-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
164 lines (133 loc) · 7.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from evaluation.metrics import eval
from predict.predictor import sampling_predict
from providers.filter import filter_users
from providers.update_matrix import update_matrix
from utils.argcheck import check_float_positive, check_int_positive, ratio
from utils.io import load_numpy
from utils.modelnames import active_models, rec_models
from utils.progress import inhour, WorkSplitter
from utils.regularizers import Regularizer
import argparse
import numpy as np
import tensorflow as tf
import time
def main(args):
# Progress bar
progress = WorkSplitter()
# Show parameter settings
progress.section("Parameter Setting")
print("Data Path: {}".format(args.path))
print("Active Learning Algorithm: {}".format(args.active_model))
print("Recommendation Algorithm: {}".format(args.rec_model))
print("GPU: {}".format(args.gpu))
print("Iterative: {}".format(args.iterative))
print("Sample From All: {}".format(args.sample_from_all))
print("Train Valid Test Split Ratio: {}".format(args.ratio))
print("Learning Rate: {}".format(args.learning_rate))
print("Rank: {}".format(args.rank))
print("Lambda: {}".format(args.lamb))
print("Epoch: {}".format(args.epoch))
print("Active Learning Iteration: {}".format(args.active_iteration))
print("Evaluation Ranking Topk: {}".format(args.topk))
print("UCB Confidence: {}".format(args.confidence_interval))
print("Number of Item per Active Iteration: {}".format(args.num_item_per_iter))
print("UCB Number of Latent Sampling: {}".format(args.num_latent_sampling))
# Load Data
progress.section("Loading Data")
start_time = time.time()
R_train = load_numpy(path=args.path, name=args.train)
print("Train U-I Dimensions: {}".format(R_train.shape))
R_active = load_numpy(path=args.path, name=args.active)
print("Active U-I Dimensions: {}".format(R_active.shape))
R_test = load_numpy(path=args.path, name=args.test)
print("Test U-I Dimensions: {}".format(R_test.shape))
print("Elapsed: {}".format(inhour(time.time() - start_time)))
train_index = int(R_test.shape[0]*args.ratio[0])
progress.section("Preparing Data")
matrix_train, matrix_active, matrix_test, _ = filter_users(R_train,
R_active,
R_test,
train_index=train_index,
active_threshold=2*args.num_item_per_iter*args.active_iteration,
test_threshold=2*args.topk)
m, n = matrix_train.shape
history_items = np.array([])
model = rec_models[args.rec_model](observation_dim=n, latent_dim=args.rank,
batch_size=128, lamb=args.lamb,
learning_rate=args.learning_rate,
optimizer=Regularizer[args.optimizer])
progress.section("Training")
model.train_model(matrix_train[:train_index], args.corruption, args.epoch)
for i in range(args.active_iteration):
print('This is step {} \n'.format(i))
print('The number of ones in train set is {}'.format(len(matrix_train[train_index:].nonzero()[0])))
print('The number of ones in active set is {}'.format(len(matrix_active[train_index:].nonzero()[0])))
progress.section("Predicting")
observation = active_models[args.active_model](model=model, matrix=matrix_train[train_index:].A, ci=args.confidence_interval, num_latent_sampling=args.num_latent_sampling)
progress.section("Update Train Set")
matrix_train, history_items = update_matrix(history_items, matrix_train,
matrix_active, observation,
train_index, args.iterative,
args.sample_from_all,
args.num_item_per_iter,
args.active_iteration, args.gpu)
if not args.iterative:
break
# matrix_train = matrix_train + matrix_active
print('The number of ones in train set is {}'.format(len(matrix_train[train_index:].nonzero()[0])))
progress.section("Re-Training")
model.train_model(matrix_train, args.corruption, args.epoch)
progress.section("Re-Predicting")
observation = active_models['Greedy'](model=model, matrix=matrix_train.A)
result = {}
for topk in [5, 10, 15, 20, 50]:
predict_items, _ = sampling_predict(prediction_scores=observation[train_index:],
topK=topk,
matrix_train=matrix_train[train_index:],
matrix_active=matrix_active[train_index:],
sample_from_all=True,
iterative=False,
history_items=np.array([]),
gpu=args.gpu)
progress.section("Create Metrics")
result.update(eval(matrix_test[train_index:], topk, predict_items))
print(result)
model.sess.close()
tf.reset_default_graph()
# import ipdb; ipdb.set_trace()
# result['Model'] = args.active_model
# result['Iterative'] = args.iterative
# result['SampleFromAll'] = args.sample_from_all
# result['C'] = args.confidence_interval
# import pandas as pd
# current_df = pd.DataFrame(result)
# import ipdb; ipdb.set_trace()
# previous_df = pd.read_csv('yelp_final_result.csv', sep='\t', encoding='utf-8')
# result_df = pd.concat([previous_df, current_df])
# result_df.to_csv('yelp_final_result.csv', sep='\t', encoding='utf-8', index=False)
if __name__ == "__main__":
# Commandline arguments
parser = argparse.ArgumentParser(description="DeepPreferenceElicitation")
parser.add_argument('--active', dest='active', default='Ractive.npz')
parser.add_argument('--active_model', dest='active_model', default="ThompsonSampling")
parser.add_argument('--confidence_interval', dest='confidence_interval', type=check_float_positive, default=0.5)
parser.add_argument('--corruption', dest='corruption', type=check_float_positive, default=0.5)
parser.add_argument('--disable_gpu', dest='gpu', action='store_false')
parser.add_argument('--disable_iterative', dest='iterative', action='store_false')
parser.add_argument('--disable_sample_from_all', dest='sample_from_all', action='store_false')
parser.add_argument('--epoch', dest='epoch', type=check_int_positive, default=300)
parser.add_argument('--active_iteration', dest='active_iteration', type=check_int_positive, default=1)
parser.add_argument('--lamb', dest='lamb', type=check_float_positive, default=0.0001)
parser.add_argument('--learning_rate', dest='learning_rate', type=check_float_positive, default=0.0001)
parser.add_argument('--num_item_per_iter', dest='num_item_per_iter', type=check_int_positive, default=1)
parser.add_argument('--num_latent_sampling', dest='num_latent_sampling', type=check_int_positive, default=5)
parser.add_argument('--optimizer', dest='optimizer', default="RMSProp")
parser.add_argument('--path', dest='path', default="data/")
parser.add_argument('--rank', dest='rank', type=check_int_positive, default=50)
parser.add_argument('--ratio', dest='ratio', type=ratio, default='0.5, 0.0, 0.5')
parser.add_argument('--rec_model', dest='rec_model', default="VAE-CF")
parser.add_argument('--test', dest='test', default='Rtest.npz')
parser.add_argument('--topk', dest='topk', type=check_int_positive, default=50)
parser.add_argument('--train', dest='train', default='Rtrain.npz')
args = parser.parse_args()
main(args)