forked from fourson/DeblurGAN-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeblur_image.py
58 lines (40 loc) · 1.94 KB
/
deblur_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import argparse
from tqdm import tqdm
from torchvision.transforms.functional import to_pil_image
import torch
def main(blurred_dir, deblurred_dir, resume):
# load checkpoint
checkpoint = torch.load(resume)
config = checkpoint['config']
# setup data_loader instances
data_loader = CustomDataLoader(data_dir=blurred_dir)
# build model architecture
generator_class = getattr(module_arch, config['generator']['type'])
generator = generator_class(**config['generator']['args'])
# prepare model for deblurring
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
generator.to(device)
generator.load_state_dict(checkpoint['generator'])
generator.eval()
# start to deblur
with torch.no_grad():
for batch_idx, sample in enumerate(tqdm(data_loader, ascii=True)):
blurred = sample['blurred'].to(device)
image_name = sample['image_name'][0]
deblurred = generator(blurred)
deblurred_img = to_pil_image(denormalize(deblurred).squeeze().cpu())
deblurred_img.save(os.path.join(deblurred_dir, 'deblurred ' + image_name))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Deblur your own image!')
parser.add_argument('-b', '--blurred', required=True, type=str, help='dir of blurred images')
parser.add_argument('-d', '--deblurred', required=True, type=str, help='dir to save deblurred images')
parser.add_argument('-r', '--resume', required=True, type=str, help='path to latest checkpoint')
parser.add_argument('--device', default=None, type=str, help='indices of GPUs to enable (default: all)')
args = parser.parse_args()
if args.device:
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
import model.model as module_arch
from data_loader.data_loader import CustomDataLoader
from utils.util import denormalize
main(args.blurred, args.deblurred, args.resume)