forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mot_sde_infer.py
522 lines (466 loc) · 20.6 KB
/
mot_sde_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import yaml
import cv2
import numpy as np
from collections import defaultdict
import paddle
from benchmark_utils import PaddleInferBenchmark
from preprocess import decode_image
from utils import argsparser, Timer, get_current_memory_mb
from infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig, load_predictor
# add python path
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
from pptracking.python.mot import JDETracker, DeepSORTTracker
from pptracking.python.mot.utils import MOTTimer, write_mot_results, get_crops, clip_box
from pptracking.python.mot.visualize import plot_tracking, plot_tracking_dict
class SDE_Detector(Detector):
"""
Args:
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
tracker_config (str): tracker config path
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU/NPU, default is CPU
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
batch_size (int): size of pre batch in inference
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
cpu_threads (int): cpu threads
enable_mkldnn (bool): whether to open MKLDNN
output_dir (string): The path of output, default as 'output'
threshold (float): Score threshold of the detected bbox, default as 0.5
save_images (bool): Whether to save visualization image results, default as False
save_mot_txts (bool): Whether to save tracking results (txt), default as False
reid_model_dir (str): reid model dir, default None for ByteTrack, but set for DeepSORT
"""
def __init__(self,
model_dir,
tracker_config,
device='CPU',
run_mode='paddle',
batch_size=1,
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False,
output_dir='output',
threshold=0.5,
save_images=False,
save_mot_txts=False,
reid_model_dir=None):
super(SDE_Detector, self).__init__(
model_dir=model_dir,
device=device,
run_mode=run_mode,
batch_size=batch_size,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn,
output_dir=output_dir,
threshold=threshold, )
self.save_images = save_images
self.save_mot_txts = save_mot_txts
assert batch_size == 1, "MOT model only supports batch_size=1."
self.det_times = Timer(with_tracker=True)
self.num_classes = len(self.pred_config.labels)
# reid config
self.use_reid = False if reid_model_dir is None else True
if self.use_reid:
self.reid_pred_config = self.set_config(reid_model_dir)
self.reid_predictor, self.config = load_predictor(
reid_model_dir,
run_mode=run_mode,
batch_size=50, # reid_batch_size
min_subgraph_size=self.reid_pred_config.min_subgraph_size,
device=device,
use_dynamic_shape=self.reid_pred_config.use_dynamic_shape,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn)
else:
self.reid_pred_config = None
self.reid_predictor = None
assert tracker_config is not None, 'Note that tracker_config should be set.'
self.tracker_config = tracker_config
tracker_cfg = yaml.safe_load(open(self.tracker_config))
cfg = tracker_cfg[tracker_cfg['type']]
# tracker config
self.use_deepsort_tracker = True if tracker_cfg[
'type'] == 'DeepSORTTracker' else False
if self.use_deepsort_tracker:
# use DeepSORTTracker
if self.reid_pred_config is not None and hasattr(
self.reid_pred_config, 'tracker'):
cfg = self.reid_pred_config.tracker
budget = cfg.get('budget', 100)
max_age = cfg.get('max_age', 30)
max_iou_distance = cfg.get('max_iou_distance', 0.7)
matching_threshold = cfg.get('matching_threshold', 0.2)
min_box_area = cfg.get('min_box_area', 0)
vertical_ratio = cfg.get('vertical_ratio', 0)
self.tracker = DeepSORTTracker(
budget=budget,
max_age=max_age,
max_iou_distance=max_iou_distance,
matching_threshold=matching_threshold,
min_box_area=min_box_area,
vertical_ratio=vertical_ratio, )
else:
# use ByteTracker
use_byte = cfg.get('use_byte', False)
det_thresh = cfg.get('det_thresh', 0.3)
min_box_area = cfg.get('min_box_area', 0)
vertical_ratio = cfg.get('vertical_ratio', 0)
match_thres = cfg.get('match_thres', 0.9)
conf_thres = cfg.get('conf_thres', 0.6)
low_conf_thres = cfg.get('low_conf_thres', 0.1)
self.tracker = JDETracker(
use_byte=use_byte,
det_thresh=det_thresh,
num_classes=self.num_classes,
min_box_area=min_box_area,
vertical_ratio=vertical_ratio,
match_thres=match_thres,
conf_thres=conf_thres,
low_conf_thres=low_conf_thres, )
def postprocess(self, inputs, result):
# postprocess output of predictor
np_boxes_num = result['boxes_num']
if np_boxes_num[0] <= 0:
print('[WARNNING] No object detected.')
result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
result = {k: v for k, v in result.items() if v is not None}
return result
def reidprocess(self, det_results, repeats=1):
pred_dets = det_results['boxes']
pred_xyxys = pred_dets[:, 2:6]
ori_image = det_results['ori_image']
ori_image_shape = ori_image.shape[:2]
pred_xyxys, keep_idx = clip_box(pred_xyxys, ori_image_shape)
if len(keep_idx[0]) == 0:
det_results['boxes'] = np.zeros((1, 6), dtype=np.float32)
det_results['embeddings'] = None
return det_results
pred_dets = pred_dets[keep_idx[0]]
pred_xyxys = pred_dets[:, 2:6]
w, h = self.tracker.input_size
crops = get_crops(pred_xyxys, ori_image, w, h)
# to keep fast speed, only use topk crops
crops = crops[:50] # reid_batch_size
det_results['crops'] = np.array(crops).astype('float32')
det_results['boxes'] = pred_dets[:50]
input_names = self.reid_predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.reid_predictor.get_input_handle(input_names[i])
input_tensor.copy_from_cpu(det_results[input_names[i]])
# model prediction
for i in range(repeats):
self.reid_predictor.run()
output_names = self.reid_predictor.get_output_names()
feature_tensor = self.reid_predictor.get_output_handle(output_names[
0])
pred_embs = feature_tensor.copy_to_cpu()
det_results['embeddings'] = pred_embs
return det_results
def tracking(self, det_results):
pred_dets = det_results['boxes'] # 'cls_id, score, x0, y0, x1, y1'
pred_embs = det_results.get('embeddings', None)
if self.use_deepsort_tracker:
# use DeepSORTTracker, only support singe class
self.tracker.predict()
online_targets = self.tracker.update(pred_dets, pred_embs)
online_tlwhs, online_scores, online_ids = [], [], []
for t in online_targets:
if not t.is_confirmed() or t.time_since_update > 1:
continue
tlwh = t.to_tlwh()
tscore = t.score
tid = t.track_id
if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
3] > self.tracker.vertical_ratio:
continue
online_tlwhs.append(tlwh)
online_scores.append(tscore)
online_ids.append(tid)
tracking_outs = {
'online_tlwhs': online_tlwhs,
'online_scores': online_scores,
'online_ids': online_ids,
}
return tracking_outs
else:
# use ByteTracker, support multiple class
online_tlwhs = defaultdict(list)
online_scores = defaultdict(list)
online_ids = defaultdict(list)
online_targets_dict = self.tracker.update(pred_dets, pred_embs)
for cls_id in range(self.num_classes):
online_targets = online_targets_dict[cls_id]
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
tscore = t.score
if tlwh[2] * tlwh[3] <= self.tracker.min_box_area:
continue
if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
3] > self.tracker.vertical_ratio:
continue
online_tlwhs[cls_id].append(tlwh)
online_ids[cls_id].append(tid)
online_scores[cls_id].append(tscore)
tracking_outs = {
'online_tlwhs': online_tlwhs,
'online_scores': online_scores,
'online_ids': online_ids,
}
return tracking_outs
def predict_image(self,
image_list,
run_benchmark=False,
repeats=1,
visual=True,
seq_name=None):
num_classes = self.num_classes
image_list.sort()
ids2names = self.pred_config.labels
mot_results = []
for frame_id, img_file in enumerate(image_list):
batch_image_list = [img_file] # bs=1 in MOT model
frame, _ = decode_image(img_file, {})
if run_benchmark:
# preprocess
inputs = self.preprocess(batch_image_list) # warmup
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(batch_image_list)
self.det_times.preprocess_time_s.end()
# model prediction
result_warmup = self.predict(repeats=repeats) # warmup
self.det_times.inference_time_s.start()
result = self.predict(repeats=repeats)
self.det_times.inference_time_s.end(repeats=repeats)
# postprocess
result_warmup = self.postprocess(inputs, result) # warmup
self.det_times.postprocess_time_s.start()
det_result = self.postprocess(inputs, result)
self.det_times.postprocess_time_s.end()
# tracking
if self.use_reid:
det_result['frame_id'] = frame_id
det_result['seq_name'] = seq_name
det_result['ori_image'] = frame
det_result = self.reidprocess(det_result)
result_warmup = self.tracking(det_result)
self.det_times.tracking_time_s.start()
if self.use_reid:
det_result = self.reidprocess(det_result)
tracking_outs = self.tracking(det_result)
self.det_times.tracking_time_s.end()
self.det_times.img_num += 1
cm, gm, gu = get_current_memory_mb()
self.cpu_mem += cm
self.gpu_mem += gm
self.gpu_util += gu
else:
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(batch_image_list)
self.det_times.preprocess_time_s.end()
self.det_times.inference_time_s.start()
result = self.predict()
self.det_times.inference_time_s.end()
self.det_times.postprocess_time_s.start()
det_result = self.postprocess(inputs, result)
self.det_times.postprocess_time_s.end()
# tracking process
self.det_times.tracking_time_s.start()
if self.use_reid:
det_result['frame_id'] = frame_id
det_result['seq_name'] = seq_name
det_result['ori_image'] = frame
det_result = self.reidprocess(det_result)
tracking_outs = self.tracking(det_result)
self.det_times.tracking_time_s.end()
self.det_times.img_num += 1
online_tlwhs = tracking_outs['online_tlwhs']
online_scores = tracking_outs['online_scores']
online_ids = tracking_outs['online_ids']
mot_results.append([online_tlwhs, online_scores, online_ids])
if visual:
if len(image_list) > 1 and frame_id % 10 == 0:
print('Tracking frame {}'.format(frame_id))
frame, _ = decode_image(img_file, {})
if isinstance(online_tlwhs, defaultdict):
im = plot_tracking_dict(
frame,
num_classes,
online_tlwhs,
online_ids,
online_scores,
frame_id=frame_id,
ids2names=ids2names)
else:
im = plot_tracking(
frame,
online_tlwhs,
online_ids,
online_scores,
frame_id=frame_id,
ids2names=ids2names)
save_dir = os.path.join(self.output_dir, seq_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
cv2.imwrite(
os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
return mot_results
def predict_video(self, video_file, camera_id):
video_out_name = 'output.mp4'
if camera_id != -1:
capture = cv2.VideoCapture(camera_id)
else:
capture = cv2.VideoCapture(video_file)
video_out_name = os.path.split(video_file)[-1]
# Get Video info : resolution, fps, frame count
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(capture.get(cv2.CAP_PROP_FPS))
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
print("fps: %d, frame_count: %d" % (fps, frame_count))
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
out_path = os.path.join(self.output_dir, video_out_name)
video_format = 'mp4v'
fourcc = cv2.VideoWriter_fourcc(*video_format)
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
frame_id = 1
timer = MOTTimer()
results = defaultdict(list)
num_classes = self.num_classes
data_type = 'mcmot' if num_classes > 1 else 'mot'
ids2names = self.pred_config.labels
while (1):
ret, frame = capture.read()
if not ret:
break
if frame_id % 10 == 0:
print('Tracking frame: %d' % (frame_id))
frame_id += 1
timer.tic()
seq_name = video_out_name.split('.')[0]
mot_results = self.predict_image(
[frame[:, :, ::-1]], visual=False, seq_name=seq_name)
timer.toc()
# bs=1 in MOT model
online_tlwhs, online_scores, online_ids = mot_results[0]
fps = 1. / timer.duration
if self.use_deepsort_tracker:
# use DeepSORTTracker, only support singe class
results[0].append(
(frame_id + 1, online_tlwhs, online_scores, online_ids))
im = plot_tracking(
frame,
online_tlwhs,
online_ids,
online_scores,
frame_id=frame_id,
fps=fps,
ids2names=ids2names)
else:
# use ByteTracker, support multiple class
for cls_id in range(num_classes):
results[cls_id].append(
(frame_id + 1, online_tlwhs[cls_id],
online_scores[cls_id], online_ids[cls_id]))
im = plot_tracking_dict(
frame,
num_classes,
online_tlwhs,
online_ids,
online_scores,
frame_id=frame_id,
fps=fps,
ids2names=ids2names)
writer.write(im)
if camera_id != -1:
cv2.imshow('Mask Detection', im)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if self.save_mot_txts:
result_filename = os.path.join(
self.output_dir, video_out_name.split('.')[-2] + '.txt')
write_mot_results(result_filename, results)
writer.release()
def main():
deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
with open(deploy_file) as f:
yml_conf = yaml.safe_load(f)
arch = yml_conf['arch']
detector = SDE_Detector(
FLAGS.model_dir,
tracker_config=FLAGS.tracker_config,
device=FLAGS.device,
run_mode=FLAGS.run_mode,
batch_size=1,
trt_min_shape=FLAGS.trt_min_shape,
trt_max_shape=FLAGS.trt_max_shape,
trt_opt_shape=FLAGS.trt_opt_shape,
trt_calib_mode=FLAGS.trt_calib_mode,
cpu_threads=FLAGS.cpu_threads,
enable_mkldnn=FLAGS.enable_mkldnn,
output_dir=FLAGS.output_dir,
threshold=FLAGS.threshold,
save_images=FLAGS.save_images,
save_mot_txts=FLAGS.save_mot_txts, )
# predict from video file or camera video stream
if FLAGS.video_file is not None or FLAGS.camera_id != -1:
detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
else:
# predict from image
if FLAGS.image_dir is None and FLAGS.image_file is not None:
assert FLAGS.batch_size == 1, "--batch_size should be 1 in MOT models."
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
seq_name = FLAGS.image_dir.split('/')[-1]
detector.predict_image(
img_list, FLAGS.run_benchmark, repeats=10, seq_name=seq_name)
if not FLAGS.run_benchmark:
detector.det_times.info(average=True)
else:
mode = FLAGS.run_mode
model_dir = FLAGS.model_dir
model_info = {
'model_name': model_dir.strip('/').split('/')[-1],
'precision': mode.split('_')[-1]
}
bench_log(detector, img_list, model_info, name='MOT')
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
print_arguments(FLAGS)
FLAGS.device = FLAGS.device.upper()
assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU'
], "device should be CPU, GPU, NPU or XPU"
main()