forked from kdwonn/GSAP-CAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
115 lines (97 loc) · 4.34 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from keras.models import Sequential
from keras.layers import Convolution2D, ZeroPadding2D, MaxPooling2D
from keras.layers.core import Flatten, Dense, Dropout, Lambda
from keras import backend as K
import h5py
from keras.optimizers import SGD
def global_average_pooling(x):
# return K.max(x, axis=(2,3))
# normalize_rate = 0.9
# epsilon = 1e-10
# max_val = K.max(x, axis=(2,3), keepdims = True)
# normalized = x / (normalize_rate * max_val + epsilon)
# square_normalized = K.square(normalized)
# return K.mean(square_normalized, axis = (2,3))
normalize_rate = 1
epsilon = 1e-10
sum_val = K.sum(x, axis=(2,3), keepdims = True)
normalized = x / (sum_val * normalize_rate + epsilon)
square_normalized = x * normalized
return K.mean(square_normalized, axis = (2,3))
# normalize_rate = 1
# epsilon = 1e-10
# square = K.square(x)
# sum_val = K.sum(square, axis=(2,3), keepdims = True)
# normalized = x / (sum_val * normalize_rate + epsilon)
# square_normalized = x * normalized
# return K.mean(square_normalized, axis = (2,3))
# return K.mean(x, axis = (2, 3))
def global_average_pooling_shape(input_shape):
return input_shape[0:2]
def VGG16_convolutions():
#K.set_image_data_format('channels_first')
model = Sequential()
model.add(ZeroPadding2D((1,1),input_shape=(3,None,None)))
model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_2'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_2'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_3'))
return model
def get_model():
model = VGG16_convolutions()
model = load_model_weights(model, "vgg16_weights.h5")
# for layer in model.layers[:-4]:
# layer.trainable = False
for layer in model.layers[-4:]:
layer.trainable = True
model.add(Lambda(global_average_pooling,
output_shape=global_average_pooling_shape))
model.add(Dense(2, activation = 'softmax', init='uniform'))
sgd = SGD(lr=0.001, decay=1e-6, momentum=0.5, nesterov=True)
model.compile(loss = 'categorical_crossentropy', optimizer = sgd, metrics=['accuracy'])
print(model.summary())
return model
def load_model_weights(model, weights_path):
print ('Loading model.')
f = h5py.File(weights_path)
for k in range(f.attrs['nb_layers']):
if k >= len(model.layers):
# we don't look at the last (fully-connected) layers in the savefile
break
g = f['layer_{}'.format(k)]
weights = [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])]
model.layers[k].set_weights(weights)
model.layers[k].trainable = False
f.close()
print ('Model loaded.')
return model
def get_output_layer(model, layer_name):
# get the symbolic outputs of each "key" layer (we gave them unique names).
layer_dict = dict([(layer.name, layer) for layer in model.layers])
layer = layer_dict[layer_name]
return layer