-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcv_gic_tl.py
137 lines (110 loc) · 4.53 KB
/
cv_gic_tl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""Train GIC model."""
import os
import tensorflow as tf
import helpers
IMG_SIZE = (224, 224)
def getds():
"""Load dataset."""
ds_path = "gic_dataset"
train_dir = os.path.join(ds_path, "train")
batch_size = 32
with open("gic_labels.txt") as f:
gic_labels = f.readlines()
gic_labels = list(map(lambda x: x.strip(), gic_labels))
train_ds, val_ds = tf.keras.utils.image_dataset_from_directory(
directory=train_dir,
class_names=gic_labels,
batch_size=batch_size,
image_size=IMG_SIZE,
shuffle=True,
seed=1,
validation_split=0.2,
subset="both")
train_ds = train_ds.prefetch(buffer_size=tf.data.AUTOTUNE)
val_ds = val_ds.prefetch(buffer_size=tf.data.AUTOTUNE)
return (train_ds, val_ds)
def getmodel() -> tuple:
"""Compile the model and return."""
data_augmentation = tf.keras.Sequential(layers=[
tf.keras.layers.RandomFlip(),
tf.keras.layers.RandomRotation(factor=0.2),
tf.keras.layers.RandomWidth(factor=0.2),
tf.keras.layers.RandomHeight(factor=0.2),
tf.keras.layers.RandomZoom(height_factor=0.2, width_factor=0.2)
])
input_shape = IMG_SIZE + (3, )
base_model = tf.keras.applications.EfficientNetV2B0(
include_top=False, input_shape=input_shape, pooling="avg")
base_model.trainable = False
prediction_layer = tf.keras.layers.Dense(
units=50, activation=tf.keras.activations.softmax)
inputs = tf.keras.Input(shape=input_shape)
x = data_augmentation(inputs)
x = base_model(x, training=False)
x = tf.keras.layers.Dropout(rate=0.2)(x)
ouputs = prediction_layer(x)
model = tf.keras.Model(inputs, ouputs)
return model, base_model
def train_feature_extractor(model: tf.keras.Model, train_ds: tf.data.Dataset,
val_ds: tf.data.Dataset, epochs: int, callbacks):
"""Feature extraction."""
model.compile(optimizer=tf.keras.optimizers.Nadam(learning_rate=0.2),
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=("acc", ))
history = model.fit(train_ds,
epochs=epochs,
callbacks=callbacks,
validation_data=val_ds)
return history
def fine_tune(model: tf.keras.Model, base_model: tf.keras.Model,
train_ds: tf.data.Dataset, val_ds: tf.data.Dataset, epochs: int,
initial_epochs: int, history, callbacks):
"""Fine tune the model."""
base_model.trainable = True
fine_tune_from = 252
for layer in base_model.layers[:fine_tune_from]:
layer.trainable = False
for layer in base_model.layers[fine_tune_from:]:
if isinstance(layer, tf.keras.layers.BatchNormalization):
layer.trainable = False
model.compile(optimizer=tf.keras.optimizers.Nadam(learning_rate=0.01),
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=("acc", ))
total_epochs = initial_epochs + epochs
history_ft = model.fit(train_ds,
epochs=total_epochs,
callbacks=callbacks,
validation_data=val_ds,
initial_epoch=history.epoch[-1])
return history_ft
def train_model() -> tf.keras.Model:
"""Train model by tl."""
train_ds, val_ds = getds()
model, base_model = getmodel()
initial_epochs = 10
cb_checkpoint = tf.keras.callbacks.ModelCheckpoint(
filepath="artifacts/models/", save_best_only=True)
cb_earlystop = tf.keras.callbacks.EarlyStopping(patience=5,
restore_best_weights=True)
cb_tboard = tf.keras.callbacks.TensorBoard(
log_dir=helpers.get_tboard_logdir())
callbacks = (cb_checkpoint, cb_earlystop, cb_tboard,
helpers.OverFitMonCB())
history = train_feature_extractor(model, train_ds, val_ds, initial_epochs,
callbacks)
history_ft = fine_tune(model,
base_model,
train_ds,
val_ds,
epochs=10,
initial_epochs=initial_epochs,
history=history,
callbacks=callbacks)
helpers.tflite_convert(model, train_ds)
helpers.plot_metrics(history, history_ft, initial_epochs)
return model
def main():
"""Train model and exit."""
train_model()
if __name__ == "__main__":
main()