-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval.py
652 lines (546 loc) · 28.2 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
# Mostly borrowed from iBOT
import argparse
import copy
import datetime
import json
import math
import os
import sys
import time
import numpy as np
from pathlib import Path
from typing import Iterable, Optional
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.nn as nn
from imblearn.metrics import specificity_score, sensitivity_score
from sklearn.metrics import f1_score, precision_score, confusion_matrix, precision_recall_fscore_support
from timm.data import Mixup, create_transform
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.optim import create_optimizer
from timm.scheduler import create_scheduler
from timm.utils import NativeScaler, get_state_dict, ModelEma, accuracy
from torchvision import datasets, transforms
from ldm import models
from misc import utils
from torchmetrics.classification import F1, Precision, Specificity
import warnings
warnings.filterwarnings("ignore")
class ImageFolder2(datasets.ImageFolder):
def __getitem__(self, index):
path, target = self.samples[index]
try:
sample = self.loader(path)
if self.transform is not None:
sample = self.transform(sample)
if self.target_transform is not None:
target = self.target_transform(target)
return sample, target
except Exception as e:
print(e)
def build_dataset(is_train, args):
transform = build_transform(is_train, args)
root = os.path.join(args.data_path, args.output_dir if is_train else 'val')
dataset = ImageFolder2(root, transform=transform)
# here we used crc and pannuke in paper
# please feel free to modify for your own dataset as you see fit
if args.data_set == 'CRC':
nb_classes = 9
elif args.data_set == 'PanNuke':
nb_classes = 19
return dataset, nb_classes
def build_transform(is_train, args):
resize_im = args.input_size > 32
if is_train:
transform = create_transform(
input_size=args.input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
)
if not resize_im:
transform.transforms[0] = transforms.RandomCrop(
args.input_size, padding=4)
return transform
t = []
if resize_im:
size = int((256 / 224) * args.input_size)
t.append(
transforms.Resize(size, interpolation=3),
)
t.append(transforms.CenterCrop(args.input_size))
t.append(transforms.ToTensor())
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
return transforms.Compose(t)
class RASampler(torch.utils.data.Sampler):
"""Sampler that restricts data loading to a subset of the dataset for distributed,
with repeated augmentation.
It ensures that different each augmented version of a sample will be visible to a
different process (GPU)
Heavily based on torch.utils.data.DistributedSampler
"""
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.num_samples = int(math.ceil(len(self.dataset) * 3.0 / self.num_replicas))
self.total_size = self.num_samples * self.num_replicas
self.num_selected_samples = int(math.floor(len(self.dataset) // 256 * 256 / self.num_replicas))
self.shuffle = shuffle
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
if self.shuffle:
indices = torch.randperm(len(self.dataset), generator=g).tolist()
else:
indices = list(range(len(self.dataset)))
# add extra samples to make it evenly divisible
indices = [ele for ele in indices for _ in range(3)]
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples
return iter(indices[:self.num_selected_samples])
def __len__(self):
return self.num_selected_samples
def set_epoch(self, epoch):
self.epoch = epoch
def train_one_epoch(model: torch.nn.Module, criterion: SoftTargetCrossEntropy,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None,
set_training_mode=True):
model.train(set_training_mode)
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast():
try:
_, output = model(samples)['x']
except:
_, output = model(samples)
loss = criterion(output, targets)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
optimizer.zero_grad()
# this attribute is added by timm on one optimizer
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order)
# torch.cuda.synchronize()
if model_ema is not None:
model_ema.update(model)
metric_logger.update(loss=loss_value)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
# metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
for images, target in metric_logger.log_every(data_loader, 10, header):
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True, dtype=torch.long)
# compute output
with torch.cuda.amp.autocast():
try:
feature_before_head, output = model(images)['x']
except:
feature_before_head, output = model(images)
# print('feature_before_head: ', feature_before_head.size())
loss = criterion(output, target)
_, pred = output.topk(1, 1, True, True)
pred = pred.t()
# print('pred, target: ', pred.size(), (target.reshape(1, -1).expand_as(pred)).size())
acc1, acc5 = accuracy(output, target, topk=(1, 5))
preds = pred.squeeze(0).data.cpu().numpy()
targets = target.reshape(1, -1).expand_as(pred).squeeze(0).data.cpu().numpy()
# f1 = F1(average='macro', num_classes=9).to(device)(preds, targets)
# precision = Precision(average='macro', num_classes=9).to(device)(preds, targets)
# specificity = Specificity(average='macro', num_classes=9).to(device)(preds, targets)
f1 = f1_score(targets, preds, average='macro')
specificity = specificity_score(targets, preds, average='macro')
sensitivity = sensitivity_score(targets, preds, average='macro')
# print('targets, preds: ',
# targets, preds)
# print('acc1, f1, sensitivity, specificity: ', acc1, f1, sensitivity, specificity)
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item() / 100, n=batch_size)
metric_logger.meters['f1'].update(f1, n=batch_size)
metric_logger.meters['sensitivity'].update(sensitivity, n=batch_size)
metric_logger.meters['specificity'].update(specificity, n=batch_size)
# gather the stats from all processes
# metric_logger.synchronize_between_processes()
# print('* Acc@1 {:.3f} F1 {:.3f} Sensitivity {:.3f} Specificity {:.3f}'
# .format(metric_logger.acc1, metric_logger.f1,
# metric_logger.sensitivity, metric_logger.specificity))
# print('acc1, f1, sensitivity, specificity')
# print(metric_logger.acc1)
# print(metric_logger.f1)
# print(metric_logger.sensitivity)
# print(metric_logger.specificity)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def get_args_parser():
parser = argparse.ArgumentParser('evaluation script', add_help=False)
parser.add_argument('--batch-size', default=256, type=int)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--num_classes', default=9, type=int, help='number of classes in validation dataset, '
'for instance, there are 9 classes in CRC dataset and 19 classes in PanNuke.')
# Model parameters
parser.add_argument('--avgpool_patchtokens', default=0, choices=[0, 1], type=int,
help="""Whether or not to use global average pooled features or the [CLS] token.""")
parser.add_argument('--arch', default='vit_small', type=str, help='Architecture.')
parser.add_argument('--patch_size', default=16, type=int, help='Patch resolution of the model.')
parser.add_argument('--window_size', default=7, type=int, help='Window size of the model.')
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--pretrained_weights',
default='', type=str, help="""Path to pretrained weights to evaluate. """)
parser.add_argument("--checkpoint_key", default="teacher", type=str,
help='Key to use in the checkpoint (example: "teacher")')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--attn_drop_rate', type=float, default=0.0, metavar='PCT',
help='Attention dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--model-ema', action='store_true')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
parser.set_defaults(model_ema=True)
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Distillation parameters
parser.add_argument('--teacher-model', default='', type=str, metavar='MODEL',
help='Name of teacher model to train')
parser.add_argument('--teacher-path', type=str, default='')
# * Finetuning params
parser.add_argument('--finetune', default='', help='finetune from checkpoint')
parser.add_argument('--disable_weight_decay_on_bias_norm', action='store_true', default=False)
parser.add_argument('--init_scale', default=1.0, type=float)
# Dataset parameters
parser.add_argument('--data_path', default='/home/yej36/scratch/VGH', type=str,
help='dataset path')
parser.add_argument('--data_set', default='CRC', choices=['CRC', 'PanNuke'],
type=str, help='dataset path')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument("--local_rank", default=0, type=int)
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
# utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
utils.fix_random_seeds(args.seed)
cudnn.benchmark = True
dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
dataset_val, _ = build_dataset(is_train=False, args=args)
if True: # args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
if args.repeated_aug:
sampler_train = RASampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
else:
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=0,
pin_memory=True,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=int(1.5 * args.batch_size),
num_workers=0,
pin_memory=True,
drop_last=False
)
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.nb_classes)
if 'vit' in args.arch:
model = models.__dict__[args.arch](
patch_size=args.patch_size,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
attn_drop_rate=args.attn_drop_rate,
use_mean_pooling=args.avgpool_patchtokens,
num_classes=args.num_classes,
)
elif 'resnet' in args.arch:
model = models.__dict__[args.arch](
num_classes=args.num_classes
)
print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
# load weights to evaluate
model.training = False
# state_dict = torch.load(args.pretrained_weights, map_location="cpu")
# state_dict = state_dict[args.checkpoint_key]
# state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
# state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
#
# msg = model.load_state_dict(state_dict, strict=False)
#
# print('Pretrained weights found at {} and loaded with msg: {}'.format(args.pretrained_weights, msg))
embed_dim = model.embed_dim
model.head = nn.Linear(embed_dim, args.nb_classes) if args.nb_classes > 0 else nn.Identity()
model.head.apply(model._init_weights)
if args.init_scale != 1.0:
model.head.weight.data.mul_(args.init_scale)
model.head.bias.data.mul_(args.init_scale)
model.cuda()
if args.finetune:
if args.finetune.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.finetune, map_location='cpu', check_hash=True)
else:
utils.restart_from_checkpoint(
os.path.join(args.output_dir, args.finetune),
state_dict=model,
)
checkpoint_model = checkpoint['model']
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias', 'head_dist.weight', 'head_dist.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
# interpolate position embedding
pos_embed_checkpoint = checkpoint_model['pos_embed']
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = model.patch_embed.num_patches
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
# height (== width) for the checkpoint position embedding
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
# height (== width) for the new position embedding
new_size = int(num_patches ** 0.5)
# class_token and dist_token are kept unchanged
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model['pos_embed'] = new_pos_embed
model.load_state_dict(checkpoint_model, strict=False)
model.to(device)
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
# if True:
# model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
# model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
model_without_ddp = model
linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0
args.lr = linear_scaled_lr
optimizer = create_optimizer(args, model_without_ddp)
loss_scaler = NativeScaler()
lr_scheduler, _ = create_scheduler(args, optimizer)
if args.mixup > 0.:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
output_dir = Path(args.output_dir)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
# if args.model_ema:
# utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
if args.eval:
test_stats = evaluate(data_loader_val, model, device)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
return
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_accuracy = 0.0
for epoch in range(args.start_epoch, args.epochs):
if True: # args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad, model_ema, mixup_fn,
set_training_mode=args.finetune == '', # keep in eval mode during finetuning
)
lr_scheduler.step(epoch)
test_stats = evaluate(data_loader_val, model, device)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
if args.output_dir and (test_stats["acc1"] >= max_accuracy):
# always only save best checkpoint till now
checkpoint_paths = [output_dir / 'checkpoint_{}_cls.pth'.format(args.checkpoint_key)]
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'model_ema': get_state_dict(model_ema),
'scaler': loss_scaler.state_dict(),
'args': args,
}, checkpoint_path)
max_accuracy = max(max_accuracy, test_stats["acc1"])
print(f'Max accuracy: {max_accuracy:.2f}%')
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
for checkpoint_key in args.checkpoint_key.split(','):
print("Starting evaluating {}.".format(checkpoint_key))
args_copy = copy.deepcopy(args)
args_copy.checkpoint_key = checkpoint_key
main(args_copy)