt, double* ropt):
cdef numpy.ndarray[numpy.float64_t,ndim=1] f, fcons
cdef numpy.ndarray[numpy.float64_t,ndim=2] J, Jcons
cdef int i, j, Neq, Nvars, Ncons
f, J, fcons, Jcons = dqedObject.evaluate(dqedObject.x)
Neq = J.shape[0]
Nvars = J.shape[1]
Ncons = Jcons.shape[0]
for i in range(Neq):
dqedObject.fjac[Ncons+i,Nvars] = f[i]
for j in range(Nvars):
dqedObject.fjac[Ncons+i,j] = J[i,j]
for i in range(Ncons):
dqedObject.fjac[i,Nvars] = fcons[i]
for j in range(Nvars):
dqedObject.fjac[i,j] = Jcons[i,j]