-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtreatment_effects.Rmd
159 lines (131 loc) · 4.09 KB
/
treatment_effects.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
title: "Treatment effects"
output:
html_document: default
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
set.seed(1)
source("install_packages.r")
require(knitr)
require(dplyr)
require(plotly)
require(ggplot2)
require(gridExtra)
require(MatchIt)
require(ATE)
```
## Data
```{r}
dta <- read.csv("dta/TableF19-3.csv")
```
LaLonde (1986) Earnings Data, 2,490 Control Observations and 185 Treatment Observations
Source: LaLonde (1986).
| Variable | Description | |
|----------|------------------------------------------|---|
| t | Treatment dummy variable, | |
| age | Age in years, | |
| educ | Education in years, | |
| marr | Dummy variable for married, | |
| black | Dummy variable for black, | |
| hisp | Dummy variable for Hispanic, | |
| nodegree | Dummy for no degree (not used), | |
| re74 | Real earnings in 1974, scaled by 10,000, | |
| re75 | Real earnings in 1975, scaled by 10,000, | |
| re78 | Real earnings in 1978, scaled by 10,000, | |
| age2 | Age squared, | |
| educ2 | Educ squared, | |
| re742 | Re74 squared | |
| re752 | Re75 squared | |
| blacku74 | Black times 1(re74 | |
## Data exploration
```{r}
summary(dta)
sum(dta$T)
```
```{r, echo=FALSE}
grid.arrange(
ggplot(dta) + geom_boxplot(aes(as.factor(T),AGE)),
ggplot(dta) + geom_boxplot(aes(as.factor(T),EDUC)),
ncol=2
)
grid.arrange(
ggplot(dta[dta$T==0,]) +
geom_bar(aes(x=factor(1), fill=as.factor(BLACK))) +
coord_polar(theta = "y") +
guides(fill=guide_legend(title="BLACK")),
ggplot(dta[dta$T==1,]) +
geom_bar(aes(x=factor(1), fill=as.factor(BLACK))) +
coord_polar(theta = "y") +
guides(fill=guide_legend(title="BLACK")),
ncol=2
)
grid.arrange(
ggplot(dta[dta$T==0,]) +
geom_bar(aes(x=factor(1), fill=as.factor(HISP))) +
coord_polar(theta = "y") +
guides(fill=guide_legend(title="HISP"))+ylab("untreated"),
ggplot(dta[dta$T==1,]) +
geom_bar(aes(x=factor(1), fill=as.factor(HISP))) +
coord_polar(theta = "y") +
guides(fill=guide_legend(title="HISP"))+ylab("treated"),
ncol=2
)
```
```{r, echo=FALSE}
g <- ggplot(dta) + ylim(0,16) + xlab("Treatment (1,0)")
grid.arrange(
g + geom_boxplot(aes(as.factor(T),RE74)),
g + geom_boxplot(aes(as.factor(T),RE75)),
g + geom_boxplot(aes(as.factor(T),RE78)),
ncol=3
)
g0 <- ggplot(dta[dta$T==0,]) +ylim(0,16) + xlab("Treatment (1,0)")
g1 <- ggplot(dta[dta$T==1,])+ ylim(0,7) + xlab("Treatment (1,0)")
grid.arrange(
g0 + geom_boxplot(aes(as.factor(T),RE74)),
g0 + geom_boxplot(aes(as.factor(T),RE75)),
g0 + geom_boxplot(aes(as.factor(T),RE78)),
ncol=3)
grid.arrange(
g1 + geom_boxplot(aes(as.factor(T),RE74)),
g1 + geom_boxplot(aes(as.factor(T),RE75)),
g1 + geom_boxplot(aes(as.factor(T),RE78)),
ncol=3
)
```
```{r}
dta %>% group_by(T) %>% summarise(mean=mean(RE78),sd=sd(RE78))
```
```{r}
t.test(dta$RE78~dta$T)
```
## Difference in means: pre treatment cov
```{r}
dta %>% group_by(T) %>% select(AGE,EDUC,MARR,BLACK,HISP,NODEGREE) %>% summarise_all(funs(mean(.)))
```
```{r}
lapply(c("AGE","EDUC","MARR","BLACK","HISP","NODEGREE"), function(x){t.test(dta[,x]~dta[,"T"])})
```
## Propensity score estimation
```{r}
summary(glm1 <- glm(T~.-RE78, family = binomial(), data=dta))
```
```{r}
prs_df <- data.frame(pr_score = predict(glm1, type = "response"),
T = glm1$model$T)
sample_n(prs_df, size=5)
```
```{r, echo=FALSE}
grid.arrange(
ggplot(prs_df[prs_df$T==0,])+geom_histogram(aes(x=pr_score))+ggtitle(""),
ggplot(prs_df[prs_df$T==1,])+geom_histogram(aes(x=pr_score)),
ggplot(prs_df)+
geom_density(aes(x=pr_score,
group=as.factor(T),
color=as.factor(T),
fill=as.factor(T)),
alpha = 0.2)+
xlab("Probability to be part of treatment group")
)
```