forked from ReactionMechanismGenerator/RMG-Py
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdiffModels.py
247 lines (216 loc) · 10.7 KB
/
diffModels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
This script can be used to compare two RMG-generated kinetics models. To use,
pass the
"""
import math
import numpy
import pylab
import os.path
#import matplotlib.pyplot
from rmgpy.chemkin import loadChemkinFile
from rmgpy.reaction import ReactionModel
from rmgpy.rmg.output import saveDiffHTML
################################################################################
def compareModelKinetics(model1, model2):
"""
Compare the kinetics of :class:`ReactionModel` objects `model1` and
`model2`, printing the results to stdout.
"""
# Determine reactions that both models have in common
commonReactions = {}
for rxn1 in model1.reactions:
for rxn2 in model2.reactions:
if rxn1.isIsomorphic(rxn2):
commonReactions[rxn1] = rxn2
model2.reactions.remove(rxn2)
break
uniqueReactions1 = [rxn for rxn in model1.reactions if rxn not in commonReactions.keys()]
uniqueReactions2 = model2.reactions
print '{0:d} reactions were found in both models:'.format(len(commonReactions))
for rxn in commonReactions:
print ' {0!s}'.format(rxn)
print '{0:d} reactions were only found in the first model:'.format(len(uniqueReactions1))
for rxn in uniqueReactions1:
print ' {0!s}'.format(rxn)
print '{0:d} reactions were only found in the second model:'.format(len(uniqueReactions2))
for rxn in uniqueReactions2:
print ' {0!s}'.format(rxn)
from rmgpy.kinetics import Chebyshev
T = 1000; P = 1e5
kinetics1 = []; kinetics2 = []
for rxn1, rxn2 in commonReactions.iteritems():
kinetics1.append(rxn1.getRateCoefficient(T,P))
if rxn1.isIsomorphic(rxn2, eitherDirection=False):
kinetics2.append(rxn2.getRateCoefficient(T,P))
else:
kinetics2.append(rxn2.getRateCoefficient(T,P) / rxn2.getEquilibriumConstant(T))
fig = pylab.figure(figsize=(8,6))
ax = pylab.subplot(1,1,1)
pylab.loglog(kinetics1, kinetics2, 'o', picker=5)
xlim = pylab.xlim()
ylim = pylab.ylim()
lim = (min(xlim[0], ylim[0]), max(xlim[1], ylim[1]))
ax.loglog(lim, lim, '-k')
pylab.xlabel('Model 1 rate coefficient (SI units)')
pylab.ylabel('Model 2 rate coefficient (SI units)')
pylab.title('T = {0:g} K, P = {1:g} bar'.format(T, P/1e5))
pylab.xlim(lim)
pylab.ylim(lim)
def onpick(event):
xdata = event.artist.get_xdata()
ydata = event.artist.get_ydata()
for ind in event.ind:
print commonReactions.keys()[ind]
print 'k(T,P) = {0:9.2e} from model 1'.format(xdata[ind])
print 'k(T,P) = {0:9.2e} from model 2'.format(ydata[ind])
print 'ratio = 10**{0:.2f}'.format(math.log10(xdata[ind] / ydata[ind]))
connection_id = fig.canvas.mpl_connect('pick_event', onpick)
pylab.show()
def compareModelSpecies(model1, model2):
"""
This function compares two RMG models and returns a list of common reactions
as a dictionary, as well as a list of unique reactions for each model.
"""
commonSpecies = []
uniqueSpecies1 = model1.species[:]
uniqueSpecies2 = []
for spec2 in model2.species:
for spec1 in uniqueSpecies1:
if spec1.isIsomorphic(spec2):
commonSpecies.append([spec1, spec2])
uniqueSpecies1.remove(spec1)
break
else:
uniqueSpecies2.append(spec2)
return commonSpecies, uniqueSpecies1, uniqueSpecies2
def compareModelReactions(model1, model2):
"""
This function compares two RMG models and returns a list of common reactions
as a dictionary, as well as a list of unique reactions for each model.
"""
reactionList1 = model1.reactions[:]
reactionList2 = model2.reactions[:]
commonReactions = []; uniqueReactions1 = []; uniqueReactions2 = []
for rxn1 in reactionList1:
for rxn2 in reactionList2:
if rxn1.isIsomorphic(rxn2):
commonReactions.append([rxn1, rxn2])
# Remove species 2 from being chosen a second time.
# Let each species only appear only once in the diff comparison.
# Otherwise this miscounts number of species in model 2.
reactionList2.remove(rxn2)
break
for rxn1 in reactionList1:
for r1, r2 in commonReactions:
if rxn1 is r1:
break
else:
uniqueReactions1.append(rxn1)
for rxn2 in reactionList2:
for r1, r2 in commonReactions:
if rxn2 is r2:
break
else:
uniqueReactions2.append(rxn2)
return commonReactions, uniqueReactions1, uniqueReactions2
def saveCompareHTML(outputDir,chemkinPath1,speciesDictPath1,chemkinPath2,speciesDictPath2,readComments1=True,readComments2=True):
"""
Saves a model comparison HTML file based on two sets of chemkin and species dictionary
files.
"""
model1 = ReactionModel()
model1.species, model1.reactions = loadChemkinFile(chemkinPath1, speciesDictPath1, readComments = readComments1)
model2 = ReactionModel()
model2.species, model2.reactions = loadChemkinFile(chemkinPath2, speciesDictPath2, readComments = readComments2)
commonReactions, uniqueReactions1, uniqueReactions2 = compareModelReactions(model1, model2)
commonSpecies, uniqueSpecies1, uniqueSpecies2 = compareModelSpecies(model1, model2)
outputPath = outputDir + 'diff.html'
saveDiffHTML(outputPath, commonSpecies, uniqueSpecies1, uniqueSpecies2, commonReactions, uniqueReactions1, uniqueReactions2)
################################################################################
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('chemkin1', metavar='CHEMKIN1', type=str, nargs=1,
help='the Chemkin file of the first model')
parser.add_argument('speciesDict1', metavar='SPECIESDICT1', type=str, nargs=1,
help='the species dictionary file of the first model')
parser.add_argument('chemkin2', metavar='CHEMKIN2', type=str, nargs=1,
help='the Chemkin file of the second model')
parser.add_argument('speciesDict2', metavar='SPECIESDICT2', type=str, nargs=1,
help='the species dictionary file of the second model')
args = parser.parse_args()
chemkin1 = args.chemkin1[0]
speciesDict1 = args.speciesDict1[0]
chemkin2 = args.chemkin2[0]
speciesDict2 = args.speciesDict2[0]
model1 = ReactionModel()
model1.species, model1.reactions = loadChemkinFile(chemkin1, speciesDict1)
model2 = ReactionModel()
model2.species, model2.reactions = loadChemkinFile(chemkin2, speciesDict2)
commonSpecies, uniqueSpecies1, uniqueSpecies2 = compareModelSpecies(model1, model2)
commonReactions, uniqueReactions1, uniqueReactions2 = compareModelReactions(model1, model2)
print '{0:d} species were found in both models:'.format(len(commonSpecies))
for spec1, spec2 in commonSpecies:
print ' {0!s}'.format(spec1)
if spec1.thermo and spec2.thermo:
spec1.molecule[0].calculateSymmetryNumber()
print ' {0:7.2f} {1:7.2f} {2:7.2f} {3:7.2f} {4:7.2f} {5:7.2f} {6:7.2f} {7:7.2f} {8:7.2f}'.format(
spec1.thermo.getEnthalpy(298) / 4184.,
spec1.thermo.getEntropy(298) / 4.184,
spec1.thermo.getHeatCapacity(300) / 4.184,
spec1.thermo.getHeatCapacity(400) / 4.184,
spec1.thermo.getHeatCapacity(500) / 4.184,
spec1.thermo.getHeatCapacity(600) / 4.184,
spec1.thermo.getHeatCapacity(800) / 4.184,
spec1.thermo.getHeatCapacity(1000) / 4.184,
spec1.thermo.getHeatCapacity(1500) / 4.184,
)
print ' {0:7.2f} {1:7.2f} {2:7.2f} {3:7.2f} {4:7.2f} {5:7.2f} {6:7.2f} {7:7.2f} {8:7.2f}'.format(
spec2.thermo.getEnthalpy(298) / 4184.,
spec2.thermo.getEntropy(298) / 4.184,
spec2.thermo.getHeatCapacity(300) / 4.184,
spec2.thermo.getHeatCapacity(400) / 4.184,
spec2.thermo.getHeatCapacity(500) / 4.184,
spec2.thermo.getHeatCapacity(600) / 4.184,
spec2.thermo.getHeatCapacity(800) / 4.184,
spec2.thermo.getHeatCapacity(1000) / 4.184,
spec2.thermo.getHeatCapacity(1500) / 4.184,
)
print '{0:d} species were only found in the first model:'.format(len(uniqueSpecies1))
for spec in uniqueSpecies1:
print ' {0!s}'.format(spec)
print '{0:d} species were only found in the second model:'.format(len(uniqueSpecies2))
for spec in uniqueSpecies2:
print ' {0!s}'.format(spec)
print '{0:d} reactions were found in both models:'.format(len(commonReactions))
for rxn1, rxn2 in commonReactions:
print ' {0!s}'.format(rxn1)
if rxn1.kinetics and rxn2.kinetics:
print ' {0:7.2f} {1:7.2f} {2:7.2f} {3:7.2f} {4:7.2f} {5:7.2f} {6:7.2f} {7:7.2f}'.format(
math.log10(rxn1.kinetics.getRateCoefficient(300, 1e5)),
math.log10(rxn1.kinetics.getRateCoefficient(400, 1e5)),
math.log10(rxn1.kinetics.getRateCoefficient(500, 1e5)),
math.log10(rxn1.kinetics.getRateCoefficient(600, 1e5)),
math.log10(rxn1.kinetics.getRateCoefficient(800, 1e5)),
math.log10(rxn1.kinetics.getRateCoefficient(1000, 1e5)),
math.log10(rxn1.kinetics.getRateCoefficient(1500, 1e5)),
math.log10(rxn1.kinetics.getRateCoefficient(2000, 1e5)),
)
print ' {0:7.2f} {1:7.2f} {2:7.2f} {3:7.2f} {4:7.2f} {5:7.2f} {6:7.2f} {7:7.2f}'.format(
math.log10(rxn2.kinetics.getRateCoefficient(300, 1e5)),
math.log10(rxn2.kinetics.getRateCoefficient(400, 1e5)),
math.log10(rxn2.kinetics.getRateCoefficient(500, 1e5)),
math.log10(rxn2.kinetics.getRateCoefficient(600, 1e5)),
math.log10(rxn2.kinetics.getRateCoefficient(800, 1e5)),
math.log10(rxn2.kinetics.getRateCoefficient(1000, 1e5)),
math.log10(rxn2.kinetics.getRateCoefficient(1500, 1e5)),
math.log10(rxn2.kinetics.getRateCoefficient(2000, 1e5)),
)
print '{0:d} reactions were only found in the first model:'.format(len(uniqueReactions1))
for rxn in uniqueReactions1:
print ' {0!s}'.format(rxn)
print '{0:d} reactions were only found in the second model:'.format(len(uniqueReactions2))
for rxn in uniqueReactions2:
print ' {0!s}'.format(rxn)