forked from penny4860/Weakly-Supervised-Text-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2_cam_plot.py
30 lines (19 loc) · 973 Bytes
/
2_cam_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#-*- coding: utf-8 -*-
from keras.applications.resnet50 import preprocess_input
import numpy as np
import cv2
from src.model_builder import CamModelBuilder
from src.utils import plot_img, list_files
if __name__ == "__main__":
detector = CamModelBuilder().get_cam_model()
detector.load_weights("weights.h5", by_name=True)
detector.summary()
imgs = list_files("dataset//train//text")
for i, img_path in enumerate(imgs):
original_img = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
img = cv2.resize(original_img, (224, 224))
img = np.expand_dims(img, 0).astype(np.float64)
cam_map = detector.predict(preprocess_input(img))
cam_map = cam_map[0, :, :, 1]
cam_map = cv2.resize(cam_map, (original_img.shape[1], original_img.shape[0]))
plot_img(original_img, cam_map, show=False, save_filename="{}.png".format(i+1))