-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
minimum-moves-to-spread-stones-over-grid.cpp
111 lines (104 loc) · 3.94 KB
/
minimum-moves-to-spread-stones-over-grid.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
// Time: O(max(x^2 * y)) = O(n^3), n = len(grid)*len(grid[0]), y = len(zero), x = n-y
// Space: O(max(x^2)) = O(n^2)
// weighted bipartite matching solution
class Solution {
public:
int minimumMoves(vector<vector<int>>& grid) {
const auto& dist = [](const auto& a, const auto& b) {
return abs(a.first - b.first) + abs(a.second - b.second);
};
vector<pair<int, int>> src, dst;
for (int i = 0; i < size(grid); ++i) {
for (int j = 0; j < size(grid[0]); ++j) {
if (grid[i][j] - 1 >= 0) {
for (int _ = 0; _ < grid[i][j] - 1; ++_) {
src.emplace_back(i, j);
}
} else {
dst.emplace_back(i, j);
}
}
}
vector<vector<int>> adj(size(src), vector<int>(size(dst)));
for (int i = 0; i < size(src); ++i) {
for (int j = 0; j < size(dst); ++j) {
adj[i][j] = dist(src[i], dst[j]);
}
}
return hungarian(adj).first;
}
private:
// Template modified from:
// https://github.com/kth-competitive-programming/kactl/blob/main/content/graph/WeightedMatching.h
pair<int, vector<int>> hungarian(const vector<vector<int>> &a) { // Time: O(n^2 * m), Space: O(n + m)
if (a.empty()) return {0, {}};
int n = size(a) + 1, m = size(a[0]) + 1;
vector<int> u(n), v(m), p(m), ans(n - 1);
for (int i = 1; i < n; ++i) {
p[0] = i;
int j0 = 0; // add "dummy" worker 0
vector<int> dist(m, numeric_limits<int>::max()), pre(m, -1);
vector<bool> done(m + 1);
do { // dijkstra
done[j0] = true;
int i0 = p[j0], j1, delta = numeric_limits<int>::max();
for (int j = 1; j < m; ++j) {
if (!done[j]) {
auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
if (cur < dist[j]) dist[j] = cur, pre[j] = j0;
if (dist[j] < delta) delta = dist[j], j1 = j;
}
}
for (int j = 0; j < m; ++j) {
if (done[j]) u[p[j]] += delta, v[j] -= delta;
else dist[j] -= delta;
}
j0 = j1;
} while (p[j0]);
while (j0) { // update alternating path
int j1 = pre[j0];
p[j0] = p[j1], j0 = j1;
}
}
for (int j = 1; j < m; ++j) if (p[j]) ans[p[j] - 1] = j - 1;
return {-v[0], ans}; // min cost
}
};
// Time: O(max(x^y)) = O((n/2)^(n/2))) = O(5^5), n = len(grid)*len(grid[0]), y = len(zero), x = n-y
// Space: O(y) = O(n) = O(9) = O(1)
// backtracking
class Solution2 {
public:
int minimumMoves(vector<vector<int>>& grid) {
const auto& dist = [](const auto& a, const auto& b) {
return abs(a.first - b.first) + abs(a.second - b.second);
};
vector<pair<int, int>> zero;
for (int i = 0; i < size(grid); ++i) {
for (int j = 0; j < size(grid[0]); ++j) {
if (grid[i][j] == 0) {
zero.emplace_back(i, j);
}
}
}
function<int (int)> backtracking = [&](int curr) {
if (curr == size(zero)) {
return 0;
}
int result = numeric_limits<int>::max();
const auto& [i, j] = zero[curr];
for (int ni = 0; ni < size(grid); ++ni) {
for (int nj = 0; nj < size(grid[0]); ++nj) {
if (!(grid[ni][nj] >= 2)) {
continue;
}
--grid[ni][nj];
result = min(result, dist(pair(i, j), pair(ni, nj)) + backtracking(curr + 1));
++grid[ni][nj];
}
}
return result;
};
return backtracking(0);
}
};