Skip to content

Latest commit

 

History

History
78 lines (68 loc) · 1.72 KB

File metadata and controls

78 lines (68 loc) · 1.72 KB

The energy of a continuous-time signal $x(t)$

$$E_x=\int_{-\infty}^{\infty} |x(t)|^2 dt$$

The energy of a discrete-time signal $x[n]$ is

$$E_x=\sum_{n=-\infty}^{\infty} |x[n]|^2$$

Dirac Signal

The Dirac signal (continuous-time impulse signal) is defined by

$$\delta(t) = \left\{ \begin{eqnarray} \infty &\quad& \textrm{for} \quad t = 0 \\\ 0 &\quad& \textrm{for} \quad t \neq 0 \end{eqnarray} \right.$$

where

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

The Kronecker signal (discrete-time impulse signal) is defined by

$$\delta[n] = \left\{ \begin{eqnarray} 1 &\quad& \textrm{for} \quad n = 0 \\\ 0 &\quad& \textrm{for} \quad n \neq 0 \end{eqnarray} \right.$$

The properties of impulse signals:

  • Energy: $E_x =$ not well defined
  • Power: $P_x = 0$
  • Even / Odd?: Even (Understanding why is beyond the purview of this course. You will not be tested on this.)
  • Periodic?: No
  • Causal?: Yes

Step Functions

The continuous-time step function $u(t)$ is defined by

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau = \left\{ \begin{eqnarray} 1 &\quad& \textrm{for} \quad t \geq 0 \\\ 0 &\quad& \textrm{for} \quad t < 0 \end{eqnarray} \right.$$

The discrete-time step function $u[n]$ is defined by

$$u[n] = \sum_{k = -\infty}^{n} \delta[k] = \left\{ \begin{eqnarray} 1 &\quad& \textrm{for} \quad n \geq 0 \\\ 0 &\quad& \textrm{for} \quad n < 0 \end{eqnarray} \right.$$

The properties of the Heaviside step functions:

  • Energy: $E_x=\infty$
  • Power: $P_x=1/2$
  • Even / Odd?: Neither
  • Periodic?: No
  • Causal?: Yes
Property Explanation
Energy $E_x=\infty$
Power $P_x=1/2$