forked from Rahul-Venugopal/loans
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_sheep_localizer.py
259 lines (215 loc) · 10.6 KB
/
train_sheep_localizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import argparse
import datetime
import json
import os
import chainer
import numpy as np
from PIL import Image
from chainer.datasets import get_mnist
from chainer.training import extensions
from chainer.training.extensions import Evaluator
from commands.interactive_train import open_interactive_prompt
from common.datasets.image_dataset import ImageDataset, LabeledImageDataset
from common.net import ResnetAssessor
from insights.bbox_plotter import BBOXPlotter
from sheep.sheep_evaluator import SheepMAPEvaluator
from sheep.sheep_localizer import Resnet50SheepLocalizer, SheepLocalizer
from sheep.sheep_updater import SheepAssessor
from train_utils.logger import Logger
from train_utils.train_utils import get_definition_filepath
def load_train_paths(train_file, with_label=False):
with open(train_file) as handle:
train_data = json.load(handle)
paths = [item["image"] for item in train_data]
if with_label:
labels = [item['bounding_boxes'][0] for item in train_data]
return list(zip(paths, labels))
return paths
def load_image(image_path, size):
with Image.open(image_path) as anchor_image:
anchor_image = anchor_image.convert('RGB')
anchor_image = anchor_image.resize(size)
anchor_image = np.array(anchor_image).astype(np.float32)
anchor_image = np.transpose(anchor_image, (2, 0, 1))
anchor_image /= 255
return anchor_image
def load_pretrained_model(model_file, model):
with np.load(model_file) as handle:
chainer.serializers.NpzDeserializer(handle, strict=False).load(model)
def main():
parser = argparse.ArgumentParser(description="Train a sheep localizer")
parser.add_argument("train_file", help="path to train csv")
parser.add_argument("val_file", help="path to validation file (if you do not want to do validation just enter gibberish here")
parser.add_argument("reference_file", help="path to reference images with different zoom levels")
parser.add_argument("--no-validation", dest='validation', action='store_false', default=True, help="don't do validation")
parser.add_argument("--image-size", type=int, nargs=2, default=(224, 224), help="input size for localizer")
parser.add_argument("--target-size", type=int, nargs=2, default=(75, 75), help="crop size for each image")
parser.add_argument("-b", "--batch-size", type=int, default=16, help="batch size for training")
parser.add_argument("-g", "--gpu", type=int, default=-1, help="gpu if to use (-1 means cpu)")
parser.add_argument("--lr", "--learning-rate", dest="learning_rate", type=float, default=0.001, help="learning rate")
parser.add_argument("-l", "--log-dir", default='sheep_logs', help="path to log dir")
parser.add_argument("--ln", "--log-name", default="test", help="name of log")
parser.add_argument("--num-epoch", type=int, default=100, help="number of epochs to train")
parser.add_argument("--snapshot-interval", type=int, default=1000, help="number of iterations after which a snapshot will be taken")
parser.add_argument("--no-snapshot-every-epoch", dest="snapshot_every_epoch", action='store_false', default=True, help="Do not take a snapshot on every epoch")
parser.add_argument("--log-interval", type=int, default=100, help="log interval")
parser.add_argument("--port", type=int, default=1337, help="port that is used by bbox plotter to send predictions on test image")
parser.add_argument("--test-image", help="path to test image that is to be used with bbox plotter")
parser.add_argument("--anchor-image", help="path to anchor image used for metric learning")
parser.add_argument("--rl", dest="resume_localizer", help="path to snapshot that is to be used to resume training of localizer")
parser.add_argument("--rd", dest="resume_discriminator", help="path to snapshot that is to be used to pre-initialize discriminator")
parser.add_argument("--use-resnet-18", action='store_true', default=False, help="Use Resnet-18 for localization")
parser.add_argument("--localizer-target", type=float, default=1.0, help="target iou for localizer to reach in the interval [0,1]")
parser.add_argument("--no-imgaug", action='store_false', dest='use_imgaug', default=True, help="disable image augmentation with `imgaug`, but use naive image augmentation instead")
args = parser.parse_args()
report_keys = ["epoch", "iteration", "loss_localizer", "loss_dis", "map", "mean_iou"]
if args.train_file.endswith('.json'):
train_image_paths = load_train_paths(args.train_file)
else:
train_image_paths = args.train_file
train_dataset = ImageDataset(
train_image_paths,
os.path.dirname(args.train_file),
image_size=args.image_size,
dtype=np.float32,
use_imgaug=args.use_imgaug,
transform_probability=0.5,
)
if args.reference_file == 'mnist':
reference_dataset = get_mnist(withlabel=False, ndim=3, rgb_format=True)[0]
args.target_size = (28, 28)
else:
reference_dataset = LabeledImageDataset(
args.reference_file,
os.path.dirname(args.reference_file),
image_size=args.target_size,
dtype=np.float32,
label_dtype=np.float32,
)
if args.validation:
if args.val_file.endswith('.json'):
validation_data = load_train_paths(args.val_file, with_label=True)
else:
validation_data = args.val_file
validation_dataset = LabeledImageDataset(validation_data, os.path.dirname(args.val_file), image_size=args.image_size)
validation_iter = chainer.iterators.MultithreadIterator(validation_dataset, args.batch_size, repeat=False)
data_iter = chainer.iterators.MultithreadIterator(train_dataset, args.batch_size)
reference_iter = chainer.iterators.MultithreadIterator(reference_dataset, args.batch_size)
localizer_class = SheepLocalizer if args.use_resnet_18 else Resnet50SheepLocalizer
localizer = localizer_class(args.target_size)
if args.resume_localizer is not None:
load_pretrained_model(args.resume_localizer, localizer)
discriminator_output_dim = 1
discriminator = ResnetAssessor(output_dim=discriminator_output_dim)
if args.resume_discriminator is not None:
load_pretrained_model(args.resume_discriminator, discriminator)
models = [localizer, discriminator]
localizer_optimizer = chainer.optimizers.Adam(alpha=args.learning_rate, amsgrad=True)
localizer_optimizer.setup(localizer)
discriminator_optimizer = chainer.optimizers.Adam(alpha=args.learning_rate, amsgrad=True)
discriminator_optimizer.setup(discriminator)
optimizers = [localizer_optimizer, discriminator_optimizer]
updater_args = {
"iterator": {
'main': data_iter,
'real': reference_iter,
},
"device": args.gpu,
"optimizer": {
"opt_gen": localizer_optimizer,
"opt_dis": discriminator_optimizer,
},
"create_pca": False,
"resume_discriminator": args.resume_discriminator,
"localizer_target": args.localizer_target,
}
updater = SheepAssessor(
models=[localizer, discriminator],
**updater_args
)
log_dir = os.path.join(args.log_dir, "{}_{}".format(datetime.datetime.now().isoformat(), args.ln))
args.log_dir = log_dir
# create log dir
if not os.path.exists(log_dir):
os.makedirs(log_dir, exist_ok=True)
trainer = chainer.training.Trainer(updater, (args.num_epoch, 'epoch'), out=args.log_dir)
data_to_log = {
'log_dir': args.log_dir,
'image_size': args.image_size,
'updater': [updater.__class__.__name__, 'updater.py'],
'discriminator': [discriminator.__class__.__name__, 'discriminator.py'],
'discriminator_output_dim': discriminator_output_dim,
'localizer': [localizer.__class__.__name__, 'localizer.py']
}
for argument in filter(lambda x: not x.startswith('_'), dir(args)):
data_to_log[argument] = getattr(args, argument)
def backup_train_config(stats_cpu):
if stats_cpu['iteration'] == args.log_interval:
stats_cpu.update(data_to_log)
for model in models:
trainer.extend(
extensions.snapshot_object(model, model.__class__.__name__ + '_{.updater.iteration}.npz'),
trigger=lambda trainer: trainer.updater.is_new_epoch if args.snapshot_every_epoch else trainer.updater.iteration % args.snapshot_interval == 0,
)
# log train information everytime we encouter a new epoch or args.log_interval iterations have been done
log_interval_trigger = (lambda trainer:
trainer.updater.is_new_epoch or trainer.updater.iteration % args.log_interval == 0)
sheep_evaluator = SheepMAPEvaluator(localizer, args.gpu)
if args.validation:
trainer.extend(
Evaluator(validation_iter, localizer, device=args.gpu, eval_func=sheep_evaluator),
trigger=log_interval_trigger,
)
models.append(updater)
logger = Logger(
[get_definition_filepath(model) for model in models],
args.log_dir,
postprocess=backup_train_config,
trigger=log_interval_trigger,
dest_file_names=['localizer.py', 'discriminator.py', 'updater.py'],
)
if args.test_image is not None:
plot_image = load_image(args.test_image, args.image_size)
gt_bbox = None
else:
if args.validation:
plot_image, gt_bbox, _ = validation_dataset.get_example(0)
else:
plot_image = train_dataset.get_example(0)
gt_bbox = None
bbox_plotter = BBOXPlotter(
plot_image,
os.path.join(args.log_dir, 'bboxes'),
args.target_size,
send_bboxes=True,
upstream_port=args.port,
visualization_anchors=[
["visual_backprop_anchors"],
],
device=args.gpu,
render_extracted_rois=True,
num_rois_to_render=4,
show_visual_backprop_overlay=False,
show_backprop_and_feature_vis=True,
gt_bbox=gt_bbox,
render_pca=True,
log_name=args.ln,
)
trainer.extend(bbox_plotter, trigger=(1, 'iteration'))
trainer.extend(
logger,
trigger=log_interval_trigger
)
trainer.extend(
extensions.PrintReport(report_keys, log_report='Logger'),
trigger=log_interval_trigger
)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.extend(extensions.dump_graph('loss_localizer', out_name='model.dot'))
open_interactive_prompt(
bbox_plotter=bbox_plotter,
optimizer=optimizers,
)
trainer.run()
if __name__ == "__main__":
main()