-
Notifications
You must be signed in to change notification settings - Fork 5
/
eval_iou_accuracy.py
39 lines (30 loc) · 1.17 KB
/
eval_iou_accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
pred_data_label_filenames = [line.rstrip() for line in open('all_pred_data_label_filelist.txt')]
gt_label_filenames = [f.rstrip('_pred\.txt') + '_gt.txt' for f in pred_data_label_filenames]
num_room = len(gt_label_filenames)
gt_classes = [0 for _ in range(13)]
positive_classes = [0 for _ in range(13)]
true_positive_classes = [0 for _ in range(13)]
for i in range(num_room):
print(i)
data_label = np.loadtxt(pred_data_label_filenames[i])
pred_label = data_label[:,-1]
gt_label = np.loadtxt(gt_label_filenames[i])
print(gt_label.shape)
for j in xrange(gt_label.shape[0]):
gt_l = int(gt_label[j])
pred_l = int(pred_label[j])
gt_classes[gt_l] += 1
positive_classes[pred_l] += 1
true_positive_classes[gt_l] += int(gt_l==pred_l)
print(gt_classes)
print(positive_classes)
print(true_positive_classes)
print('Overall accuracy: {0}'.format(sum(true_positive_classes)/float(sum(positive_classes))))
print 'IoU:'
iou_list = []
for i in range(13):
iou = true_positive_classes[i]/float(gt_classes[i]+positive_classes[i]-true_positive_classes[i])
print(iou)
iou_list.append(iou)
print(sum(iou_list)/13.0)