Model | Input size | mAPval 0.5:0.95 |
mAPval 0.5 |
Params (M) |
FLOPS (G) |
LatencyNCNN (ms) |
LatencyLite (ms) |
Download | Config |
---|---|---|---|---|---|---|---|---|---|
PicoDet-S | 320*320 | 27.1 | 41.4 | 0.99 | 0.73 | 8.13 | 6.65 | model | log | config |
PicoDet-S | 416*416 | 30.7 | 45.8 | 0.99 | 1.24 | 12.37 | 9.82 | model | log | config |
PicoDet-M | 320*320 | 30.9 | 45.7 | 2.15 | 1.48 | 11.27 | 9.61 | model | log | config |
PicoDet-M | 416*416 | 34.8 | 50.5 | 2.15 | 2.50 | 17.39 | 15.88 | model | log | config |
PicoDet-L | 320*320 | 32.9 | 48.2 | 3.30 | 2.23 | 15.26 | 13.42 | model | log | config |
PicoDet-L | 416*416 | 36.6 | 52.5 | 3.30 | 3.76 | 23.36 | 21.85 | model | log | config |
PicoDet-L | 640*640 | 40.9 | 57.6 | 3.30 | 8.91 | 54.11 | 50.55 | model | log | config |
Model | Input size | mAPval 0.5:0.95 |
mAPval 0.5 |
Params (M) |
FLOPS (G) |
LatencyNCNN (ms) |
LatencyLite (ms) |
Download | Config |
---|---|---|---|---|---|---|---|---|---|
PicoDet-Shufflenetv2 1x | 416*416 | 30.0 | 44.6 | 1.17 | 1.53 | 15.06 | 10.63 | model | log | config |
PicoDet-MobileNetv3-large 1x | 416*416 | 35.6 | 52.0 | 3.55 | 2.80 | 20.71 | 17.88 | model | log | config |
PicoDet-LCNet 1.5x | 416*416 | 36.3 | 52.2 | 3.10 | 3.85 | 21.29 | 20.8 | model | log | config |
PicoDet-LCNet 1.5x | 640*640 | 40.6 | 57.4 | 3.10 | - | - | - | model | log | config |
PicoDet-R18 | 640*640 | 40.7 | 57.2 | 11.10 | - | - | - | model | log | config |
Table Notes:
- Latency: All our models test on
Qualcomm Snapdragon 865(4xA77+4xA55)
with 4 threads by arm8 and with FP16. In the above table, test latency on NCNN andLite
->Paddle-Lite. And testing latency with code: MobileDetBenchmark. - PicoDet is trained on COCO train2017 dataset and evaluated on COCO val2017.
- PicoDet used 4 or 8 GPUs for training and all checkpoints are trained with default settings and hyperparameters.
- Deploy models
Model | Input size | ONNX | Paddle Lite(fp32) | Paddle Lite(fp16) |
---|---|---|---|---|
PicoDet-S | 320*320 | model | model | model |
PicoDet-S | 416*416 | model | model | model |
PicoDet-M | 320*320 | model | model | model |
PicoDet-M | 416*416 | model | model | model |
PicoDet-L | 320*320 | model | model | model |
PicoDet-L | 416*416 | model | model | model |
PicoDet-L | 640*640 | model | model | model |
PicoDet-Shufflenetv2 1x | 416*416 | model | model | model |
PicoDet-MobileNetv3-large 1x | 416*416 | model | model | model |
PicoDet-LCNet 1.5x | 416*416 | model | model | model |
@misc{yu2021pppicodet,
title={PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices},
author={Guanghua Yu and Qinyao Chang and Wenyu Lv and Chang Xu and Cheng Cui and Wei Ji and Qingqing Dang and Kaipeng Deng and Guanzhong Wang and Yuning Du and Baohua Lai and Qiwen Liu and Xiaoguang Hu and Dianhai Yu and Yanjun Ma},
year={2021},
eprint={2111.00902},
archivePrefix={arXiv},
primaryClass={cs.CV}
}